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Abstract

In this paper, we consider fourth-order differential equations on a half-line with
deviating arguments of the form u® (1) + g(t)f(t, [u(®)], [U' ()], [u” ()], " (1) = 0,

0 < t < +00, with the boundary conditions u(0) = A, u'(0) = B, u”(t) — au” (t) = (),

-T <t <0;u"(+o0) = C. We present sufficient conditions for the existence of a
solution between a pair of lower and upper solutions by using Schauder’s fixed point
theorem. Also, we establish the existence of three solutions between two pairs of
lower and upper solutions by using topological degree theory. An important feature
of our existence criteria is that the obtained solutions may be unbounded. We
illustrate the importance of our results through two simple examples.

MSC: 34B15;34B40

Keywords: fourth-order; boundary value problem; half-line; upper solution; lower
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1 Introduction

In recent years considerable attention has been focused on the existence of solutions
to boundary value problems involving differential equations with deviating arguments
(DEDA) [1-16]. While most of these works deal with problems on finite intervals and the
literature is satisfactory, study of infinite interval problems has been just initiated in [2,
13-17]. This study compare to boundary value problems for second and higher order or-
dinary differential equations over infinite intervals (and their wide variety of applications
to real world problems) [18-24] is far from complete, and needs attention. To fill some
of this gap, in this paper we shall provide existence criteria for fourth-order differential
equations with deviating arguments of the form

u® () + q(t)f(t, [u(t)], [u/(t)], [u”(t)],u”’(t)) =0, 0<t<+oo, (1.1)

where

[u(t)] = (w(®), u(t - ro,l(t)), oo u(t=T0u(0))),
[ @®)] = (' @), (t = 712(D)),..., (£ = T1.u(2))),
[/ @®)] = (@), u" (£ = 121(0)),.., u" (t — T2u(2))),

© 2015 Naceri et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.


http://dx.doi.org/10.1186/s13661-015-0373-x
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-015-0373-x&domain=pdf
mailto:agarwal@tamuk.edu

Naceri et al. Boundary Value Problems (2015) 2015:108 Page 2 of 31

and g : (0, +00) — (0, +00), f : [0, +00) x R x R"! x R™*! x R — R are continuous, and
7;;: [0,+00) — (0, +00) are continuous for all j = 0,1,2, i = 1,2,...,n. In what follows we
shall always assume that lim,_, ;o0 (£ — 7;;()) = +00, j = 0,1,2, i = 1,2,...,n. We define the
positive real number 7 as

T=-— min min(f-t;;(t
0<j<2,1<i<n t>0 ( 1,1( ))

and seek the solutions of (1.1) which satisfy the boundary conditions

u(0) = A, u'(0) = B, u'(t)—au”(t) =0(), -Tt<t<0;
m (1.2)
u” (+o00) = C,
where 6 € C[-7,0],A,B€ R, a,C > 0, and u”(+00) = lim;_, ., #””(¢). For this, following as
in several above works, and inspired by the contributions in [25-30], we shall employ the
method of upper and lower solutions.

The plan of this paper is as follows: In Section 2, we state some definitions and lemmas
which are needed to prove the main results. In Section 3, we show that in the presence of
a pair of upper and lower solutions the problem (1.1)-(1.2) has at least one solution. Also
in this section, we establish that in the presence of two pairs of upper and lower solutions
the problem (1.1)-(1.2) has at least three solutions. Finally, in Section 4, we illustrate two
examples which show the importance of our results.

2 Preliminaries

In this section we introduce some necessary definitions, lemmas, and preliminary results
that will be used in main results which give the existence of solutions of the problem (1.1)-
(1.2). First, we construct the Green’s function for the linear boundary value problem

uD(t) + e(t) = 0, 0 < t< +00;
u(0) = A, u'(0) = B, u'(t)—au”(t)=0(), -t<t=<0; (2.1)
1" (+00) = C.

Lemma 2.1 Let e € L'[0, +00). Then the solution u € C*[-1,+00) N C*(0, +00) of the prob-
lem (2.1) can be expressed as

#(8), -T<t=<0;
u(t) = 2 3 00 (2.2)
A+Bt+(aC+6(0)5 +C5 + [, G(t,s)e(s)ds, 0=<t<+o0,
where
ﬂtz ﬁ — é é, 0<s<t ;
Glts) =12 2+t% 5+ 5 <s<t<+00 (2.3)
%t + 55, 0<t<s<+00,

and

[~
~—

¢(t)=A+Bt+ (9(0) +aC + a/ooe(s) ds) (—at— a® +ae
0

0 ¢
+/ (s—a—t+ae%§)9(s)ds.
t
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Proof Since e € L'[0, +00), we can integrate (2.1) from ¢ to +00, and use #”'(+00) = C, to

get
oo
u’(t)=C+ / e(s)ds, t>0.
t

Integrating the above equation on [0, £], and applying Fubini’s theorem and using #"(0) —
au”(0) = 6(0), we obtain

u'({t)=aC+ a/oo e(s)ds +60(0) + Ct + /tse(s) ds + /*00 te(s) ds. (2.4)
0 0 t

Again integrating (2.4) twice on [0, ¢], and applying Fubini’s theorem and using u(0) = A
and #/(0) = B, we find

t2 t3 t t2 2t 3
u(t)=A+Bt+(aC+6(O))§+C—+/ <ft2+s__5 S_)e(s)ds
0

—+
3! 2 2 2 3!
oo t3
+/ Et2 + — Je(s)ds,
: \2 3!

for ¢ € [0, +00). Now we consider the following third order linear differential equation:
u'(t)—au”(t)=0(t), tel-1,0].
If the above equation is rearranged, we have
" 1 " 1
u (t)__u (t)=——9(t), te [—'L',O],
a a
and solving this linear equation on [t, 0], we find
" PRI Y Ry
u'(t) =u"(0)ea + — ea 0(s)ds. (2.5)
aJg

Next, integrating (2.5) twice on [t, 0], and applying Fubini’s theorem and using the follow-

ing boundary conditions:

u(0)=A, #'(0)=B and u”(0)=6(0)+au”(0)=06(0)+aC + a/ e(s)ds,

0

we obtain

u(t)=A+Bt+ <9(0) +aC + a/ e(s) ds) (—at —a* + azeé)

0
0 t—s
+ / (s—a —t +u67)9(s)ds
t

for t € [-7,0]. This completes the proof of the lemma. d
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Remark 2.2 G(t,s) defined in (2.3) is the Green’s function of the BVP

—u®(#) =0, 0<t<+00;
u(0) =4/(0) =0, u"(0) = au'’(0), u” (+00) = 0.
Lemma 2.3 The Green'’s function G(t,s) has the following properties:
(1) G(t,s) is twice continuously differentiable on [0, +00) x [0, +00) and

33G(t,s) 33G(¢,s)
R =-1
ot3 t=st o3 t=s"
(2) 284 > 0, V(t,5) € [0, +00) x [0, +00), for i = 0,1,2,3;

G, Yan G,
(3) SUD¢e[0,+00) 1535) = (%): Supte[o,ﬁ-oo)(# a(tt S)) = (%ﬂ)’
1 9%G(ts) 33G(t.s)
Supte[0,+oo)(1_+t 3t(2 : ) = (ﬂ + 1)’ Supte[0,+oo) 3;3 ° =L

Proof (1) and (2) are obvious. Here we shall prove the first inequality of (3). We note that

for all integers k and /
k(AT k<l
£k T \Ik/ " ’
sup —— =11, k=1
tel0,400) 1 + d
+00, k>1

For s < t, we have

2 2 3 2 3
Gy (e 2 s
sup S = Ssup 5 < sup +
te[0,+00) 1+¢ te[0,+00) 1+¢ )

telooo) \1+23 1+
_a £ 1 £ _a 74 +1
< - sup += sup < —
2 te[0,+00) 1+ t3 6 te[0,+00) 1+ t3 6
and for s > ¢
Gl(t,s) ay2 4 2 ar? 2
sup ’3 = sup (2 36)5 sup ( 23+ 63)
te[0,+00) 1+¢ te[0,+00) 1+¢ te[0,+00) 1+¢ 1+¢
_a £ 1 [ _a 94 +1
< - sup += sup < —
2 te[0,+00) 1+ ts 6 te[0,+00) 1+ t3 6

The other parts can be proved similarly.

We consider the space X defined by

t ‘(¢
X:{ueC3[—r,+oo): sup Jul )3|<+oo, S L0l
tE[0,+oo)1+t

te[0,+00) 1+¢2
|u” ()]

up <+oo, lim u"'(¢) exists}
te[0,+00) 1+¢ t—>+00

with the norm

0 1 2 3
llaell = max{llullo, ll2ells, llzellz 212, Neellog, el o, Nuall3, ),

Page 4 of 31
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where
lullo = max @], ful% = sup 2
te[-7,0] te[0,+00) L+
llully = ¢£i$]|”/(t) vl = S %
lullz = max [u"@), il = | lbfftt) L e, = te[ff,lfm)‘”/”(t)"

It is clear that (X, || - ||) is a Banach space. Next we define the mapping 7 : X —
C3[-7, +00) N C*(0, +00) by

tu =179 TS0 g
I(t) + fo G(t,8)q(s)f (s, [u(s)], [/ ()], [ ()], 4" (s)) ds, 0 <t<+00,

where

Y(t)=A+Bt+ (9(0) +aC + a/o q(s)f(s, [u(s)], [u’(s)], [u”(s)], u'”(s)) ds)

t 0 t—s
x (—at —a* + a’ed) + / (s—a-t+aea)o(s)ds
and
£ £
t)=A +Bt+(aC+9(0))§+C§. (2.7)

Lemma 2.4 Themapping T : X — C3[-7,+00)NC*(0, +00) in (2.6) has the following prop-
erties:

(1) Tu(0)=A, (Tu)'(0) =B, (Tu)"(t) — a(Tu)"(¢t) = 0(¢t) for t € [-7,0],

(2) Tul(t) is three-times continuously differentiable on t € [-t, +00),

(3) (Tu)®(t) = —qO)f (&, [u(®)], [ (O], [ ()], u” (1)), £ € (0, +00),

(4) fixed points of T are solutions of BVP (1.1)-(1.2).

When applying the Schiuder fixed point theorem to prove the existence result, it is nec-
essary to show that the operator 7; (defined later) is completely continuous. For this, we
need the following modified version of the Arzela-Ascoli lemma (see [18, 20]).

Lemma 2.5 M C X is relatively compact if the following conditions hold:
(1) all functions belonging to M are uniformly bounded,
(2) all functions belonging to M are equi-continuous on any compact sub-interval of
[-7,+00),
(3) all functions from M are equi-convergent at infinity, that is, for any € > 0, there exists
aT =T(e) >0 such that, forall t > T and any u € M,

u(t) i u(t)

- lim
1+ to+0l1+13

'@ . u'(t)
— lim
1+t to>+0 1+t

w@) . u(t)
— lim
1+ t>+01+¢2

) )

‘ <€ and |u”’(t) — lim u”'(t)| <e.
t—+00
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Definition 2.6 A function « € X N C*(0, +00) is called a lower solution of (1.1)-(1.2) pro-
vided
a®@) +qOf (&, [a@®)], [’ ®)], [« @)], " ®) =0, 0 <t<+00; (2.8)

a(0) <A, a’(0) = B, o’ (t)—ad”(t) <0(t), -T<t<0;
(2.9)

o (+o00) < C.

Similarly, a function 8 € X N C*(0, +00) is called an upper solution of (1.1)-(1.2) provided

BY @) +q@)f (6[B®]. [B O] [B" ], B”(®) <0, 0<t<+o0; (2.10)

B0)=4,  p(0)=B,  B'(t)-ap”(t)=6(t), -T<t=<0; o
2.11
B (+00) > C.

Also, we say «(f) is a strict lower solution (strict upper solution) for problem (1.1)-(1.2) if
all the above inequalities are strict.

Remark 2.7 If

a”’(t) < B’(t), foreveryte [-t,+00), (2.12)
then on integrating (2.12) and using the boundary restrictions in Definition 2.6, we find
that «’(£) < B/'(¢), a(t) < B(¢t) for all £ € [0,+00) and B'(t) < &'(¢), a(t) < B(¢t) for all £ €
[=7,0).
Definition 2.8 Let o, 8 be lower and upper solutions for the problem (1.1)-(1.2) satisfying

a’(t) < B’(t), forallte[-t1,+00).

A continuous function f is said to satisfy Nagumo’s condition with respect to the pair of
functions «, B if there exist positive functions ¢ and 4 € C[0, +00) such that

[f(t,xo,...,xn,yo,...,y,,,zo,...,zn,w)| < o@©)h(|wl)

for all ¢ € [0,+00), and (xo,...,x,) € [[a@)], [B®]], yi(t — 11:(2)) € [/ (t — 711,:(£)), B'(£ -
()] if £ = 11,4(2) > 0, yi(t — 11,4(2)) € [B'(t — 7,i(1)), &' (t — 71,4(8))] if £ — 71,:(£) <0,0 < i< m,
110 =0, (20,...,24) € [[&”(2)], [B"(£)]], w € R, and

fo " d5)o(s) ds < +o0, /0 ~ % ds = 400,

3 Main results
In this section we state and prove our existence results. We begin with the following

lemma.

Lemma 3.1 Suppose the following conditions hold.
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(H1) BVP (1.1)-(1.2) has a pair of lower and upper solutions «, B satisfying
a"(t) < B'(t), forte[-t,+00),

and f satisfies Nagumo’s condition with respect to the pair of functions a, .
(Hy) There exists a constant y > 1 such that

sup (1+¢8)"q®)p(t) < +oo,

0<t<+00

where @ is the function in Nagumo’s condition of f.

Then there exists a constant R > 0 (depending on «, B, h, and C) such that every solution u
of (1.1)-(1.2) with

al) Su@) <p), O =u(t)<p®),

"ty <u"(£) < B"(t) foralltel0,+00)
and

a(t) < u(t) < B(2), B'(t) <u'(t) <a'(t),

a’(t) <u’(t) < B'(t) forallte[-1,0)

(3.2)

satisfies ||u||3, < R.

Proof We can choose R > 1 such that

"_p "_g
n Zmax{ sup [B"(®)], sup [ ()], I8 ||0’ llov HO,C}
a

te[0,+00) t€[0,+00) a

and

R (¢ ar; N
/ Lds>M( sup R0 — inf oD +y—>,
n h(s) t€[0,+00) @A+t  telo+o00) (1 + t)Y y—1

where C is the nonhomogeneous boundary value, and

M= sup (L+8)7q®e(®),  N=max]lIBl%, lalZ).

te[0,+00)

Let u be a solution of the differential equation (1.1) satisfying (3.1) and (3.2). If | (¢)| < R,
for all £ € [0, +00), there is nothing to prove. If this is not true, there exists a £y € [0, +00)
such that |u”(£y)| > R. Since lim;_, .. "' (t) = C < R, there exists a T > 0 such that

’u”’(t)‘ <R forall¢>T.

Let ; = inf{t < T : |u”'(s)] < Rforall s € [¢,+00)}. Then |u”(t;)| = R and |« (£)| < R for
all £ > f; and there exists a ¢, such that |u#”(¢)| > R for ¢ € [, #1]. So we have two cases
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to consider u#”'(t;) = R and u/”(t) > R for t € [ty, 1], or #”(t1) = =R and u”’(¢t) < —R for
t € [ty, t1]. We assume that " (#;) = R and ©””(¢) > R for t € [t,, t1], then we have

R S R S
—_d —_d
/n H(s) SS/C (s “
00 u///(s)u(4)(s)
- 2=y
,ﬁ nu(s)

_ / = —=q(s)f (s, [uls)], [/ (s)], [ (s)], " (s))u"" (s)
o h(u"(s))

ds

< / q(s)p(s)u’(s) ds

5]

o0 M///(S)
SM/t1 757 ds
~ o] M//(S) / 00 u//(s) y
_M</h ((1+s)1’)ds+/t1 1+S.(1+S)Vds)

4 t " t N
5M( sup MO — inf o« +_y )
te[0,+00) I +8)7  teloq+o0) (1 +2)Y y-1

R
s
< ——ds,
/n h(s)

which is a contradiction. In the case u”'(#;) = —R and u'(¢) < —R for t € [£5, 1], we obtain

a similar contradiction. Thus, |#” ()| < R for all ¢ € [0, +00). From the boundary condition
(1.2) we also have

_R<_n§ <R

@O =00 _ iy L KO =00) _F0-00)
a - B a - a =0

for all ¢ € [-7,0]. Therefore, |u"(¢)| < R for ¢ € [-7,0). To sum up, we have [|«|3, <R. O

Theorem 3.2 Suppose conditions (Hy) and (Hy) hold. Suppose further that

(Hs) Forany fixed t € [0,+00), y;,z;, w€€ R, i=0,...,n, when

Ol(lf - l'(),i(t)) <x; < ,B(t - Toyl‘(t)), i=0,1,...,n,
f(t,xnyhm,Ol(t— To,i(t)),~u,xn,yo,.u,)’mZo,m,Zn, W)
Sf(trxmxlr»--,xiwu;xn,yo;H-)yn;zo;nnzmw)

<f(6x0,%1, s B(E=T0,1(8))s s %Y0r s Vs 205+ Zns W)
(Ha) Forany fixed t € [0,+00), x;,zi, w€e R, i=0,...,n when
o (t=1,(0) <y < B'(t - 1it)), t—11:(8) >0,
or when

B'(t-1it) <yi<o(t—mit)), t-1it)<0,i=0,1,...,n
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f(tnyyH-yxn’y()yn';a,(t_ Tl,i(t))’w~1yn)ZO)H~,ZVlyW)
<f(%05 - 3 X Y05 o> Vir e e s Vs 20« + -2 Zupy W)

<F(6:%0s % Y0r s B (E=T0i(E))s s Y1205 - Z0s W).

(Hs) Forany fixed t € [0,+00), x,y,we R, i=0,...,n when

‘X”(t - Tz,i(t)) S Zj S ﬁ”(t - TZ,i(t))r l = 0,1, e 1,
f(t,xo,...,xy,,yo,...,y,,,zo,...,ot”(t—rz,,-(t)),...,zy,,w)
Sf(tyx();-uxxn;yo;ou)yrnZOv---;zirn-vZn;W)

Sf(t,xo, ce s Xy Y0s o3 Ynr 205+ - ~’ﬂ//(t - TZ,i(t))r ceesZys W);

where Top = T10 = Tg,0 = 0.

(He)
/ max{s, 1}¢(s) ds < +o0, / max{s, 1}g(s)¢(s) ds < +o0.
0 0

Then BVP (1.1)-(1.2) has at least one solution u € X N C*(0, +00) satisfying (3.1)-(3.2) and
lull®, <R.

Proof Let R be a positive number as in Lemma 3.1 and define the auxiliary functions,
Fo,F1,Fy,F3:[0,+00) x R™' x R™! x R"! x R — R
as follows:

Fo(t»xo,---,xn,yoym,yn,Zo,---,ZmW)

f(tr /3;36'1""735}’1!_))07-”;ynrz()r“ovzrn W)) X0 > ,B(t)y
= f(&,%0, %15+ 2 Xy Y0r o+ 02 Vs 205+ - 1 Zms W), a(t) < %o < B(2),

f(t,a,%ly. . ﬂaéniy(); e Y2054+ Zns W); X < a(t)y
Fl(t,xo, e s X Y0s e o3 Y3205+ 02 Zns W)

Fo(t’x()y ey Xy ﬂ’r’j”l; . 'yi}’l!zo; cees iy W)y yO > ﬂ,(t);
= Fo(t’x()yn~;xmy0”5;11~~;’5;nr20yoo«;znx W); a,(t) E}’o S ﬂ,(t);
Fo(t;x(),~~~;xma/;,5”l;~-~yymz():~~~;zm W)r Yo < O[I(t),

Fy(,%05 -y X Y0+ - o> Y1y 205 - - - Ziiy W)

"

Fi(t,%0, s %505 -+ Vs B3 215+ 02 Zy W) — Jﬁo;—ﬂm’ zo0 > B (t),
= Fl(t;xOyn'yxnry()yoo-:yn’ZO’zlin';zn;W)y a//(t) EZO S ﬁ/,(t)’
z0—-a

Fl(t’wa--,xn1y0w~~;yn)a//;zlwuyznrw)+ ik 20 <(X//(t),

1+|zg—o
FS(t:xO;xh« X Y0r V1o 3 YnrZ0s e+ 5 Zns W)
FZ(t’xO;'H,xn)yO)H',ymZ()r'H)Zn,R), W>Ry

= F (%053 %0 Y05+ 3 Y1205 -2 W), —R<W =R,
FZ(t:xO;"wxn;yo:'uryn,ZOwu;Zn’_R); w <R1
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where, fori=1,2,...,n,

B, x> Bt —10,(8));
Xi= %, alt—10i(2) <x; < Bt — 70,(2));
o, X <o(t—1o:(t),

if t - 'Cl,i(t) >0,

B yi> Bt —1,(1);
Vi= ¥, o (t—11(8) <y < B/t —1,2));
o, yi<ao(t—T1,(),

if t —7,(¢) <0,
o, yi>a(t—1,);

Vi=3% PBE-1:) <y < (t—1,1);
B, yi< Bt —1,(t),

and

B, zi>pB"(t - 1t));

Zi=3zi,  &'(t-1(t) <z < B - 12i(0));
a’s zi<a(t - 1,(t)).

We consider the modified boundary value problem

u(@t) + qOF; (6, [u@®)], [W O], [’ @], u" () =0, 0<t<+o0, (3.3)

with the boundary conditions (1.2). We will show that the problem (3.3)-(1.2) has at least
one solution « in X. Now for u € X, we define two operators Ty, Ty by

Tou(t) :fo G(t,8)q(s)F3(s, [u(s)], [t/ ()], [t ()], " (s)) dis
and

Y (2), T <t<0;
t) + Tou(t), 0 <t<+o0,

Tlu(t) = {
where [(¢) is as in (2.7) and
Yn(t) = A+ Bt + <9(0) +aC + a/ q(s)F3 (s, [u(s)], [u/(s)], [u”(s)], u”’(s)) ds)
0
L 0 t=s
X (—ut—a2 + azeﬁ) + / (s —a—t+ aeT)O(s)ds.

We want to show that the operator T; is completely continuous. We split the proof in the
following parts:

Page 10 of 31
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(1) 71 : X — X is well defined. Obviously, for any u € X by direct calculation, we have

(Tw)"(t) —a(Tin)" (t) =0(t) forte[-7,0] and

(T1u)'(0) = B, (T1u)(0) = A

and for ¢ € (0, +00),

(Ti) (1) =1 (t) + /0 8G8(§, 9 q()F5(s, [u(9)], [t/ ()], [ (s)], " (5)) ds,
o0 92
(Ta)"(8) = 1'(8) + /0 ’ §§§ D 4 Fs (5, [, [ ), [ )], " (5) s,

(T 0= C+ [ a0 [u6)} (46 [ 0" 9)
which show that Ty u(t) € C3[-1, +00). Further, we have
‘ | " 6B (5, [0 [€ O] [ )] 5)) ds
< /0 ~ max({s, 1}q(s) (He(s) + 1) ds < +00, (3.5)

where H = maxo<s<sup,(q,,o0) 4 (0) h(s). Now from (3.5) it follows that

/OO sq(s)(He(s) +1) ds < /oo max({s, 1}q(s) (He(s) + 1) ds < +o0,
1 0
which implies
Jim tq(t)(Ho(t) +1) = 0. (3.6)

Next since
/00 q(s)(ng)(s) + 1) ds < fmsq(s)(Hw(s) + 1) ds<+o00, t>1,

we also have
o0

lim q(s) (Hgo(s) + 1) ds =0. (3.7)

t—>+00 t
By Lebesgue’s dominated convergent theorem, L'Hopital’s rule, and (3.6), (3.7), we obtain

(Tyu)(t)
t—>+o0 143

< lim/ |ff’tss)|q(s)|l-"g(s, [u(s)],[u’(s)],[u”(s)],u”’(s))|ds

t—+00 0

G .
(5o 10
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t(agp2 st _ st 8
- i [ [ S B e e
00 (a 2 5_)
+/: Tf(s)(H(p(s)+1) ]

s_ a2 B
lim |:/ (at o 2 (s)(Hgo(s) + 1) ds + (ZI:B;G)q(t)(H(p(t) + 1)i|

t—>+00

%) 2 apn £
. gglw[ / (‘”3* o) (tots) + 1) ds— 2 gty 1000 + 1)}
= tlgnoo t Wq(s) (Ho(s) +1) ds + tEIPoo %tq(t) (Ho(t) +1)
0
[ (ar+h) (4t + %)
+ tlgnoo a2 q(s )(Hgo(s) + 1) ds — LIPOO t (t)(H(p( )+ 1)
0

+ lim |:/oo d6—+ttq(s)(H(p(S) + 1) ds — wq(t)(Hgo(t) + 1)i|

t—+00 6t
= tim [ o9 1) ds i 2 g) (g0 +1)
+ lim too 246 (Ho(s) + 1) ds - lim @ 3) ta(o)(How +1)
= lim too q(s)(He(s) +1) ds - Tim_ %ﬁq(t) (Ho(t) +1)
= lim too q(s)(He(s) +1) ds — lim (“6; £) tq(t)(Ho(t) +1)

= l lim /Ooq(s)(Hgo(S) + 1) ds=0,

6 t—+00

(T
1+£3

that is, lim;_, ;o0 =0, and

- (mw® e (T
lim = lim + lim
t—>+00 14 ¢3 t—>+00 1+ 3 to+00 14£3
) A+Bt+(aC+9(O))ﬁ+Ct—3, C
= lim 2 CL RS
t—+00 1+ 6

’

(T1w)(@)]

which implies that sup,¢(g ,o) “1;5 < +00. Similarly, we have

(Tyu) (2)
m

t—>+o0 1+ £2

< lim
t—>+00 1 + 2

1 / aG(t, S) ( )iFg (S, [ S)] [u’(s)]’ [u//(s)]’ MW(S)) | ds

at

o]

< l lim q(s)(pr(s) + 1) ds=0,

2 t—+00
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that is, lim,_, 00 % =0 and lim,, , % = lim,, o0 % + lim,_, o0 % = %
T O] _ | o0

which implies that SUDte[0,+00) ~ 1342

(M@ _ 1 [ 9G(s) AT Tl
i 0] i L [P g i} 0L
< ]:Eanoo ” q(s)(Ho(s) +1) ds = 0,

that is, limy_ o 2@ = 0 and lim;_, ;00 LD — fim, . 20 4 fim, 00O _ c,
which implies that sup, (o , ~, W < +00, and by (3.5)

lim / q(s)Fs(s, [u(s)], [u/(s)], [u”(s)], u"(s)) ds

< tginoo ” q(s) (H(p(s) + 1) ds=0,
then
tEIPoo(Tlu)W(t) = tginoo <C + / q(s)Fs(s, [u(s)], [u'(s)], [u”(s)], u”(s)) ds)

=C < +o0.

Therefore Tiu € X.
(2) Th : X — X is continuous. For any convergent sequence u,, — u in X, we have

ul () — u’(2),

U (t) = u(t), u,, () — u'(t),

un(®) — u"(t), m— +00,t € [-1,+00).

Thus the continuity of F3 implies that
|F3 (s, [ttm(9) ], [14,,,(5) ], [10,(5) ] sy (5)) = (s, [(9) ], [ ()], [ ()], " (5)) | = O,

m — +0Q.

Since u,(t) — u"(t), 0 = sup{s1 : $1 = SUP;c[g 400) |4, (E)], m € N} < +00.

Let H) = maXo<s<max(supefo, o) [+ (0)}0) #(5)- Then we have

fo 4] (Fs 5 [t )] [, (9)], [0V 265))
= F3(s, [u(s)], [/ (9)], [t (9)], "' (5)) )| ds

<2 /00 q(s)(H1¢(s) + 1) ds < +00.
0

Thus, we find

1Tyt — Thtllo

(Tiat) () = (Ta) (1)

= Imax
te[-1,0]
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= max
te[-1,0]

/0 (—a3 —a’t +dPed )a(s)(Fs(s, [um(s)], [u’m(s)], [u;’q(s)], up(s))

- Fy(s [w0)] [ 0 [/ 9] " (5)) ds
< s e e | [ a0l o) i, 00} [ 00} )
= F3(s, [u(®)]. [w©)]. [u"(9)], u"(5)) | ds,
that is,
(3.8)

I Thet, — Thta]lg — O,

as m — +0Q.

(Thu)@®)  (Tiu)(t)
I Thtt = Traeld, = sup |- =
te[0,+00) 1+¢ 1+¢

® G(t,
/0 %q(S)(Fz (5, [tm®)], [1£,, )], [0 ], 265))

= sup
te[0,+00)

= F3(s, [u(s)], [/ (9)], [t ()], " (5)) ) ds

< [T(5 a0 [ 1,0 [0 0)
0

- F3(s, [u(s)], [t/ ()], [ ()], " (5)) | ds,
that is,

| Tyt — Tau]|%, — O, (3.9)
as m — +0Q.

I Tyt — Thully = max |(Tiun) () — (Tyu) (2)|
te[-1,0]

= max
te[-1,0]

= F3(s, [u(s)], [/ (9)], [t ()], " (5)) ) ds

/0 (-a* + alei )a(8) (E3 (s, [m(9) ], [1,(9)]s [2470,(5) ], 1(s))

< a2 | [ Qs [ [,0) [1,9)09)
= F3(s,[u)], [ )], [u" )], u"(s)) | ds,
that is,
(3.10)

ITh2ty, — Thutlly — O,

as m — +00.

Page 14 of 31
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1
I vt — Thully

(Tiw) (1) (Tow) (2)

- £€[0,+00) 1+¢2 1+¢2
: 1 o0 aG(t;S) / " "
- te[s(::lf)oo) 1+£2 /0 ot q(S) (F3 (S’ [u”’ (S)]’ [um(s)]’ [um(s)]’ Uy, (S))

-F (s, [u(s)], [u’(s)], [u”(s)], u”’(s))) ds
5/ <aTH)fI(S)|F3(S, [Mm(s)], [u’m(s)], [ML;(S)],M/VZ(S))
0
= F3(s, [u(s)], [/ (9)], [t ()], " (9)) | ds,
that is,
I Tvt4ys — Thutll o, = O, (3.11)
as m — +00.

I Tatt — Tattllz = max [(Ty)"(2) - (Tow)" (2)|
te[-71,0]

/0 ae q(s) (Fs (s, [tm(®)], [}, ()], [ ()] 15(5))

= max
te[-1,0]

- Fa(s, [u)], [0/ )], [/ ()] () ds
<a [ O (s [0 1,90 [, 9] 109
~Fs(s, [u(s)], [ (9)]. [u"(5) ], " (s)) | s,
that is,
I T\t — Thuslla — 0, (3.12)
as 1 — +00.
| Thet — Thue||,
(Tuwn)' (1) (Thw)"(0)

= Ssup ‘ -
te[0,+00) 1+¢ 1+¢

1 o0 BZG(t, ) , ” "
o | O (6 [0 1,00 [, 9] 09)

te[0,+00)

= F3(s, [u(s)], [/ (9)], [t ()], "' (5))) ds

< fo (@ + ()| 3 (5 [}, [1, )], [19)], 1265))

= F3(s, [u(s)], [/ (9)], [t ()], " (9)) | ds,
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that is,
I Tyt — Thusll%, — O, (3.13)

as m — +0Q.

To show || Thu,, — Thu||2, — 0, as m — +00, we need the following:
sup |(T1m)" (£) = (T1w)" (2)|
te[0,+00)

= sup [(Tiuw)" (@) - (T1u)"(2)]

te[0,+00)

f 4 (Es s [ ] [1, )], [4()], 2(5)

= Sup
te[0,+00)

. (s, [u(s)], [u’(s)], [u”(s)], u”’(s))) ds

< /0 49| Fs (s, [tm(9)], [4,,(8) ], [,(5) ], i (5))
= F3(s, [u(s)], [/ (9)], [t/ ()], " (9)) | ds

and

sup [(Thum)"(2) = (Tyu)" (2)]
te[-1,0)

1
= sup —|(Taum)"(£) - (Tyw)"(2))|
te[-1,0) &

< /0 q(9)|F3(s, [m(9)], [14,,(5)], [14,(5) ], up(s))
—F; (s, [u(s)], [u’(s)], [u”(s)], u”’(s)) | ds.
Hence, it follows that

3
I Thet — Thue|,

= sup |(Thw)"(8) - (Tau) " (8)]

te[-1,+00)

< sup |(Twu,)"(8) - Tiw)" (8)] + SUP)!(Tlum)”’(t)—(Tlu)’”(t)I

- i
<2 [ aOIFa(s [0} 1,00} (1,60} 1)
= F3(s, [u@®)]. [w©)]. [u" ()], u"(5))| ds,
that is,
| Tytty, — Thsll2, — O, (3.14)

as m — +00.
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Combining (3.8)-(3.14), we find ||(T1u,,) — (T1u)|| — 0, as m — +00; 50 T1: X — X is
continuous.

(3) T1 : X — X is compact. The operator 77 is compact if 77 maps bounded sub-
sets of X into relatively compact sets. Let K be any bounded subset of X, then r; =

SUPQ <5< {sup;c[0,400) 4" (O 4€K) h(s) < +00. For any u € K, we have the following:

I Taullo < |A] + T|B| + (|a*C + ad(0)| + tllfllo) (~a + T + ae™)
+ (—ag +a’t+ age%)/ q(s)(r3<p(s) + 1) ds,
0

ada +1

I Tyulld, < Al + |B| + |aC +6(0)| + C + (

) /0 4(6) (rs(s) +1) ds,

|(Taw) |, < 1Bl + (|a*C + ab(0)| + 7|0 ]l0) (1 - €7 )

+ (a2 - aze%) /.ooq(s)(r;;(p(s) + 1) ds,
0
|(Ti)[', < 1Bl + |aC +6(0)| + C + <“2L2) /OO q(s)(rse(s) +1) ds,
0
”(Tlu) ||2 < ’aC+ 9(0)} + 10110 +a/0 q(s)(rse(s) +1) ds,

|(Tw) |2, < |aC +6(0)] +C+(a+1)/0 q4(s)(r39(s) +1) ds,

1 2 o
||(T1u) ||“Zo < ;|aC+ 9(0)’ + ;||9||0 +C+ 2/ q(s)(rgga(s) + 1) ds,
0
which implies that
[ Thull < |A|+&|B|+v|aC+6(0)| +C+yll6lo+ x / q(s)(rse(s) +1) ds,
0

where

3
X =max{(-a’*+a’t +a’e7), <a ;Hl), (a® - a’e™),(a+ 1),2},

v =max{ (-a” +at + aze_a_r), (a- ae_a_r), %,1}, & = max{t,1},

y =max{ (-at +t* +are_71),(t - te_af),l,z}.

Therefore, T1K is uniformly bounded. We also know that v (¢) and v (¢) are continuous
on [-7,0]. Thus in view of [-7, 0] compact, ¥ (£) and /() are also uniformly continuous.
Thus it follows that for £, t, € [-1,0],

|Twu(tr) — Tiu(t)| = [Y(t) — ()| > 0 asty — 1y,

(Thu) (1) — (Tiw) ()| = |¥{(81) — ¥{(82)| > O asty — 1,
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further since

(Tyw)"(t) = i (2)
= (9(0) +aC + a/ q(s)Fs(s, [u(s)], [u/(s)], [u”(s)], u”(s)) ds>e5
0

19 o
+—/ ea0(s)ds
t

a

is continuous on [-1,0], we find

(T1w)"(0) = (T1)" (&) | = |9} (1) = ¥{ (12)| > O asty — .

Next, for 1, ¢, € [0, ] with € > 0 a constant, we have

(Tw)(t1)  (Twu)(t2)

1+£8 1+8

_ ‘ It)  Ut) N /N<G(t1,5) B G(tz;S)) )

- 1+8 1+86 Jo 1+ 1+8 1
x F3 (s, [u(s)], [u’(s)], [u” (s)], u” (s)) ds
’ I(t)  Ut)

< —
“1+8 1+8

/00 ’ G(tlrs) G(t2rs)
0

1+8  1+8

q(s)(r3(0(s) + 1) ds
— 0 ast — b,

(Tw) (&)  (Thu) (t2)

1+ 1+

9GS 3G
LORON /‘” 5 ot
1+8 1+8 Jo \1+8 1+8

x F3 (s, [u(s)], [u'(s)], [u” (s)], u” (s)) ds

o]
+f
0
—)0 aSL‘]—>t;,

(Tiw)" (1) (Taw)"(82)
1+4 1+ ty

3G(t1,5) 3G(t2,8)
ot _ ot
1+8 1+

I'(t)  U(t)
1+8 1+8

<

q(s)(rsp(s) + 1) ds

2 42
't ') /‘00 %(513) @tz o
- + _ S
1+ 1+t Jo 1+8 1+£2 q

x Fs(s, [u(s)], [ (s)], [ (5)], "' (s)) dis

PGts)  92G(t2s)
l// t l// t oo | L MAMLY) —_—

- (t) (&) +/ 0| a()(rag(s) + 1) ds
1+ 1+t 0 1+4 1+4

— 0 asth — by,

Page 18 of 31
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and

[(T1w)" (81) — (Tyw)" (1)

/ q($)Fs(s, [u(9)], [/ ()], [t ()], " (s)) dis

i

—/ q(s)Fs(s, [u(s)],[u’(s)],[u”(s)],u”/(s)) ds

< / ’ q(s)(r3p(s) + 1) ds

— 0 asth — by

Thus, T1K is equi-continuous. Finally, we will show that 71K is equi-convergent at infinity.

In fact, when ¢ > 0 we have

(Thu)(2) oy (Tlu)(t)‘ _ ‘(Tlu)(t)
1+123

1+183 £ 400 1+
(Tww)'(t) . (Tww) ()| | (T1u) () C‘
— lim = - —|—>0, ast— +00o,

1+82 t=+o0 1422 1+¢2 2

(Thw)"(t) . (T1u)"(t) ‘ (1) (2)
——— — Iim =
1+t t—>+00 1+t 1+t

C
s — 0, ast— +09,

—C‘—>0, ast— 400,

and

(Tiw)"(0) - lim (T ()] = (To) ()~ C| <

/00 q(s)(rggo(s) + 1) ds| — 0

t

as t — +00.

Hence all conditions of Lemma 2.5 are fulfilled, so 71K is relatively compact. Therefore,
T; : X — X is completely continuous.
(4) T : X — X has at least one fixed point. Let Q = {u € X, |u|| < N} where

N:|A|+§|B|+u\aC+9(o)|+C+y||9||0+;</0 q(s)(Hp(s) +1) ds. (3.15)

Foranyu € Q, itis easy to see that || T1u|| < 2, and thus 772 C 2. The Schéuder fixed point
theorem now guarantees that the operator T; has at least one fixed point in €2, which is a
solution of BVP (3.3)-(1.2). Now we shall show that this solution u satisfies the inequalities
(3.1) and (3.2) which in view of the definitions of F3, F,, F;, and Fy will imply that u is
in fact a solution of (1.1)-(1.2). For this, we only prove that u"(¢) < B"(¢), t € [-T, +00).
A similar argument can be used to prove «”(¢t) < u”(t), t € [-T,+00). If not true, we set
o(t) = u"(t) — B"(t), then there exists t* € [-7,+00) such that w(t*) = sup_, _,_,, @(t) > 0.
Obviously, if £* = —t then o’'(t*) < 0, and if t* € (-7, 0] then «'(*) = 0. However, from the
boundary condition, we have ' (¢t*) = %a)(t*) > 0, which gives a contraction. If £* € (0, +00),

then we have

w(t*)>0, &(*)=0, "(t*)=0. (3.16)
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By the definition of auxiliary functions and R > sup,q ,) |8”(£)|, we have

u (%) = —q(e) B (¢, [w(e) ] [ ()] [ () " (7))
= —a() o (¢, [u(e) ] [ ()] [ (¢)). 87 (7))
= —q(t*)[ﬂ(t*, [w(@)] [ ()] ") " (" = w2 (7)), -, B (27))

~ u//(t*) _ IB//(t*) ]
Lt [u'(t9) = B (¢9)] |

Now if o (£* — 191 (£*)) > B"(¢* — 12,1(t*)) from the definition of Z; it follows that

(%) = —q(e)R (e [u(e) L [ ()] B7 (), B (8" = 22 () 4 (£ = m22(£9)) o

o . u”(t*) _ ﬁ//(t*)
ﬁ (t )) + q(t )1 + |I/t”(t*) _IBU(t*)|

and if o (£* — 191 (¢*)) < B (t* — 121(¢*)) from the condition (Hs), we have

u®(e) = =g ()R (e [w(e) ) [ ()] B7 () B (€ = 22 (), (€ = 2 ()) -

" g% * I/l”(t*) - ﬁ,/(t*)
B (t )) + (t )1 + () —/3”(t*)|.

Similarly, we consider the cases u” (£* — 12, (t*)) > 8" (t* — 12,:(¢*)) or u” (t* — 1,,(¢*)) < B"(¢* -

75,:(¢%)), i =2,3,...,n, and obtain the inequality

* * * * 1 g% 1 g% M g% * ”(t*)_ N(t*)
) = )R LT LB )87 ) e P

Next, if #/(¢*) > B/(¢t*) from the definition of F; it follows that

u®(¢) = —q(¢)Fo (¢, [u(e) [ B (£7) ¢ (¢ = ma(¢)), -, [B"(¢)]. B ("))
. u//(t*) _ ﬁ//(t*)
* (t )1 + |Lt”(t*) _ﬂ//(t*)|

and if #/(¢*) < B/(t*) from the definition of F; and the condition (H4) we have

u(t%) 2 ~q(e*)Fo (e, [u(e")] B/ (%), ' (£ ~ 1 (£°)), ... [B"(¢) . B (7))
. u//(t*) _ ﬁ//(t*)
(t )1 + |u”(t*) —,B”(L‘*)| :

If £* — 711(¢*) > 0, while discussing the cases u/(£* — 711(¢%)) > B'(t* — 11,1(t*)) we use the
definition of 7;, and when discussing the cases u/(t* — 71,1 (¢*)) < B'(t* — 71,1(¢*)) we use
(Hy), and obtain

u(t%) 2 ~q(t*)Fo (¢, [u(e") ] B/ (%), B'(¢* = 1a (¢7)),-. [B7(£9) ). B (£7))
. u//(t*) _ ﬂ”(t*)
(t )1 + |u”(t*) —,B”(t*)| :
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Similarly, if £* — 73;(¢*) < 0, while discussing the cases u/(£* — 711(¢%)) > B'(¢t* — 111(t"))
we use (Ha), while when discussing the cases u/(t* — 11,1 (¢*)) < B'(t* — 111(¢*)) we use the
definition of 7, to again find

u(t%) 2 ~q(e*)Fo (¢, [u(e") ] B/ (), B (¢* = 1a (7)), [B7(£9)]. B (£7))
. u//(t*) _ ﬁ//(t*)
(t )1 + |u”(t*) _ ,B”(t*)| :

Following exactly as above, using the definition of j; and (Hy4), we consider the cases i =
2,...,n to finally obtain

. . . /" t* _ " t*
96) = a6Vl ) [ () () 0) gl P

Next, if u(¢*) > B(¢*) from the definition of Fj it follows that
u (%) = ~q () (¢ B(6), u(t” ~ ton (), [u(e) ). ["(£9)]. 87 (7))

. u//(t*) _ﬁ//(t*)
ey - e

and if u(¢t*) < B(t*) from the definition of Fy and the condition (H3) we have

u (%) 2 ~q(e)f (¢, B(£7), u(t” = 02(¢7)), . [w(e) ] [B" ()] 87 (%))
. u//(t*) _ ﬂ”(t*)
+ q(t )1 + |u”(t*) _ ﬂ”(t*)| :

Similarly, we use the definition of ¥; and (H3) while discussing the cases u(t* — 7o,(¢t*)) >
Bt* —10,(t%)) or u(t* — o, (t*)) < B(t* — 10,4(¥)), i =1,...,n, to get

* * * * 1 4% 11 [ M g% * N(t*)_ﬁ/,(t*)
SO) 2 - Y [BELE L0 870) vale) e S

which implies that

" ( o W)= BI(t")
w (t ) z q(t )1 + |u”(t*) —,B”(t*)| >0,

which is a contractions.

If t* = +00 then w(+00) = SUp,c(_; ) @(£) > 0. From the boundary conditions, we also
have o'(+00) = u"'(+00) — B”'(+00) < 0. But this implies that o’ (+00) < 0 and w'(+00) = 0.
However, now following as above, we find o”(+00) > 0, which is a contradiction. Thus,
u'(t) < B'(t), t € [-T,+00).

Consequently, we have

") <u’(t) <B’(), tel-t,+00),
which on integration and using boundary conditions gives

Bt)<u(t)<d(t), te[-1,0), and o'(t) <u/(t)<pB'(t), te€][0,+00)
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and now a further integration leads to
at) =u®) < p(o), te[-t,+00).

Further, since all conditions of the Lemma 3.1 are satisfied, ||u||3, < R. Consequently, we
have

uP(t) = —q)F;(t, [u@®)], [« @], [’ ®], "))
= —q@)f (¢, [u®)], [/ ®)], [« ©®)], u" ()

and hence, u is a solution of (1.1)-(1.2). a

Theorem 3.3 Assume that there exist two pairs of upper and lower solutions By, ax, k =1,2
of BVP (1.1)-(1.2), where oy, By are strict and

o) £ B2, i=0,1,2,
(X{i)(t) < ag)(t) < ,Bg)(t), aii)(t) < Igl(i)(t) < ﬂg)(t), te [—T, +OO),i 0.2,
Bit) <ab() <aj(t),  ByO) < BiB) <ai(t), tel-1,0),

o1 (8) < ay(t) < By(0), ai(2) < Bi(2) < By(1), te[0,+00),

(3.17)

and f satisfies Nagumo’s condition with respect to oy, Ba. Suppose further that conditions
(Hy)-(Hg) hold with o and B replaced by oy and B,, respectively. Then the problem (1.1)-
(1.2) has at least three solutions ui, u», and uz such that

o (t) <w(t) < B(1),  on(t) <m(t) < Bilt), tel-t,+00),k=12,

Bi(t) < up(t) < o (t), te[-t,0), ap(t) < uj(t) < B(t), tel0,+00),k=1,2,

e L0, w0 Fad®), tel-1,4+00),i=0,1,2.
Proof First we define the truncated functions 1?0, 1?1, ?2, 1?3 the same as Fy, Fi, F,, F3 in The-
orem 3.2 with &, B replaced by «; and B,, respectively. Consider the modified differential
equation

u®(t) + qOF; (6, [u@®)], [ O], [ ®)], ")) =0, 0<t<+o0. (3.18)

To show that (3.18)-(1.2) has at least three solutions, we define operators Ty, T» as

Tou(t) = /0 G(t,9)q(8)Fs (s, [u(s)], [/ (9)], [ ()], " (s)) dls
and

Yo (2), —T<t<0;

Toult) = {l(t) + Toult), 0<t<+oo,
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where [(¢) is as in (2.7) and
Ua(£) = A+ Bt
+ (9(0) +aC + a/ q(s)F5 (s, [u(s)], [u/(s)], [u”(s)], u”/(s)) ds)
0

0
X (—at—a2+a265) +/ (s—a—t+aet;_s)0(s)ds.
t

As in Theorem 3.2, T, is completely continuous. By using the degree theory, we will
show that T, has at least three fixed points which are solutions of (3.18)-(1.2). We note
that R in Lemma 3.1 instead of «, 8 now depends on o3, ;. Set Q23 = {u € X, ||u|| < N}
where N is as in (3.15) then for any u € Q, it follows that || Tou|| < N, thus T>Q, C s,
and so we have deg(I — T3, £2,,0) = 1. Set

Qotz = {M €y M”(t) > O{g(t),te [—7_',.,.00)},

Q= {ueQy:u(t) < B (t),t € [-T,+00)}.
Since o) £ By, af/(£) < oy () < BY(2), o] (£) < By (2) < B (2), we find Qq, # P # QP1, Qq, N
Qi =, $25\ 2, U Qq, U QP # 0. Now since a,, f; are strict lower and upper solutions there is

no solution in 32, U dQP1. The additivity of degree implies that

deg(l — T»,2,0) = deg(I — T», 2\ Q0, U Q#1,0)

+deg(I - T», Qq,,0) + deg(I - T, 2, 0).

We will show that deg(l — T, Q4,,0) = deg( — T, QP1,0) = 1. For this, we define new op-

erators Tg 1y — @y and T5: Qy — Q5 as

Tsu(t) = /0 a)E5 (s, [u()], [/ )], [/ (5)], " (5)) ds
and

Tault) = vs(0), —T<t<0;
SV 1o + Tau), 0 <t < +oo,

where [(¢) is as in (2.7) and

Y3(t) = A+ Bt

+ (9(0) +aC + a/o q(s)/ﬁg (s, [u(s)], [u'(s)], [u”(s)], u'”(s)) ds)

0
X (—at—a2+azeé)+/ (s—a—t+aeta;s)9(s)ds
t

Here the functions fo, /ﬁl, ’152, /F\g are same as IN-"O, l-"1, 1-"2, IN-"g except that o is replaced by
a3. Now similar to the proof of Theorem 3.2 we find that u is a fixed point of T5 only
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when o} (t) < u”(¢) < B3 (¢), t € [-1, +00). Since the lower solution « is strict, aj (£) # u”(¢),
t € (-7,+00). Therefore, u € Q,,. Hence, it follows that

deg(I - T3, \4,,0) = 0.
Also, T59, C €2, so that we have
deg(I — T3,£2,,0) =1.
Therefore,
deg(l — T3, Rq,,0) = deg(l — T3, $2y,,0)
= deg(I - T3, R4y, 0) + deg(I — T3, 2\ R4y, 0)
=deg(l - T3,€,,0) =1.
Similarly, we have
deg(I - T5,Q7,0) =1,
and this leads to
deg(I - T, 2\ Q, U Q51,0) = 1.

Finally, using the properties of the degree, we conclude that T, has at least three fixed
points

U € Qyy, W eQP,  u3eQ\Q,, UQA
which are the claimed solutions of the BVP (1.1)-(1.2). O

4 Examples
Example 4.1 Consider the fourth-order nonlinear differential equation on the half-line
with deviating arguments

1

ud(t) + mf(t, [u®)], [« O], [« )], 4" () =0, te(0,+00), (4.1)

where

£ 0], [ ) [ @) " 0)

- %[(% (@) + L+ (€= D) + (W (/3 -1/3) - 1)°

+ (t3 +u(t/2 - 1/2))].

Clearly, (4.1) is a particular case of (1.1) with g(¢) = (1++)3,

[1(t)] = (u@), u(t - 2/2-1/2)),  [W®)] = (@), (t-2t/3-1/3)),
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[ ()] = ("), u"(£-1)),

2t 1
T(t) =1, 11(2) = Y + 3’ Toa(t) =

N | =
N =

It follows that

T =— min min(¢ — 7;1(¢
0<j<2 >0 (t=75a(®) =1

We consider (4.1) together with the following boundary conditions:

u(0) =2, ' (0)=0, u'(t) - u" () =3 forte[-1,0];
" (+00) =0

Comparing this with (1.2), we find 6(¢) = %, a= %, A=2,B=0,C=0.
For (4.1)-(4.2) a direct substitution shows that

B 42 1 £
=—+—+=, £ =-——
B() st 3 T3 a(t)

are upper and lower solutions such that 8,a € X NC*(0, +00). Further, for these functions
we have

") =-t<p't)=t+ g, t e [-1,+00).

We also note that when ¢ € [0, +00) and

w12 =~ L E P gy 2 B E
48 16 16 48 — 48 48 48 48
B'(t/3 - 1/3)——E+Z+£<y1<a(t/3 1/3) = L t ﬁ, te[0,1),
9 18— 18 9 18
o' (t/3 - 1/3)——i ——£<y1<;6(t/3 1/3)——E Z+ﬁ tel, +o00),
18 9 18— 9 18

8 5
ad"(B)=-t<zo<B'(t)=t+ 3 d't-1)=-t+1<z1<p't-1)=t+ 3

the function f is continuous and satisfies Nagumo’s condition with respect to « and g, that
is,

V(t>x0,xl:y0:yl; 20,21, W)|

_‘( 1 o (2t +20) + (E+21) + (1 —1)? + (£ +x1)
=W (1+2)*

4 1,435:3 | 87142 | 5,393t

1,681

324 T 1296 t 1206 T 1206 T 144 2

<| sup : (Iwl +1)
t[0,+00) (1+¢)

<12(jw| +1)%.
Hence we can take ¢(¢) = 12 and #(w) = (w + 1)2. Now if 1 < ¥ < 3, then

L+t 12 2,
sup + sup —— = < +00
te[0,+00) (1 t) te[0,+oo) (1 + t)giy
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and

*© 1 ® 5
/ ———ds < +00, / ———ds < +00,
o (1+s)3 o ([@+s)3

®© 5 © s
A mdsz‘/o —(S+1)2 dS=+OO,

and these imply that conditions (H;), (Hz), and (Hg) are fulfilled. Now we will show that f
satisfies conditions (H3)-(Hs) of Theorem 3.2. For ¢ € [0, +00), y;,z;,w € R, i = 0,1, when

Ol(t — TO,l(t)) = a(t/2 — 1/2) <x < ﬁ(t/2 — 1/2) = ,3()5’ - ‘L'(),l(t))
since f is increasing with respect to x;,

f(t,xo, Ol(t/z - 1/2),3/0,)/1, 20,21, W) Sf(ter)xl:yOyyl’ 20,21, W)

Sf(t;x();ﬂ(t/z - 1/2),310;)/1;20;21, W)y
forx;,z;,,w e R, i=0,1, when

B'(t-11() =B t/3-1/3) <y <o/ (t - 11(8)) = (¢/3-1/3),

ift — 711 <0,t€ [0, 1),
or

o (t—11(0) =a'(t/3-1/3) <31 < B'(t - 701 () = B'(t/3-1/3),

ift — T1,1 > 0,te [1, +OO):

since f is decreasing on [B'(t — 11,1), ' (t — 11,1(¢))] for ¢ € [0,1) and increasing on [o/(t —
711(8)), B'(¢ — 11,1)] for t € [1, +00) with respect to y,

f(t;x();xl:yOr (X/(t/g - 1/3)! 20,21, W) Sf(t:xoyxliyoy_yl: 20,21, W)

< f(t:x0,%1,50, B'(¢/3 = 1/3), 20,21, W),
and for ¢ € [0, +00), x;,y;, w € R, i = 0,1, when
o"(6) <20 < B"(0),
since f is increasing with respect to zo,
S (%0, 20,50, 1,0 (2), 21, w) < f(£,%0,%1, Y0, 1,20, 21, W) < f (£,%0, %1, Y0, Y1, B (£), 21, W),
also when

o"(t-1a0) =a"(t-1) <z < B'(t - 1a(t) = B"(t - 1),
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since f is increasing respect to z;,

f(t)xO’xlryOryI; Zo,Ol//(t - 1)’ W) Sf(t’xmxl,yO;yl,ZO,erW)

Ef(t’xOhxl;yO’yl;ZO; ﬁ//(t - 1)1 W)

Theorem 3.2 now ensures that the BVP (4.1)-(4.2) has at least one solution «(£) such that

£ B 42 1
s <u(t) < FARCIEY -t <u’(t) <t forall t € [-1,+00),
and
? 8t £
—+—<u({t)<-—, forallte[-1,0),
2 3 2

: 2 8t
——<u(@t)<—+—, forallte]0,+00),
2 2 3

also ||u||3, < R where R > \/exp(192)(1 + 12), n > 4,and y = 2.

Example 4.2 Consider the fourth-order nonlinear differential equation on the half-line
with deviating arguments

1 / 1" "
u®(e) + mf(t, [u®)], [« ®)], [ ®)], " () =0, te(0,+00), (4.3)

where
S(&[u®], [# @), [« (©)],u" @)

23 "
-(55-)

. A= @) - @ O)*E —u” O+ u"(E-1)+ (@ (£ - 3) - 3)* + (u(t - §) +1)]
(W) +1)*1 + 1)* ’

1
1+t)3”

Clearly, (4.3) is a particular case of (1.1) with g(¢) =

[u(t)] = (u(8), u(t -1/3)), [u/(t)] = (u/(8), ' (£-1/2)),
[u”(t)] = (u”(t),u”(t -1)),
() =1, 111(2) =1/2, Toa(t) = 1/3.

It follows that

7 =— min min(t - 7;;) = L.
0<j<2 =0

We consider (4.3) together with the following boundary conditions:

u(0) = %, u'(0) =4, u'(t)-2u"(t)=t-1 te[-1,0];

4.4
u’”(+oo) — % ( )

Comparing this with (1.2), we find 6(t) =t -1,a = %, A= %, B=4,C= %.
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For (4.3)-(4.4) we take o4, o and By, B, as follows:

£ £
al(t)=—€—2t2+4t, az(t)=§+t2+4t+6

and

3

t t
,31(t):7+4t+7, —

3
Ba(t) = c +282 + 48 +7,

and by direct substitution verify that as, 81 € X N C*(0, +00) are its strict lower and up-

per solutions, and 3,8, € X N C*(0, +00) are lower and upper solutions, and satisfy the
assumption (3.17).

We also verify that for every ¢ € [0, +00), w € R,

2 112 95t 251 2 11#2 49t 953
—t-3<z<t+3 ————t— == <X <t —t— +—,
- 6 6 18 162~ "~ 6 6 18 162
2 7t 17 2 7t 47
—+—=+—<y<-—-—+—, t€[0,1/2) and
2 2 8 2 2 8
2 7t 47 _ <t2 7t 17 el )
—_— -+ — —+ — + —, , +00),
2 2t sNELTY
we have
V(t)xO’xl:yO:yl:ZO;Zl,W)|
1-w) (% - wH)HE-w? A +2) + (01— 3)* + (v + 1)]
=1{(23/28 —w) +
w2 +1)*(1 + 2)*
2206,185 4+ L087t 377642 | 1188 + &
<1+ 1w+ (14w 5,184 72 24 3 4
< (L ) + (1+ |w]) T
206,185 , 1,087t | 377t2 | 18 | t*
<(1+|w|)2 1+ sup 18t It
- t€[0,+00) 1+2)*

<a1(1+|w))* = p@&)h(Iw)).

Hence the function f satisfies Nagumo’s condition with 4(w) = (w +1)? and ¢(¢) = 41. Now
if1<y <3, then

1+8) M i
sup (1+8)) ——= sup ——— <41 <+00,
te[0,+00) (1 + t)S te[0,+00) (1 + t)B—y

and

o0 1 o0
/ —Bds<+oo, / §
o (L+s) 0

mdS< +00,

® 5 © s
—ds= / ——— ds = +00,
./o h(s) 0

(s +1)2

Page 28 of 31
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and these imply that conditions (H;), (Hy), and (Hg) are fulfilled. Now we shall show that
f satisfies conditions (H3)-(Hs) of Theorem 3.2. For ¢ € [0, +00), y;,z;,w € R, i = 0,1, when

a(t—101(t)) = a(t —1/3) < a1 < B(t —1/3) = B(t - T0.(2)),
since f is increasing with respect to x;,

f(t)xO’ Ol(t - 1/3),}’0,3/1;20:151; W) Sf(t;xo,xlyyo:yl’ 20, erw)

Sf(t’xOr ﬁ(t - 1/3);)/0,}/1, 20,21, W)’

for x;,z;,w e R, i = 0,1, when

B(t—112(0) = B/t -1/2) <y <'(t - 111(2)) =& (t - 1/2),

ift — T1 < 0,te [0, 1/2),
or

o (-110(0) =/ (t-1/2) <31 < B'(t - 10a(2)) = B'(E - 1/2),

ift — 1,1 > 0,te [1/2, +OO).

Since f is decreasing on [B'(t — 71,1), &' (t — 11,1(¢))] for ¢ € [0,1/2) and increasing on [o/(f —
711(8)), B/ (¢ — 11,1)] for ¢ € [1/2, +00) with respect to y;,

f(tny)xl)yOr O/(t - 1/2)) 20,21, W) Sf(ty X0,%1,Y05, 1,20, 21, W)

<f(t:%0,%1,50, B'(t = 1/2),20, 21, W),
and for ¢ € [0, +00), x;, y;, w € R, i = 0,1, when
o' (t-m() =a"(t-1) <z < B'(t - 121(8)) = B"(£ - 1),
since f is increasing with respect to z;,

S (%0, 50,31, 20, (£ = 1), w) < f (&, %0, %1, Y0, Y1, 20, 21, W)

Ef(t:xOrxl:_yO:yl: 20, ﬁ/,(t - 1),W)

This ensures that in Theorem 3.3 all assumptions (H;)-(Hg) are fulfilled. Therefore, we
conclude that the problem (4.3)-(4.4) has at least three solutions.
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