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1 Introduction
Fractional differential equations arise in the mathematical modeling of systems and pro-
cesses occurring in many engineering and scientific disciplines such as physics, chemistry,
aerodynamics, electrodynamics of complex medium, polymer rheology, economics, con-
trol theory, signal and image processing, biophysics, blood flow phenomena, etc. [–].
For some recent developments on the topic, see [–] and the references therein.

Hybrid fractional differential equations have also been studied by several researchers.
This class of equations involves the fractional derivative of an unknown function hybrid
with the nonlinearity depending on it. Some recent results on hybrid differential equations
can be found in a series of papers [–].

In this paper we study existence results for initial value problems for hybrid fractional
integro-differential equations. In Section  we consider the following initial value problem
for hybrid fractional integro-differential equations:

{
Dα[ x(t)–

∑m
i= Iβi hi(t,x(t))
f (t,x(t)) ] = g(t, x(t)), t ∈ J := [, T],

x() = ,
(.)

where Dα denotes the Riemann-Liouville fractional derivative of order α,  < α ≤ , Iφ

is the Riemann-Liouville fractional integral of order φ > , φ ∈ {β,β, . . . ,βm}, f ∈ C(J ×
R,R\{}), g ∈ C(J ×R,R) and hi ∈ C(J ×R,R) with hi(, ) = , i = , , . . . , m. An existence
result is obtained for the initial value problem (.) by using a hybrid fixed point theorem
for three operators in a Banach algebra due to Dhage [].
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As a second problem we discuss in Section  an initial value problem for hybrid frac-
tional sequential integro-differential equations,

{
Dα[ Dωx(t)–

∑m
i= Iβi hi(t,x(t))

f (t,x(t)) ] = g(t, x(t), Iγ x(t)), t ∈ J ,
x() = , Dωx() = ,

(.)

where  < α,ω ≤ ,  < α + ω ≤ , functions f , h, and constants β,β, . . . ,βm are defined
as in problem (.), g ∈ C(J × R

,R), and Iγ is the Riemann-Liouville fractional integral
of order γ . By using a useful generalization of Krasnoselskii’s fixed point theorem due to
Dhage [], we prove an existence result for the initial value problem (.). Note that if
m = , β = γ = , and h(t, x(t)) = –λx(t), λ is a constant, then the first equation of (.) is
reduced to the hybrid fractional Langevin equation (first formulated by Langevin in )
of the form

Dα

[
(Dω + λ)x(t)

f (t, x(t))

]
= g

(
t, x(t)

)
, t ∈ J , (.)

which is a generalization of the well-known classical results in [].
The rest of the paper is organized as follows: In Section  we recall some useful pre-

liminaries. In Section  we study the existence of the initial value problem (.), while in
Section  we deal with the initial value problem (.). Examples illustrating the obtained
results are presented in Section .

2 Preliminaries
In this section, we introduce some notations and definitions of fractional calculus [, ]
and present preliminary results needed in our proofs later.

Definition . The Riemann-Liouville fractional derivative of order q >  of a continuous
function f : (,∞) →R is defined by

Dqf (t) =


�(n – q)

(
d
dt

)n ∫ t


(t – s)n–q–f (s) ds, n –  < q < n,

where n = [q] + , [q] denotes the integer part of a real number q, provided the right-hand
side is point-wise defined on (,∞), where � is the gamma function defined by �(q) =∫ ∞

 e–ssq– ds.

Definition . The Riemann-Liouville fractional integral of order p >  of a continuous
function f : (,∞) →R is defined by

Ipf (t) =


�(p)

∫ t


(t – s)p–f (s) ds,

provided the right-hand side is point-wise defined on (,∞).

Lemma . [] Let q >  and x ∈ C(, T) ∩ L(, T). Then the fractional differential equa-
tion

Dqx(t) = 
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has a unique solution

x(t) = ktq– + ktq– + · · · + kntq–n,

where ki ∈R, i = , , . . . , n, and n –  < q < n.

Lemma . [] Let q > . Then for x ∈ C(, T) ∩ L(, T) we have

IqDqx(t) = x(t) –
n∑

j=

(In–qx)(n–j)()
�(q – j + )

tq–j,

where n –  < q < n.

Let E = C(J ,R) be the space of continuous real-valued functions defined on J = [, T].
Define a norm ‖ · ‖ and a multiplication in E by

‖x‖ = sup
t∈J

∣∣x(t)
∣∣ and (xy)(t) = x(t)y(t), ∀t ∈ J .

Clearly E is a Banach algebra with respect to above supremum norm and the multiplication
in it.

3 Hybrid fractional integro-differential equations
In this section we consider the initial value problem (.). The following hybrid fixed point
theorem for three operators in a Banach algebra E, due to Dhage [], will be used to prove
the existence result for the initial value problem (.).

Lemma . Let S be a nonempty, closed convex and bounded subset of a Banach algebra
E and let A, C : E → E and B : S → E be three operators satisfying:

(a) A and C are Lipschitzian with Lipschitz constants δ and ρ , respectively,
(b) B is compact and continuous,
(c) x = AxBy + Cx ⇒ x ∈ S for all y ∈ S,
(d) δM + ρ < , where M = ‖B(S)‖.

Then the operator equation x = AxBx + Cx has a solution.

Lemma . Suppose that  < α ≤  and functions f , g , hi, i = , , . . . , m satisfy problem
(.). Then the unique solution of the hybrid fractional integro-differential problem (.) is
given by

x(t) =
f (t, x(t))

�(α)

∫ t


(t – s)α–g

(
s, x(s)

)
ds +

m∑
i=

Iβi hi
(
t, x(t)

)
, t ∈ J . (.)

Proof Applying the Riemann-Liouville fractional integral of order α to both sides of (.)
and using Lemma ., we have

[
x(t) –

∑m
i= Iβi hi(t, x(t))

f (t, x(t))

]
–

tα–

�(α)
I–α

[
x(t) –

∑m
i= Iβi hi(t, x(t))

f (t, x(t))

]
t=

= Iαg
(
t, x(t)

)
.
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Since x() = , h(, ) = , and f (, ) 
= , it follows that

x(t) = f
(
t, x(t)

)
Iαg

(
t, x(t)

)
+

m∑
i=

Iβi hi
(
t, x(t)

)
.

Thus (.) holds. The proof is completed. �

Theorem . Assume that:

(H) The functions f : J × R → R \ {} and hi : J × R → R, hi(, ) = , i = , , . . . , m, are
continuous and there exist two positive functions φ, ψi, i = , , . . . , m with bound ‖φ‖
and ‖ψi‖, i = , , . . . , m, respectively, such that

∣∣f (t, x(t)
)

– f
(
t, y(t)

)∣∣ ≤ φ(t)
∣∣x(t) – y(t)

∣∣ (.)

and

∣∣hi
(
t, x(t)

)
– hi

(
t, y(t)

)∣∣ ≤ ψi(t)
∣∣x(t) – y(t)

∣∣, i = , , . . . , m, (.)

for t ∈ J and x, y ∈R.
(H) There exist a function p ∈ C(J ,R+) and a continuous nondecreasing function � :

[,∞) → (,∞) such that

∣∣g(
t, x(t)

)∣∣ ≤ p(t)�
(|x|), (t, x) ∈ J ×R. (.)

(H) There exists a number r >  such that

r ≥ F‖p‖�(r) Tα

�(α+) + K
∑m

i=
Tβi

�(βi+)

 – ‖φ‖‖p‖�(r) Tα

�(α+) –
∑m

i=
‖ψi‖Tβi
�(βi+)

, (.)

where F = supt∈J |f (t, )| and K = supt∈J |hi(t, )|, i = , , . . . , m, and

‖φ‖‖p‖�(r)
Tα

�(α + )
+

m∑
i=

‖ψi‖Tβi

�(βi + )
< . (.)

Then problem (.) has at least one solution on J .

Proof Set E = C(J ,R) and define a subset S of E as

S =
{

x ∈ E : ‖x‖ ≤ r
}

,

where r satisfies inequality (.).
Clearly S is closed, convex, and bounded subset of the Banach space E. By Lemma .,

problem (.) is equivalent to the integral equation (.). Now we define three operators;
A : E → E by

Ax(t) = f
(
t, x(t)

)
, t ∈ J , (.)
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B : S → E by

Bx(t) =
∫ t



(t – s)α–

�(α)
g
(
s, x(s)

)
ds, t ∈ J , (.)

and C : E → E by

Cx(t) =
m∑

i=

Iβi hi
(
t, x(t)

)
=

m∑
i=

∫ t



(t – s)βi–

�(βi)
hi

(
s, x(s)

)
ds, t ∈ J . (.)

We shall show that the operators A, B, and C satisfy all the conditions of Lemma .. This
will be achieved in the following series of steps.

Step . We first show that A and C are Lipschitzian on E.
Let x, y ∈ E. Then by (H), for t ∈ J we have

∣∣Ax(t) – Ay(t)
∣∣ =

∣∣f (t, x(t)
)

– f
(
t, y(t)

)∣∣
≤ φ(t)

∣∣x(t) – y(t)
∣∣ ≤ ‖φ‖‖x – y‖,

which implies ‖Ax –Ay‖ ≤ ‖φ‖‖x – y‖ for all x, y ∈ E. Therefore, A is a Lipschitzian on E
with Lipschitz constant ‖φ‖.

Analogously, for any x, y ∈ E, we have

∣∣Cx(t) – Cy(t)
∣∣ =

∣∣∣∣∣
m∑

i=

Iβi hi
(
t, x(t)

)
–

m∑
i=

Iβi hi
(
t, y(t)

)∣∣∣∣∣
≤

m∑
i=

∫ t



(t – s)βi–

�(βi)
ψi(s)

∣∣x(s) – y(s)
∣∣ds

≤ ‖x – y‖
m∑

i=

‖ψi‖Tβi

�(βi + )
.

This means that

‖Cx – Cy‖ ≤
m∑

i=

‖ψi‖Tβi

�(βi + )
‖x – y‖.

Thus, C is a Lipschitzian on E with Lipschitz constant
∑m

i=
‖ψi‖Tβi
�(βi+) .

Step . The operator B is completely continuous on S.
We first show that the operator B is continuous on E. Let {xn} be a sequence in S con-

verging to a point x ∈ S. Then by the Lebesgue dominated convergence theorem, for all
t ∈ J , we obtain

lim
n→∞Bxn(t) = lim

n→∞

∫ t



(t – s)α–

�(α)
g
(
s, xn(s)

)
ds

=
∫ t



(t – s)α–

�(α)
lim

n→∞ g
(
s, xn(s)

)
ds

=
∫ t



(t – s)α–

�(α)
g
(
s, x(s)

)
ds.

This implies that B is continuous on S.
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Next we will prove that the set B(S) is a uniformly bounded in S. For any x ∈ S, we have

∣∣Bx(t)
∣∣ =

∣∣∣∣
∫ t



(t – s)α–

�(α)
g
(
s, x(s)

)
ds

∣∣∣∣
≤

∫ t



(t – s)α–

�(α)
p(s)�(r) ds

≤ ‖p‖�(r)
Tα

�(α + )
= K,

for all t ∈ J . Therefore, ‖B‖ ≤ K, which shows that B is uniformly bounded on S.
Now, we will show that B(S) is an equicontinuous set in E. Let τ, τ ∈ J with τ < τ and

x ∈ S. Then we have

∣∣Bx(τ) – Bx(τ)
∣∣ =

∣∣∣∣
∫ τ



(τ – s)α–

�(α)
g
(
s, x(s)

)
ds –

∫ τ



(τ – s)α–

�(α)
g
(
s, x(s)

)
ds

∣∣∣∣
≤

∫ τ



|(τ – s)α– – (τ – s)α–|
�(α)

∣∣g(
s, x(s)

)∣∣ds

+
∫ τ

τ

(τ – s)α–

�(α)
∣∣g(

s, x(s)
)∣∣ds

≤
∫ τ



|(τ – s)α– – (τ – s)α–|
�(α)

‖p‖�(r) ds

+
∫ τ

τ

(τ – s)α–

�(α)
‖p‖�(r) ds,

which is independent of x ∈ S. As τ → τ, the right-hand side of the above inequality
tends to zero. Therefore, it follows from the Arzelá-Ascoli theorem that B is a completely
continuous operator on S.

Step . The hypothesis (c) of Lemma . is satisfied.
Let x ∈ E and y ∈ S be arbitrary elements such that x = AxBy + Cx. Then we have

∣∣x(t)
∣∣ ≤ ∣∣Ax(t)

∣∣∣∣By(t)
∣∣ +

∣∣Cx(t)
∣∣

≤ ∣∣f (t, x(t)
)∣∣ ∫ t



(t – s)α–

�(α)
∣∣g(

s, x(s)
)∣∣ds +

m∑
i=

∫ t



(t – s)βi–

�(βi)
∣∣hi

(
s, x(s)

)∣∣ds

≤ (∣∣f (t, x(t)
)

– f (t, )
∣∣ +

∣∣f (t, )
∣∣) ∫ t



(t – s)α–

�(α)
‖p‖�(r)s

+
m∑

i=

∫ t



(t – s)βi–

�(βi)
(∣∣hi

(
s, x(s)

)
– hi(s, )

∣∣ +
∣∣hi(s, )

∣∣)ds

≤ (
r‖φ‖ + F

)(‖p‖�(r)
Tα

�(α + )

)
+

m∑
i=

(r‖ψi‖ + K)Tβi

�(βi + )
,

which leads to

‖x‖ ≤ (
r‖φ‖ + F

)(‖p‖�(r)
Tα

�(α + )

)
+

m∑
i=

(r‖ψi‖ + K)Tβi

�(βi + )
≤ r.

Therefore, x ∈ S.
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Step . Finally we show that δM + ρ < , that is, (d) of Lemma . holds.
Since

M =
∥∥B(S)

∥∥
= sup

x∈S

{
sup
t∈J

∣∣Bx(t)
∣∣}

≤ ‖p‖�(r)
Tα

�(α + )
, (.)

and by (H) we have

‖φ‖M +
m∑

i=

‖ψi‖Tβi

�(βi + )
< ,

with δ = ‖φ‖ and ρ =
∑m

i=
‖ψi‖Tβi
�(βi+) .

Thus all the conditions of Lemma . are satisfied and hence the operator equation x =
AxBx + Cx has a solution in S. In consequence, problem (.) has a solution on J . This
completes the proof. �

4 Hybrid fractional sequential integro-differential equations
In this section we consider the initial value problem (.). An existence result will be
proved by using the following fixed point theorem due to Dhage.

Lemma . [] Let M be a nonempty, closed, convex and bounded subset of the Banach
space X and let A : X → X and B : M → X be two operators such that

(i) A is a contraction,
(ii) B is completely continuous, and

(iii) x = Ax + By for all y ∈ M ⇒ x ∈ M.
Then the operator equation Ax + Bx = x has a solution.

Lemma . Suppose that  < α,ω ≤ ,  < α + ω ≤ , γ > , and the functions f , g , hi, i =
, , . . . , m satisfy problem (.). Then the unique solution of the hybrid fractional sequential
integro-differential problem (.) is given by

x(t) =
∫ t



(t – s)ω–

�(ω)
f
(
s, x(s)

)∫ s



(s – u)α–

�(α)
g
(
u, x(u), Iγ x(u)

)
du ds

+
m∑

i=

Iβi+ωhi
(
t, x(t)

)
, t ∈ J . (.)

Proof By using the method of proving of Lemma . and applying the semigroup property,
i.e., IωIβi hi = Iβi+ωhi, i = , , . . . , m, we obtain the desired integral equation in (.). �

Theorem . Assume that:

(A) The functions f : J ×R → R \ {} and g : J ×R
 → R, are continuous and there exist

two positive functions φ, χ with bound ‖φ‖ and ‖χ‖, respectively, such that

∣∣f (t, x(t)
)

– f
(
t, y(t)

)∣∣ ≤ φ(t)
∣∣x(t) – y(t)

∣∣ (.)
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and

∣∣g(
t, x(t), y(t)

)
– g

(
t, x̄(t), ȳ(t)

)∣∣ ≤ χ (t)
(∣∣x(t) – y(t)

∣∣ +
∣∣x̄(t) – ȳ(t)

∣∣), (.)

for t ∈ J and x, y, x̄, ȳ ∈R.
(A) |f (t, x)| ≤ μ(t), ∀(t, x) ∈ J × R, μ ∈ C(J ,R+), |g(t, x, y)| ≤ ν(t), ∀(t, x, y) ∈ J × R × R,

ν ∈ C(J ,R+), and |hi(t, x)| ≤ θi(t), ∀(t, x) ∈ J ×R, θi ∈ C(J ,R+), i = , , . . . , m.

If

Tα

�(α + )
Tω

�(ω + )
‖ν‖‖φ‖ + ‖μ‖‖χ‖

[
Tω

�(ω + )
+

Tω+γ

�(ω + γ + )

]
< , (.)

then problem (.) has at least one solution on J .

Proof Setting supt∈J |μ(t)| = ‖μ‖, supt∈J |ν(t)| = ‖ν‖, supt∈J |θi(t)| = ‖θi‖, i = , , . . . , m, and
choosing

R ≥
m∑

i=

Tβi+ω

�(βi + ω + )
‖θi‖ +

Tω+α

�(ω + α + )
‖μ‖‖ν‖, (.)

we consider BR = {x ∈ C(J ,R) : ‖x‖ ≤ R}. We define the operators A : E → E as in (.),
D : BR → E by

Dx(t) =
∫ t



(t – s)α–

�(α)
g
(
s, x(s), Iγ x(s)

)
ds, t ∈ J (.)

and

Qx(t) =
m∑

i=


�(βi + ω)

∫ t


(t – s)βi+ω–hi

(
s, x(s)

)
ds, t ∈ J , (.)

and

T x(t) =


�(ω)

∫ t


(t – s)ω–Ax(s)Dx(s) ds, t ∈ J . (.)

For any y ∈ BR, we have

∣∣x(t)
∣∣ =

∣∣Qx(t) + T y(t)
∣∣

≤
m∑

i=


�(βi + ω)

∫ t


(t – s)βi+ω–∣∣hi

(
s, x(s)

)∣∣ds

+


�(ω)

∫ t


(t – s)ω–∣∣Ay(s)

∣∣∣∣Dy(s)
∣∣ds

≤
m∑

i=


�(βi + ω)

∫ t


(t – s)βi+ω–∣∣θi(s)

∣∣ds

+


�(ω)

∫ t


(t – s)ω–∣∣μ(s)

∣∣ ∫ s



(s – τ )α–

�(α)
∣∣ν(τ )

∣∣dτ ds
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≤
m∑

i=

Tβi+ω

�(βi + ω + )
‖θi‖ +

Tω+α

�(ω + α + )
‖μ‖‖ν‖

≤ R,

and therefore ‖x‖ ≤ R, which means that x ∈ BR. Hence, the condition (iii) of Lemma .
holds.

Next we will show that Q satisfy the condition (ii) of Lemma .. The operator Q is
obviously continuous. Also, Q is uniformly bounded on BR as

‖Qx‖ ≤
m∑

i=

Tβi+ω

�(βi + ω + )
‖θi‖.

Let τ, τ ∈ J with τ < τ and x ∈ BR. We define sup(t,x)∈J×BR |hi(t, x)| = h̄i < ∞, i = , , . . . , m.
Then we have

∣∣Qx(τ) – Qx(τ)
∣∣ =

m∑
i=


�(βi + ω)

∣∣∣∣
∫ τ


(τ – s)βi+ω–hi

(
s, xi(s)

)
ds

–
∫ τ


(τ – s)βi+ω–hi

(
s, xi(s)

)
ds

∣∣∣∣
≤

m∑
i=

h̄i

�(βi + ω)

∣∣∣∣
∫ τ



[
(τ – s)βi+ω– – (τ – s)βi+ω–]ds

+
∫ τ

τ

(τ – s)βi+ω– ds
∣∣∣∣

≤
m∑

i=

h̄i

�(βi + ω + )
∣∣τβi+ω

 – τ
βi+ω


∣∣,

which is independent of x and tends to zero as τ – τ → . Thus, Q is equicontinuous. So
Q is relatively compact on BR. Hence, by the Arzelá-Ascoli theorem, Q is compact on BR.

Now we show that T is a contraction mapping. Let x, y ∈ BR. Then for t ∈ J we have

∣∣T x(t) – T y(t)
∣∣

=
∣∣∣∣
∫ t



(t – s)ω–

�(ω)
[
Ax(s)Dx(s) – Ay(s)Dy(s)

]
ds

∣∣∣∣
=

∣∣∣∣
∫ t



(t – s)ω–

�(ω)
[
Ax(s)Dx(s) – Ay(s)Dx(s) + Ay(s)Dx(s) – Ay(s)Dy(s)

]
ds

∣∣∣∣
≤

∫ t



(t – s)ω–

�(ω)
{∣∣Dx(s)

∣∣∣∣Ax(s) – Ay(s)
∣∣ +

∣∣Ay(s)
∣∣∣∣Dx(s) – Dy(s)

∣∣}ds

≤
∫ t



(t – s)ω–

�(ω)

{
Tα

�(α + )
‖ν‖‖φ‖‖x – y‖

+ ‖μ‖‖χ‖
[
‖x – y‖ + ‖x – y‖

∫ s



(s – u)γ –

�(γ )
du

]}
ds

≤
{

Tα

�(α + )
Tω

�(ω + )
‖ν‖‖φ‖ + ‖μ‖‖χ‖

[
Tω

�(ω + )
+

Tω+γ

�(ω + γ + )

]}
‖x – y‖.
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Hence, by (.), T is a contraction mapping, and thus the condition (i) of Lemma . is
satisfied.

Thus all the assumptions of Lemma . are satisfied. Therefore, the conclusion of Lem-
ma . implies that problem (.) has at least one solution on J . �

5 Examples
In this section, we present two examples to illustrate our results.

Example . Consider the following hybrid fractional integro-differential equation:

{
D 

 [ x(t)–
∑

i= Iβi hi(t,x(t))
f (t,x(t)) ] = (t–)+

(–t) (|x(t)| + ),
x() = , t ∈ [, ],

(.)

where

∑
i=

Iβi hi
(
t, x(t)

)
= I/ te–t

( + t)

(
x(t) + |x(t)|

|x(t)| + 
+

et



)

+ I/ t sin t
( + et)

(
x(t) + |x(t)|

|x(t)| + 
+ cos t

)

+ I/  sinπ t
 + ( + t)

(
x(t) + |x(t)|

|x(t)| + 
+




)

+ I/ t cos t + t sin t
( – t)

(
x(t) + |x(t)|

|x(t)| + 
+

t
t + 

)

and

f
(
t, x(t)

)
=

(cosπ t + t)
( + t)

(
x(t) + |x(t)|

|x(t)| + 

)
+

 – –t


.

Here α = /, T = , m = , β = /, β = /, β = /, and β = /. We can show
that

∣∣f (t, x) – f (t, y)
∣∣ ≤

(
 + t

( + t)

)
|x – y|

and

∣∣h(t, x) – h(t, y)
∣∣ ≤

(
t

( + t)

)
|x – y|,

∣∣h(t, x) – h(t, y)
∣∣ ≤

(
t

( + et)

)
|x – y|,

∣∣h(t, x) – h(t, y)
∣∣ ≤

(


 + ( + t)

)
|x – y|,

∣∣h(t, x) – h(t, y)
∣∣ ≤

(
t

( – t)

)
|x – y|.

It follows that φ(t) = ( + t)( + t)–, ψ(t) = t( + t)–/, ψ(t) = t( + et)–/,
ψ(t) = ( + ( + t))–, and ψ(t) = t( – t)–/, which give norms ‖φ‖ = /, ‖ψ‖ =
/, ‖ψ‖ = ( + e)–/, ‖ψ‖ = /, and ‖ψ‖ = /.
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Since

∣∣g(t, x, y)
∣∣ =

∣∣∣∣ (t – ) + 
( – t)

(
|x| + 

)∣∣∣∣ ≤
(

(t – ) + 
 – t

)( |x|


+



)
,

we set p(t) = ((t – ) + )/( – t) and also the function � as

�(x) =
x


+



.

It is easy to verify that ‖p‖ = /, F = supt∈[,] |f (t, )| = /, and K = supt∈[,] |hi(t,
)| = /, i = , , , . We see that condition (H) is followed with a number r ∈
[., .]. Consequently all conditions in Theorem . are satisfied. There-
fore, problem (.) has at least one solution on [, ].

Example . Consider the following hybrid fractional sequential integro-differential
equation:

⎧⎪⎪⎨
⎪⎪⎩

D/[ D/x(t)–
∑

i= Iβi hi(t,x(t))
f (t,x(t)) ]

= 
 arctan( |x(t)|

+|x(t)| cos π t
 ) – 

 arctan( |I/x(t)|
+|I/x(t)| cos π t

 ),
x() = , D/x() = , t ∈ [, ],

(.)

where

∑
i=

Iβi hi
(
t, x(t)

)
= I/ log

(
 +

∣∣x(t)
∣∣ et sin t
 + |x(t)|

)

+ I/
(

cos t sin x(t)√
 + t

+
cos x(t) sin t√

 – t

)

+ I/(tet cos
(
x(t) + π t

)
+ e–t sin

(
x(t) + π t

))
+ I/

(
t + e–|x(t)| sin t

 + |x(t)| + t

)

+ I/
(

tet

 + et +
t|x(t)|

 + t|x(t)|
)

and

f
(
t, x(t)

)
=

( |x(t)| + 
|x(t)| + 

)
( – et)


√

 – t
+

 – t


.

Here α = /, ω = /, m = , T = , β = /, β = /, β = /, β = /, β = /,
γ = /. We can show that

∣∣f (t, x) – f (t, y)
∣∣ ≤

(
 – et


√

 – t

)
|x – y|

and

∣∣g(t, x, y) – g(t, x̄, ȳ)
∣∣ ≤ 


cos

π t


(|x – y| + |x̄ – ȳ|).
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Therefore, we choose

φ(t) =
 – et


√

 – t
and χ (t) =




cos
π t


.

It is easy to see that

∣∣f (t, x)
∣∣ ≤  – et


√

 – t
+

 – t


= μ(t),

∣∣g(t, x, y)
∣∣ ≤  cos

π t


= ν(t).

The functions hi(t, x(t)), i = , , . . . , , are bounded by the corresponding positive func-
tions θi(t), i = , , . . . , , as follows:

∣∣h(t, x)
∣∣ ≤  + et sin t = θ(t),

∣∣h(t, x)
∣∣ ≤

√
 – t cos t

 – t +



= θ(t),

∣∣h(t, x)
∣∣ ≤

√
et + 

et = θ(t),

∣∣h(t, x)
∣∣ ≤ t + sin t

 + t = θ(t),

∣∣h(t, x)
∣∣ ≤ t( + et)

 + et = θ(t).

Hence the conditions (A) and (A) are satisfied. Putting ‖φ‖ = /, ‖χ‖ = /, ‖μ‖ = /,
and ‖ν‖ = , we obtain

Tα

�(α + )
Tω

�(ω + )
‖ν‖‖φ‖ + ‖μ‖‖χ‖

[
Tω

�(ω + )
+

Tω+γ

�(ω + γ + )

]
≈ . < .

By Theorem ., problem (.) has a solution on [, ].

6 Conclusions
In this paper, we have studied the existence of solutions for initial value problems of first
and second order for hybrid fractional integro-differential equations. The first result has
been obtained by using a hybrid fixed point theorem for three operators in a Banach alge-
bra due to Dhage [], while the second has been obtained by using a useful generalization
of Krasnoselskii’s fixed point theorem due to Dhage []. The main results are well illus-
trated with the help of examples.
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