
Li Boundary Value Problems  (2015) 2015:107 
DOI 10.1186/s13661-015-0372-y

R E S E A R C H Open Access

Global existence and uniform
boundedness of smooth solutions to a
parabolic-parabolic chemotaxis system with
nonlinear diffusion
Xie Li*

*Correspondence:
xieli-520@163.com
College of Mathematics and
Information, China West Normal
University, Nanchong, 637002,
China

Abstract
This paper is devoted to the following quasilinear chemotaxis system:{ ut =∇ · (D(u)∇u) –∇ · (uχ (v)∇v) + uf (u), x ∈ �, t > 0,
vt =�v – ug(v), x ∈ �, t > 0, under homogeneous Neumann boundary

conditions in a smooth bounded domain � ⊂ R
N . The given functions D(s), χ (s), g(s),

and f (s) are assumed to be sufficiently smooth for all s≥ 0 and such that
f (s) ≤ κ –μsτ . It is proved that the corresponding initial boundary value problem
possesses a unique global classical solution for any μ > 0 and τ ≥ 1, which is
uniformly bounded in � × (0, +∞). Moreover, when κ = 0, the decay property of the
solution is also discussed in this paper.
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1 Introduction
In this paper, we consider the fully parabolic chemotaxis system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = ∇ · (D(u)∇u) – ∇ · (uχ (v)∇v) + uf (u), x ∈ �, t > ,
vt = �v – ug(v), x ∈ �, t > ,
∂u
∂ν

= ∂v
∂ν

= , x ∈ ∂�, t > ,
u(x, ) = u(x), v(x, ) = v(x), x ∈ �,

(.)

where � ⊂R
N is a bounded domain with smooth boundary ∂�, and ∂

∂ν
denotes the deriva-

tive with respect to the outer normal of ∂�. Equations (.) are a generalized version of the
classical Keller-Segel model [] and describe the directed movement of cells as a response
to gradients of the concentration of a chemical signal substance (e.g., oxygen) in the envi-
ronment, where the chemical signal substance is consumed rather than produced by the
cells themselves. In this case, u = u(x, t) denotes the density of the cells, and v = v(x, t) de-
notes the concentration of the oxygen, the function D(u) describes the density-dependent
motility of the cells, and the logistic source uf (u) models proliferation and death of the
cells, χ (v) and g(v) denote a chemotactic sensitivity function and consumption rate of
the oxygen by the cells, respectively. From a physical point of view, migration of the cells
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should be regarded as movement in a porous medium, and so we are led to consider the
cell motility as a nonlinear function D(u) of the cell density. Precisely, we will assume that
the diffusion coefficient D satisfies

{
D(s) ∈ C([,∞)), D() > ,
D(s) ≥ cDsm– on (, +∞)

(.)

with m ≥  and cD > . Moreover, we assume that

{
χ (s) ∈ C([, +∞)) is nonnegative and χ ′(s) ≥  on [, +∞),
g(s) ∈ C([, +∞)) satisfies g() =  and g(s) ≥  on (, +∞).

(.)

As to the source term f we require that

{
f ∈ C([,∞)),
f (s) ≤ κ – μsτ with κ ≥ ,μ > , τ ≥  on [, +∞).

(.)

The initial data u, v are supposed throughout this paper to satisfy

{
u ∈ W ,θ (�) for some θ > N , u ≥ , x ∈ �,
v ∈ W ,∞(�), v ≥ , x ∈ �.

(.)

To motivate our study, let us first recall the following related models to (.):

{
ut = ∇ · (D(u)∇u) – χ∇ · (u∇v) + uf (u), x ∈ �, t > ,
vt = �v – αv + βu, x ∈ �, t > ,

(.)

where the chemical signal substance is produced by the cells themselves. This system has
been widely studied during the past decades. It was known that in the linear diffusion case
D ≡  and f (u) ≡ , solutions may blow up in finite time when N ≥  [–]; however, in
the case f (u) ≤ a – bu, arbitrarily small b >  guarantee the global existence and bound-
edness of solutions when N =  [], and that appropriately large b

χ
preclude blow-up in

the case N ≥  []. In the nonlinear case [, ] provide uniform-in-time boundedness of
solutions in (.) under the condition that the logistic term f (u) vanishes, and that in this
respect the condition m >  – 

N found in work [] is optimal, because in [] it has been
shown that if D(u) = (u + )– 

N –ε for some ε > , f (u) ≡ , and � is a ball, then (.) pos-
sesses some unbounded solutions. Moreover, in [], the authors consider a more general
version of (.). For more related work one can refer to [, ]. Next we mention some re-
sults about the signal is consumed by the cells. The following chemotaxis-(Navier)-Stokes
model which is a generalized version of the model proposed in[], describes the motion
of oxygen-driven swimming cells in an incompressible fluid, which is closely related to
(.)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut + w · ∇u = ∇ · (D(u)∇u) – ∇ · (uχ (v)∇v), x ∈ �, t > ,
vt + w · ∇v = �v – ug(v), x ∈ �, t > ,
wt + κ(w · ∇w) = η�w – ∇P + u∇φ, x ∈ �, t > ,
∇ · w = .

(.)
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Here, w denotes the velocity field of the fluid subject to an incompressible Navier-Stokes
equation with pressure P and viscosity η, and a gravitational force ∇φ. In (.), both cells
and oxygen are transported with the fluid. There are many results about the mathematical
analysis on (.). See [–] etc. If the flow of the fluid is ignored (i.e., w ≡ ) or the fluid
is stationary, then w is decoupled from (.), which yields

{
ut = ∇ · (D(u)∇u) – ∇ · (uχ (v)∇v), x ∈ �, t > ,
vt = �v – ug(v), x ∈ �, t > .

(.)

When D(u) ≡ , the model (.) is originally proposed by Keller and Segel with g(v) =
vγ and χ (v) = 

v >  to describe the bacterial wave propagation, where the chemical is
consumed by bacterial. For this model, many progresses are made in recent years, e.g., see
a review paper [] and references therein. Moreover, when g(v) = v and χ (v) = const. :=
χ > , Tao [] proved that if ‖v‖L∞(�) is sufficiently small, then the corresponding initial
boundary value problem possesses a unique global solution that is uniformly bounded.
Moreover, the same result was obtained in [] for the model with logistic source. For
large initial data, Tao and Winkler [] showed that the problem has a global weak solution
which is eventually bounded and smooth under the assumptions that χ (v) ≡  and � ⊂R



is a bounded convex domain. When D(u) ≥ cD(u + )m– with m >  – 
N , Wang et al. []

showed that the corresponding initial boundary value problem possesses a unique global
classical solution that is uniformly bounded provided that � ⊂ R

N is a bounded convex
domain and some other technical conditions are fulfilled. Recently, the result on global
existence is relaxed to m >  – 

n+ in [], and the result on uniformly boundedness is
relaxed to m >  – n+

n in [].
The aim of this paper is to study the global existence and boundedness of the solutions

for the parabolic-parabolic chemotaxis system with linear or nonlinear diffusion and lo-
gistic source (.). Moreover, when κ = , i.e., cells are a priori unable to reproduce them-
selves, such as broadcast spawning phenomena discussed in [, ], the decay property
of the solution component u is also obtained. Our main result is stated as follows.

Theorem . Let m ≥ , τ ≥ , � ⊂ R
 be a bounded domain with smooth boundary.

Suppose that D(s), χ (s), f (s), and g(s) satisfy (.)-(.). Then for each (u, v) fulfilling (.),
the problem (.) possesses a unique classical solution which is global in time and uniformly
bounded in � × (,∞). Furthermore, if κ = , then the component u of global classical
solution has the following decay property:

∥∥u(·, t)
∥∥

L∞(�) →  as t ↗ ∞. (.)

Remark . In Theorem ., the smallness of ‖v‖L∞(�) is canceled, which is vital in []
and []. Moreover, the convexity of the domain � is also canceled, which is needed in
[, ] etc.

2 Preliminaries
We first state the local existence of classical solutions of (.). The proof is based on an
appropriate fixed point argument. One can refer to [, , ] etc. for more details.
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Lemma . Let � ⊂ R
N (N ≥ ) be a bounded domain with smooth boundary. Suppose

that D(s), χ (s), f (s), and g(s) satisfy (.)-(.), and assume that the initial data (u, v) ∈
(W ,θ (�)) (for some θ > N ). Then the model (.) has a unique local-in-time nonnegative
classical solution (u, v) ∈ (C([, T∗); W ,θ (�)) ∩ C,(�̄ × (, T∗))). Here, T∗ denotes the
maximal existence time. Moreover, if T∗ < ∞, then

∥∥u(·, t)
∥∥

L∞(�) → ∞ as t ↗ T∗. (.)

The following L estimate can easily be checked.

Lemma . Assume that v ∈ W ,∞(�). Then the solution (u, v) of (.) satisfies the fol-
lowing properties:

∥∥u(·, t)
∥∥

L(�) ≤ M := max

{
‖u‖L(�),

(
κ

μ

) 
τ

|�|
}

for all t ∈ [
, T∗) (.)

and

∥∥v(·, t)
∥∥

L∞(�) ≤ ‖v‖L∞(�) for all t ∈ [
, T∗). (.)

Proof Integrating the first equation in (.) over �, and utilizing the Hölder inequality,
yields

d
dt

∫

�

u dx ≤ κ

∫

�

u dx – μ

∫

�

u+τ dx

≤ κ

∫

�

u dx –
μ

|�|τ
(∫

�

u dx
)+τ

for all t ∈ (
, T∗).

Then y(t) :=
∫
�

u dx satisfies

y′(t) ≤ κy(t) –
μ

|�|τ y(t)+τ for all t ∈ (
, T∗).

Thus, a standard ODE argument implies that y(t) ≤ max{‖u‖L(�), ( κ
μ

) 
τ |�|}, for all t ∈

(, T∗). Since g ≥ , (.) immediately results from the parabolic maximum principle ap-
plied to the second equation in (.). �

Next we establish an elementary inequality, which will be used in Lemma ..

Lemma . Let μ > , τ ≥ , κ ≥ , and A > . Then there exists a positive constant C∗ :=
C(κ ,μ, A) such that

Az + κ( + z) ln( + z) – μz+τ ln( + z) + ( + z) ln( + z) – z ≤ C∗ for all z > . (.)

Proof Define

ϕ(z) := Az + κ( + z) ln( + z) – μz+τ ln( + z) + ( + z) ln( + z) – z.
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Then it satisfies

ϕ() =  and lim
z→∞

ϕ(z)
z+τ ln( + z)

= –μ.

Thus for some z >  we have ϕ <  on (z,∞). In view of the continuity of ϕ on [,∞),
we have

ϕ(z) ≤ max
z∈[,z]

ϕ(z) for all z > ,

which implies (.). �

3 Proof of Theorem 1.1
3.1 Proof of global existence
In this section, we focus on proof of global existence in Theorem .. Inspired by [], we
will first establish estimate on

∫
�

um+ dx +
∫
�

|∇v| dx to obtain estimate on
∫
�

up dx for
any p > . To achieve this purpose, we need a series of a priori estimates.

Lemma . Let the same assumptions as in Theorem . hold. Then the solution of (.)
satisfies

d
dt

∫

�

up dx +
p(p – )cD



∫

�

up+m–|∇u| dx

≤ p(p – )‖χ‖
L∞(�)

cD

∫

�

up–m+|∇v| dx

+ κp
∫

�

up dx – μp
∫

�

up+τ dx (.)

for any p > m and each t ∈ (, T∗). Particularly, we have

d
dt

∫

�

um+ dx +
m(m + )cD



∫

�

um–|∇u| dx

≤ m(m + )‖χ‖
L∞(�)

cD

∫

�

u|∇v| dx

+ κ(m + )
∫

�

um+ dx – μ(m + )
∫

�

um++τ dx. (.)

Proof Multiplying (.) by up– and integrating the resulted equation over �, we obtain


p

d
dt

∫

�

up dx + (p – )
∫

�

up–D(u)|∇u| dx

= (p – )
∫

�

up–χ (v)∇u · ∇v dx +
∫

�

upf (u) dx. (.)

We now estimate the last three terms of the above equality. Indeed, by (.) we have

(p – )
∫

�

up–D(u)|∇u| dx ≥ (p – )cD

∫

�

up+m–|∇u| dx,
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and by the Young inequality, we get

(p – )
∫

�

up–χ (v)∇u · ∇v dx

≤ (p – )‖χ‖L∞(�)

∫

�

up–|∇u||∇v|dx

≤ (p – )cD



∫

�

up+m–|∇u| dx +
(p – )‖χ‖

L∞(�)

cD

∫

�

up–m+|∇v| dx.

For the last term, in view of (.), we have

∫

�

upf (u) dx ≤ κ

∫

�

up dx – μ

∫

�

up+τ dx.

Summarily, we obtain

d
dt

∫

�

up dx +
p(p – )cD



∫

�

up+m–|∇u| dx

≤ p(p – )‖χ‖
L∞(�)

cD

∫

�

up–m+|∇v| dx

+ κp
∫

�

up dx – μp
∫

�

up+τ dx.

Taking p = m + , one can easily deduce (.). This completes the proof of Lemma .. �

We then establish a coupled estimate on
∫
�

[( + u) ln( + u) – u] dx +
∫
�

|∇v| dx.

Lemma . Let the same assumptions as in Theorem . hold. Then there exists a positive
constant C such that

∫

�

[
( + u) ln( + u) – u

]
dx ≤ C for all t ∈ (

, T∗) (.)

and
∫

�

|∇v| dx ≤ C for all t ∈ (
, T∗). (.)

Proof We shall divide the proof into three steps.
Step . First testing (.) against ln( + u), we have

d
dt

∫

�

[
( + u) ln( + u) – u

]
dx +

∫

�

D(u)
 + u

|∇u| dx

=
∫

�

u
 + u

χ (v)∇u · ∇v dx +
∫

�

uf (u) ln( + u) dx (.)

for all t ∈ (, T∗). To estimate each term on the right side of (.), we first note that

ln( + u) ≤ u for all u ≥ .
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Then utilizing the Young inequality and integration by parts, we get
∫

�

u
 + u

χ (v)∇u · ∇v dx

=
∫

�

[
ln( + u) – u

]
χ (v)�v dx +

∫

�

[
ln( + u) – u

]
χ ′(v)|∇v| dx

≤ ‖χ‖
L∞



∫

�

[
ln( + u) – u

] dx +



∫

�

|�v| dx

≤ ‖χ‖
L∞



∫

�

u dx +



∫

�

|�v| dx for all t ∈ (
, T∗), (.)

where we have used χ ′(v) ≥ . For the last term on the right of (.), according to (.),
we obtain

∫

�

uf (u) ln( + u) dx

≤
∫

�

u
(
κ – μuτ

)
ln( + u) dx

=
∫

�

[
κu ln( + u) – μu+τ ln( + u)

]
dx for all t ∈ (

, T∗). (.)

Then combining (.) and (.) along with (.), we have

d
dt

∫

�

[
( + u) ln( + u) – u

]
dx +

∫

�

D(u)
 + u

|∇u| dx

≤ ‖χ‖
L∞



∫

�

u dx +



∫

�

|�v| dx

+
∫

�

[
κu ln( + u) – μu+τ ln( + u)

]
dx for all t ∈ (

, T∗). (.)

Step . In order to cancel 

∫
�

|�v| dx on the right of (.), we first test (.) against
–�v to find that




d
dt

∫

�

|∇v| dx = –
∫

�

|�v| dx +
∫

�

ug(v)�v dx +
∫

�

v�v dx

–
∫

�

v�v dx for all t ∈ (
, T∗).

Then by integration by parts and the Young inequality, we have




d
dt

∫

�

|∇v| dx ≤ –
∫

�

|�v| dx + ‖g‖L∞
∫

�

u|�v|dx

–
∫

�

|∇v| dx +
∫
�

|�v| dx


+
∫

�

|v| dx

≤ –
∫
�

|�v| dx


+ ‖g‖
L∞

∫

�

u dx –
∫

�

|∇v| dx

+ ‖v‖
L∞(�)|�| for all t ∈ (

, T∗), (.)

where (.) has been used.
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Step . Adding (.) to (.) yields

d
dt

{∫

�

[
( + u) ln( + u) – u

]
dx +




∫

�

|∇v| dx
}

+
∫

�

D(u)
 + u

|∇u| dx +
∫

�

|∇v| dx

≤ C

∫

�

u dx +
∫

�

[
κu ln( + u) – μu+τ ln( + u)

]
dx

+ ‖v‖
L∞(�)|�| for all t ∈ (

, T∗)

with C =
‖χ‖

L∞(�)+‖g‖
L∞(�)

 , which is a positive constant according to (.) and (.).
Adding

∫
�

[( + u) ln( + u) – u] dx to both sides of this and dropping the nonnegative term
∫
�

D(u)
+u |∇u| dx on the left, we obtain

d
dt

{∫

�

[
( + u) ln( + u) – u

]
dx +




∫

�

|∇v| dx
}

+
∫

�

|∇v| dx +
∫

�

[
( + u) ln( + u) – u

]
dx

≤ C

∫

�

u dx +
∫

�

[
( + u) ln( + u) – u

]
dx

+
∫

�

[
κu ln( + u) – μu+τ ln( + u)

]
dx + ‖v‖

L∞(�)|�| (.)

for all t ∈ (, T∗). In view of Lemma ., there exists a positive constant C∗ such that
∫

�

{
Cu + κu ln( + u) – μu+τ ln( + u) + ( + u) ln( + u) – u

}
dx ≤ C∗|�|.

Thus y(t) :=
∫
�

[( + u) ln( + u) – u] dx + 

∫
�

|∇v| dx satisfies

dy
dt

+ y ≤ C∗|�| + ‖v‖
L∞(�)|�| for all t ∈ (

, T∗).

By standard ODE argument, we can derive

y(t) ≤ max
{

y(), C∗|�| + ‖v‖
L∞(�)|�|} for all t ∈ (

, T∗),

which implies (.) and (.). �

In order to obtain the coupled estimate on
∫
�

um+ dx +
∫
�

|∇v| dx, we then derive the
following energy estimate on

∫
�

|∇v| dx.

Lemma . Let the same assumptions as in Theorem . hold. Then there exists a positive
constant C such that the solution of (.) satisfies

d
dt

∫

�

|∇v| dx +



∫

�

∣∣∇|∇v|∣∣ dx

≤ ( + N)‖g‖
L∞(�)

∫

�

u|∇v| dx + C for all t ∈ (
, T∗). (.)
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Proof Differentiating equation (.), we obtain

(|∇v|)t = ∇v · ∇�v – ∇v · ∇(
ug(v)

)
,

which, together with the point-wise identity ∇v · ∇�v = �|∇v| – |Dv|, yields

(|∇v|)t = �|∇v| – 
∣∣Dv

∣∣ – ∇v · ∇(
ug(v)

)
. (.)

Multiplying both sides of (.) by |∇v| and integrating over �, we have

d
dt

∫

�

|∇v| dx + 
∫

�

∣∣∇|∇v|∣∣ dx + 
∫

�

|∇v|∣∣Dv
∣∣ dx

= –
∫

�

|∇v|∇v · ∇(
ug(v)

)
dx + 

∫

∂�

|∇v| ∂|∇v|
∂ν

dx for all t ∈ (
, T∗). (.)

For the first term on the right-hand side of (.), we can use integration by parts and the
Young inequality to obtain

–
∫

�

|∇v|∇v · ∇(
ug(v)

)
dx

= 
∫

�

ug(v)|∇v|�v dx + 
∫

�

ug(v)∇v · ∇|∇v| dx

≤ 
N

∫

�

|∇v||�v| dx +
∫

�

∣∣∇|∇v|∣∣ dx + ( + N)
∫

�

ug(v)|∇v| dx

≤ 
∫

�

|∇v|∣∣Dv
∣∣ dx +

∫

�

∣∣∇|∇v|∣∣ dx + ( + N)‖g‖
L∞(�)

∫

�

u|∇v| dx, (.)

where we have used the fact |�v| ≤ N |Dv|. For the second term on the right-hand side
of (.), thanks to the boundedness of

∫
�

|∇v| dx, by the same procedure as (.)-(.)
in [], we deduce that there exists a positive constant C such that


∫

∂�

|∇v| ∂|∇v|
∂ν

dx ≤ 


∫

�

∣∣∇|∇v|∣∣ dx + C for all t ∈ (
, T∗). (.)

Combining (.) and (.) with (.), we obtain (.) immediately. �

Corollary . Let the same assumptions as in Theorem . hold. Then for the same con-
stant C as in Lemma ., the solution of (.) carries the property

d
dt

{∫

�

um+ dx +
∫

�

|∇v| dx
}

+
{∫

�

um+ dx +
∫

�

|∇v| dx
}

+
m(m + )cD



∫

�

um–|∇u| dx +



∫

�

∣∣∇|∇v|∣∣ dx

≤
(m(m + )‖χ‖

L∞(�)

cD
+ ( + N)‖g‖

L∞(�)

)∫

�

u|∇v| dx

+
(
 + κ(m + )

)∫

�

um+ dx – μ(m + )
∫

�

um++τ dx +
∫

�

|∇v| dx + C. (.)
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Proof Adding (.) to (.) yields

d
dt

{∫

�

um+ dx +
∫

�

|∇v| dx
}

+
m(m + )cD



∫

�

um–|∇u| dx +



∫

�

∣∣∇|∇v|∣∣ dx

≤
(m(m + )‖χ‖

L∞(�)

cD
+ ( + N)‖g‖

L∞(�)

)∫

�

u|∇v| dx

+ κ(m + )
∫

�

um+ dx – μ(m + )
∫

�

um++τ dx + C. (.)

Adding
∫
�

um+ dx +
∫
�

|∇v| dx to both sides of this, then yields (.). �

Now we are ready to establish the estimate on
∫
�

um+ dx +
∫
�

|∇v| dx.

Lemma . Let m >  – 
N+ , N ≥ . Then there exists a positive constant C such that

∫

�

um+ dx ≤ C for all t ∈ (
, T∗) (.)

and

∫

�

|∇v| dx ≤ C for all t ∈ (
, T∗). (.)

Proof In order to obtain the estimate on the couple of
∫
�

um+ dx +
∫
�

|∇v| dx, we need
to estimate the integrals on the right of inequality (.). We first utilize the Gagliardo-
Nirenberg inequality and (.) to estimate

∫
�

|∇v| dx:

∫

�

|∇v| dx =
∥∥|∇v|∥∥

L(�)

≤ c
∥∥∇|∇v|∥∥λ

L(�)

∥∥|∇v|∥∥(–λ)
L(�) + c

∥∥|∇v|∥∥
L(�)

≤ c
∥∥∇|∇v|∥∥λ

L(�) + c

≤ 


∥∥∇|∇v|∥∥
L(�) + c for all t ∈ (

, T∗). (.)

Here in the last inequality we have used the Young inequality, because λ = N
+N ∈ (, ).

Similarly, invoking the Young inequality with ε >  to estimate
∫
�

u|∇v| dx, we have

(m(m + )‖χ‖
L∞(�)

cD
+ ( + N)‖g‖

L∞(�)

)∫

�

u|∇v| dx

≤ ε

∫

�

(|∇v|) N+
N dx +

(m(m + )‖χ‖
L∞(�)

cD
+ ( + N)‖g‖

L∞(�)

) N+
N+

× ε
– N

N+


∫

�

u
N+
N+ dx for all t ∈ (

, T∗). (.)
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Further utilize the Gagliardo-Nirenberg inequality and (.) to estimate

ε

∫

�

(|∇v|) N+
N dx = ε

∥∥|∇v|∥∥
N+

N

L
N+

N (�)

≤ εc
∥∥∇|∇v|∥∥

L(�)

∥∥|∇v|∥∥

N
L(�) + c

∥∥|∇v|∥∥
N+

N
L(�)

≤ εc
∥∥∇|∇v|∥∥

L(�) + c for all t ∈ (
, T∗). (.)

Since m + τ +  > N+
N+ , utilizing the Young inequality we have

(m(m + )‖χ‖
L∞(�)

cD
+ ( + N)‖g‖

L∞(�)

) N+
N+

ε
– N

N+


∫

�

u
N+
N+ dx

≤ μ(m + )


∫

�

um++τ dx + c(ε) (.)

for all t ∈ (, T∗). Taking ε = 
c

, then from (.)-(.), we have

(m(m + )‖χ‖
L∞(�)

cD
+ ( + N)‖g‖

L∞(�)

)∫

�

u|∇v| dx

≤ 


∥∥∇|∇v|∥∥
L(�) +

μ(m + )


∫

�

um++τ dx + C (.)

for all t ∈ (, T∗). For the third term [κ(m + ) + ]
∫
�

um+ dx, utilizing the Young inequality
we have

[
κ(m + ) + 

] ∫

�

um+ dx ≤ μ(m + )


∫

�

um++τ dx + C for all t ∈ (
, T∗). (.)

Since m(m+)cD


∫
�

um–|∇u| dx is nonnegative, combining (.), (.), and (.) with
(.) yields

d
dt

{∫

�

um+ dx +
∫

�

|∇v| dx
}

+
{∫

�

um+ dx +
∫

�

|∇v| dx
}

≤ C (.)

for all t ∈ (, T∗), where C = C + C + C. Thus an ODE comparison shows that y(t) :=
∫
�

um+ dx +
∫
�

|∇v| dx satisfies

y(t) ≤ max
{

y(), C
}

for all t ∈ (
, T∗), (.)

which implies (.) and (.). �

We note m >  if N =  in Lemma .. However, if m = , N = , and τ = , i.e., m + τ +  =
N+
N+ = , the Young inequality will fail to lead to (.). In this case, we need to utilize the

following generalization of the Gagliardo-Nirenberg inequality for the general case when
r >  (cf. [], Lemma A., for a detailed proof ), which extends the standard case when
r ≥  in [], to build a bound for

∫
�

u dx.
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Lemma . Let � ⊂ R
 be a bounded domain with smooth boundary, and let p ∈ (,∞)

and r ∈ (, p). Then there exists C >  such that for each η >  one can pick Cη >  with the
property that

‖u‖p
Lp(�) ≤ η‖∇u‖p–r

L(�)

∥∥u ln |u|∥∥r
Lr (�) + C‖u‖p

Lr (�) + Cη (.)

holds for all u ∈ W ,(�).

Lemma . Let m = , N = . Then there exists a positive constant C such that

∫

�

u dx ≤ C for all t ∈ (
, T∗) (.)

and
∫

�

|∇v| dx ≤ C for all t ∈ (
, T∗). (.)

Proof By the same procedure as Lemma ., we only need to handle

(m(m + )‖χ‖
L∞(�)

cD
+ ( + N)‖g‖

L∞(�)

) N+
N+

ε
– N

N+


∫

�

u
N+
N+ dx

in (.). Invoking Lemma . along with (.) and Lemma ., we deduce

(m(m + )‖χ‖
L∞(�)

cD
+ ( + N)‖g‖

L∞(�)

) N+
N+

ε
– N

N+


∫

�

u
N+
N+ dx

=
(‖χ‖

L∞(�)

cD
+ ‖g‖

L∞(�)

) 

ε

– 




∫

�

u dx

≤
(‖χ‖

L∞(�)

cD
+ ‖g‖

L∞(�)

) 

ε

– 




∫

�

(u + ) dx

≤
(‖χ‖

L∞(�)

cD
+ ‖g‖

L∞(�)

) 


× ε
– 




[
ε‖∇u‖

L(�)

∥∥(u + ) ln(u + )
∥∥

L(�) + C‖u + ‖
L(�) + Cε

]

≤ c
√

ε‖∇u‖
L(�) + c(ε) for all t ∈ (

, T∗). (.)

Taking ε ≤ min{ 
c

, c
D

c

}, from (.), (.), and (.) we then deduce

(m(m + )‖χ‖
L∞(�)

cD
+ ( + N)‖g‖

L∞(�)

)∫

�

u|∇v| dx

=
(‖χ‖

L∞(�)

cD
+ ‖g‖

L∞(�)

)∫

�

u|∇v| dx

≤ 


∥∥∇|∇v|∥∥
L(�) +

cD


‖∇u‖

L(�) + c for all t ∈ (
, T∗). (.)
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Combing (.), (.), (.), with (.) yields

d
dt

{∫

�

u dx +
∫

�

|∇v| dx
}

+
{∫

�

u dx +
∫

�

|∇v| dx
}

≤ C (.)

for all t ∈ (, T∗), which implies (.) and (.). �

Lemma . and Lemma . result in the following useful corollary that will be used in
the proof of Lemma . below.

Corollary . Let N = , m ≥ , and assume that the initial data (u, v) satisfies (.).
Then there exists a positive constant C such that for any constant k >  there exists C(k) > 
such that

∫

�

|∇v|k ≤ C(k) for all t ∈ (
, T∗). (.)

Proof Since m +  ≥ N = , then by (.), (.), (.), (.), and the standard parabolic
regularity theory (cf. [], Lemma . or [], Lemma ), we can immediately obtain
(.). �

Lemma . Let the same assumptions as in Theorem . hold. Then for any p >  there
exists a positive constant C(p) such that

∫

�

up dx ≤ C(p) for all t ∈ (
, T∗). (.)

Proof Let us recall to (.) once again. Adding
∫
�

up dx to the both sides of (.) and ne-
glecting the nonnegative term p(p–)cD


∫
�

up+m–|∇u| dx on the left, we arrive at

d
dt

∫

�

up dx +
∫

�

up dx

≤ p(p – )‖χ‖
L∞(�)

cD

∫

�

up–m+|∇v| dx

+ (κp + )
∫

�

up dx – μp
∫

�

up+τ dx (.)

for any p > m and each t ∈ (, T∗). Utilizing (.) and the Young inequality we have

p(p – )χ

cD

∫

�

up–m+|∇v| dx

≤ μp


∫

�

up+τ dx + c

∫

�

|∇v| (p+τ )
τ+m–

≤ μp


∫

�

up+τ dx + cC
(

(p + τ )
τ + m – 

)
for all t ∈ (

, T∗), (.)

with some c >  and C( (p+τ )
τ+m– ) defined by Corollary ., as well as

[κp + ]
∫

�

up dx ≤ μp


∫

�

up+τ dx + C̃ for all t ∈ (
, T∗). (.)
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Collecting (.)-(.), we thus deduce that y(t) :=
∫
�

up dx satisfies the differential in-
equality

d
dt

∫

�

up dx +
∫

�

up dx ≤ C for all t ∈ (
, T∗), (.)

with C = cC( (p+τ )
τ+m– ) + C̃. Upon an ODE comparison, this implies

y(t) ≤ max
{

y(), C
}

for all t ∈ (
, T∗).

Thus (.) holds for any p > m. Since
∫
�

u dx ≤ M, utilizing the interpolation inequality,
(.) holds also for any  < p ≤ m. This completes the proof of Lemma .. �

Once the uniform estimate of ‖u(·, t)‖Lk (�) has been established, we can use the classical
Alikakos iteration method to obtain the uniform bound of ‖u(·, t)‖L∞(�).

Lemma . Let the same assumptions as in Theorem . hold. Then there exists a positive
constant C such that the solution component u of (.) satisfies

∥∥u(·, t)
∥∥

L∞(�) ≤ C for all t ∈ (
, T∗). (.)

We are now in the position to prove the global existence in Theorem ..

Proof of global existence The existence of global classical solution to equations (.) is an
immediate consequence of Lemma . and the extensibility criterion (.). �

3.2 Proof of decay property in Theorem 1.1
In this short subsection, we discuss the decay property in the limit case κ = . Our ap-
proach is inspired by that in [].

Lemma . Suppose that f (s) satisfies (.) with κ = . Then

∫ ∞



∫

�

uτ+ dx dt <

μ

‖u‖L(�) (.)

and
∫

�

u(x, t) dx ≤ ‖u‖L(�)|�|(|�|τ + μτ t‖u‖τ
L(�)

)– 
τ for all t > . (.)

Proof Integrating (.) in space we obtain under the assumption κ = ,

d
dt

∫

�

u dx =
∫

�

uf (u) dx ≤ –μ

∫

�

uτ+ dx ≤ –
μ

|�|τ
(∫

�

u dx
)+τ

for all t > ,

which implies both (.) and (.). �

Lemma . Let κ = , μ >
‖u‖L(�)

(τ+)‖v‖L(�)
, and assume that

∫ ∞



∫

�

g(x, t)
τ+
τ dx <

τ + 
τ

(
‖v‖L(�) –


(τ + )μ

‖u‖L(�)

)
. (.)
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Then there exists a positive constant C appropriately small such that

∫

�

v(x, t) dx ≥ C for all t > . (.)

Proof Integrating the second equation in (.) in space and applying the Young inequality,
yield

d
dt

∫

�

v dx = –
∫

�

ug(v) dx ≥ –


τ + 

∫

�

uτ+ dx –
τ

τ + 

∫

�

g(v)
τ+
τ dx. (.)

In view of (.), (.) implies

∫

�

v dx ≥ ‖v‖L(�) –


(τ + )μ
‖u‖L(�) –

τ

τ + 

∫ ∞



∫

�

g(v)
τ+
τ dx for all t > . (.)

Therefore, (.) asserts the positivity of the right-hand side of (.). We thus obtain the
desired result (.). �

Lemma . There exist α ∈ (, ) and C >  such that

‖u‖
Cα, α (�̄×[t,t+])

≤ C for all t > . (.)

Proof Rewriting the first equation of (.) in the form

ut = ∇ · (D(u)∇u – uχ (v)∇v
)

+ uf (u), x ∈ �, t > . (.)

Utilizing the Young inequality we can estimate

(
D(u)∇u – uχ (v)∇v

) · ∇u ≥ D(u)


|∇u| –
uχ(v)|∇v|

D(u)

and evidently

∣∣D(u)∇u – uχ (v)∇v
∣∣ ≤ D(u)|∇u| + uχ (v)|∇v|

in � × (,∞). As Lemma . and Corollary . imply u and ∇v are bounded in
L∞((,∞); Lk(�)) for any k ∈ (,∞), and that u is a bounded solution of (.), the Hölder
continuity of u, i.e., (.), immediately results from a known result on parabolic Hölder
regularity ([], Theorem .). �

Proof of decay property in Theorem . In view of the Hölder continuity of u, i.e., (.),
Arzelà-Ascoli theorem asserts (u(·, t))t> is relatively compact in C(�̄). Thus, the decay
property (.) implies that ‖u(·, t)‖L∞(�) →  as t → ∞. �

Remark . The decay property in Theorem . reveals the fact that if the proliferation
of cells is ignored, then the cells will not survive. However, Lemma . shows that if the
death rate of the cells is large and the consumption rate of oxygen is small enough, then
there is always oxygen remaining.
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Since the global existence and decay property both have been proved, we then have
completed the proof of Theorem ..
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