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We study the existence, multiplicity, and nonexistence of convex solutions for systems
of Monge-Ampère equations with multiparameters. The proof of the results is based
on the method of upper and lower solutions and the fixed point index theory.

Keywords: convex solutions; Monge-Ampère equations; upper and lower solutions;
fixed point index theory

1 Introduction
In this paper, we consider the existence, multiplicity, and nonexistence of convex solutions
for the following boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

((u′
(r))N )′ = λNrN–f (–u, –u, . . . , –un),

((u′
(r))N )′ = λNrN–f (–u, –u, . . . , –un),

. . . ,
((u′

n(r))N )′ = λnNrN–f n(–u, –u, . . . , –un),
u′

i() = ui() = , i = , , . . . , n,  < r < ,

(.)

where N ≥ . Let R+ =: [,∞). Throughout this paper, we assume that f i ∈ C(Rn
+,R+) (i =

, , . . . , n). Such a problem arises in the study of the existence of convex radial solutions
for the following Dirichlet problem of the Monge-Ampère equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

det(Du) = λf (–u, –u, . . . , –un),
det(Du) = λf (–u, –u, . . . , –un),
. . . ,
det(Dun) = λf n(–u, –u, . . . , –un),
ui =  on ∂B, i = , , . . . , n,

(.)

where Dui = ( ∂ui
∂xi ∂xj

) is the Hessian matrix of ui and B = {x ∈ R
N : |x| < } is the unit ball

in R
N .

For the scalar equation, Kutev [] obtained the existence of a unique nontrivial convex
radially symmetric solution of

{
det(Du) = λf (–u) in B,
u =  on ∂B,

(.)
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with f (u) = up based on the Schauder fixed point theorem for positive, compact operators.
Hu and Wang [] established several criteria for the existence, multiplicity, and nonexis-
tence of strictly convex solutions for (.) with or without an eigenvalue parameter based
on the fixed point index, due to Krasnoselskii. For systems, the problem (.) has been
studied by Wang []. They considered the existence, multiplicity, and nonexistence of
nontrivial radial convex solutions with superlinearity or sublinearity assumptions based
on Krasnoselskii’s fixed point theorem in a cone. Therefore, it seems to be interesting to
consider the convex radial solutions when the problem has multiparameters.

For the multiparameter problem, Dunninger and Wang [, ] considered the existence
and multiplicity of positive radial solutions for the elliptic systems

⎧
⎪⎨

⎪⎩

�u + λk(|x|)f (u, v) = ,
�v + μk(|x|)g(u, v) =  in �,
u = v =  on ∂�,

(.)

where � = {x ∈ R
n : R < |x| < R}, R, R > , n ≥ , (λ,μ) ∈ R


+ \ {(, )}, ki ∈ C([R, R],

R+), not vanishing identically on any subinterval of [R, R] and f , g ∈ C(R
+,R+ \ {}).

In particular, Dunninger and Wang [] considered problem (.) for the case f (, ) > ,
g(, ) >  and the following two conditions are satisfied:

(A) f and g are nondecreasing on R

+, i.e.,

f (u, v) ≤ f (u, v) and g(u, v) ≤ g(u, v)

whenever (u, v) ≤ (u, v), where the inequality on R

+ can be understood compo-

nentwise;
(A) f∞ =: lim(u,v)→∞ f (u,v)

u+v = ∞, g∞ =: lim(u,v)→∞ g(u,v)
u+v = ∞.

They proved for the case λ = μ that there exists λ∗ >  such that problem (.) has at least
two, at least one, or no positive radial solutions according to  < λ < λ∗, λ = λ∗, or λ > λ∗.
Among other results, they considered the same problem for the case f (, ) = g(, ) = 
in []. They proved under the assumptions f = g =  and f∞ = g∞ = ∞ that problem (.)
has at least one positive radial solution for all λ,μ > , where

f = lim
(u,v)→

f (u, v)
u + v

, g = lim
(u,v)→

g(u, v)
u + v

.

Lee [] considered the multiplicity when the problem (.) has multiparameters for the
first case and also when the problem has a perturbed boundary condition for the second
case. Yang [] proved the existence of positive solutions for Dirichlet boundary value prob-
lem of m-order nonlinear differential systems with n different parameters based on the
method of upper and lower solutions and the fixed point index theory. Inspired by these
references, we will study the existence, multiplicity, and nonexistence of convex solutions
for systems of Monge-Ampère equations with multiparameters.

The paper is organized as follows. In Section , we introduce the upper and lower so-
lutions method for systems and the fixed point index theory. In Section , we state and
prove the existence, multiplicity, and nonexistence results.
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2 Preliminaries
A nontrivial convex solution of (.) is negative on [, ). With the simple transformation
vi = –ui, (.) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

((–v′
(t))N )′ = λNtN–f (v, v, . . . , vn),

((–v′
(t))N )′ = λNtN–f (v, v, . . . , vn),

. . . ,
((–v′

n(t))N )′ = λnNtN–f n(v, v, . . . , vn),
v′

i() = vi() = , i = , , . . . , n.

(.)

Therefore, throughout this paper we shall study the positive concave solution of (.).
Let ϕ(t) = tN , t ≥ . For v = (v, v, . . . , vn), define the operators Tλi and Tλ as

Tλi v(t) =
∫ 

t
ϕ–

(∫ s


λiNτN–f i(v(τ )

)
dτ

)

ds, i = , , . . . , n,

Tλv(t) =
(
Tλ v(t), Tλ v(t), . . . , Tλn v(t)

)
.

Problem (.) is equivalent to

Tλv(t) = v(t), t ∈ [, ].

It implies that

v′′
i (t) = –


N

(∫ t


λiNτN–f i(v(τ )

)
dτ

) 
N –(

λiNtN–f i(v(t)
)) ≤ 

for t ∈ (, ). Thus each component ui must be convex.
Let X be the Banach space C[, ] × · · · × C[, ]

︸ ︷︷ ︸
n

with the norm ‖v‖ =
∑n

i= ‖vi‖ and

‖vi‖ = maxt∈[,] |vi(t)|, i = , , . . . , n. Let K be a cone in X defined as

K =

{

v = (v, v, . . . , vn) ∈ X : vi(t) ≥ , t ∈ [, ] and min

 ≤t≤ 



n∑

i=

vi(t) ≥ 


‖v‖
}

.

It follows similarly from [, ], we can get the following lemma.

Lemma . Tλ(K) ⊂ K and Tλ is completely continuous on X .

Consider the following boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

((–x′
(t))N )′ = F(t, x, x, . . . , xn),

((–x′
(t))N )′ = F(t, x, x, . . . , xn),

. . . ,
((–x′

n(t))N )′ = Fn(t, x, x, . . . , xn),
x′

i() = xi() = , i = , , . . . , n,

(.)

where t ∈ (, ), Fi : D →R is continuous with D ⊂ [, ] ×R
n, i = , , . . . , n.
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Definition . Let αi ∈ C([, ],R), i = , , . . . , n, we say (α,α, . . . ,αn) is a lower solution
of (.) if (t,α(t),α(t), . . . ,αn(t)) ∈ D for all t ∈ (, ) and

{
((–α′

i(t))N )′ ≤ Fi(t,α,α, . . . ,αn),
α′

i() = , αi() ≤ , i = , , . . . , n.
(.)

Definition . Let βi ∈ C([, ],R), i = , , . . . , n, we say (β,β, . . . ,βn) is an upper solu-
tion of (.) if (t,β(t),β(t), . . . ,βn(t)) ∈ D for all t ∈ (, ) and

{
((–β ′

i (t))N )′ ≥ Fi(t,β,β, . . . ,βn),
β ′

i () = , βi() ≥ , i = , , . . . , n.
(.)

Let Dβ
α = {(t, x, x, . . . , xn) ∈ [, ] × R

n : αi(t) ≤ xi ≤ βi(t), i = , , . . . , n}. We give a fun-
damental lemma of upper and lower solutions method.

Lemma . Let (α(t),α(t), . . . ,αn(t)) and (β(t),β(t), . . . ,βn(t)) be lower and upper solu-
tions of (.), respectively, such that

(h) (α(t),α(t), . . . ,αn(t)) ≤ (β(t),β(t), . . . ,βn(t)), ∀t ∈ (, );
(h) Dβ

α ⊂ D;
(h) Fi(t, x, x, . . . , xn) is nondecreasing on R

n for fixed t ∈ [, ], that is,

Fi(t, x, x, . . . , xn) ≤ Fi(t, y, y, . . . , yn), i = , , . . . , n,

whenever (x, x, . . . , xn) ≤ (y, y, . . . , yn).

Then problem (.) has at least one solution (x(t), x(t), . . . , xn(t)) such that for all t ∈
(, ),

(
α(t),α(t), . . . ,αn(t)

) ≤ (
x(t), x(t), . . . , xn(t)

) ≤ (
β(t),β(t), . . . ,βn(t)

)
.

Proof It is easy to verify that problem (.) is equivalent to the following system of integral
equations:

xi(t) =
∫ 

t
ϕ–

(∫ s


Fi(τ , x(τ ), x(τ ), . . . , xn(τ )

)
dτ

)

ds, i = , , . . . , n,

where t ∈ [, ]. Define the function series {x(k)
i (t)}∞k= by

⎧
⎪⎨

⎪⎩

x()
i (t) = αi(t),

x(k+)
i (t) =

∫ 
t ϕ–(

∫ s
 Fi(τ , x(k)

 (τ ), x(k)
 (τ ), . . . , x(k)

n (τ )) dτ ) ds,
k = , , . . . , i = , , . . . , n.

(.)

The inequalities in (.) are equivalent to

αi(t) ≤
∫ 

t
ϕ–

(∫ s


Fi(τ ,α(τ ),α(τ ), . . . ,αn(τ )

)
dτ

)

ds,

t ∈ [, ], i = , , . . . , n. (.)
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It follows from the above inequalities that

x()
i (t) ≥ x()

i (t), t ∈ [, ], i = , , . . . , n.

By induction, assume

x(k)
i (t) ≥ x(k–)

i (t), t ∈ [, ], i = , , . . . , n.

Then for k ≥  and by (h) and (.), we obtain

x(k+)
i (t) – x(k)

i (t) =
∫ 

t

(

ϕ–
(∫ s


Fi(τ , x(k)

 (τ ), x(k)
 (τ ), . . . , x(k)

n (τ )
)

dτ

)

– ϕ–
(∫ s


Fi(τ , x(k–)

 (τ ), x(k–)
 (τ ), . . . , x(k–)

n (τ )
)

dτ

))

ds

≥ , t ∈ [, ], i = , , . . . , n,

which implies that

αi(t) = x()
i (t) ≤ x()

i (t) ≤ · · · ≤ x(k)
i (t) ≤ · · · .

Since (β(t),β(t), . . . ,βn(t)) is an upper solution of (.), we have

βi(t) ≥
∫ 

t
ϕ–

(∫ s


Fi(τ ,β(τ ),β(τ ), . . . ,βn(τ )

)
dτ

)

ds

≥
∫ 

t
ϕ–

(∫ s


Fi(τ ,α(τ ),α(τ ), . . . ,αn(τ )

)
dτ

)

ds

≥ αi(t) = x()
i (t), t ∈ [, ], i = , , . . . , n.

Assume βi(t) ≥ x(k)
i (t), t ∈ [, ], i = , , . . . , n, k ∈ N, then by the definition of x(k)

i (t) and
the above inequalities, we obtain

βi(t) – x(k+)
i (t) ≥

∫ 

t

(

ϕ–
(∫ s


Fi(τ ,β(τ ),β(τ ), . . . ,βn(τ )

)
dτ

)

– ϕ–
(∫ s


Fi(τ , x(k)

 (τ ), x(k)
 (τ ), . . . , x(k)

n (τ )
)

dτ

))

ds

≥ , t ∈ [, ], i = , , . . . , n,

which implies that {x(k)
i (t)}∞k= is bounded above by βi(t), hence the limit x∗

i (t) =
limk→∞ x(k)

i (t) exists and satisfies

αi(t) ≤ x∗
i (t) ≤ βi(t), t ∈ [, ], i = , , . . . , n.

Moreover, by taking the limits in both sides of (.), we obtain

x∗
i (t) =

∫ 

t
ϕ–

(∫ s


Fi(τ , x∗

 (τ ), x∗
(τ ), . . . , x∗

n(τ )
)

dτ

)

ds, t ∈ [, ], i = , , . . . , n,

which implies that (x∗
 (t), x∗

(t), . . . , x∗
n(t)) is a solution of (.). �
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The following well-known results of the fixed point index are crucial in our arguments.

Lemma . [] Let X be a Banach space, K a cone in X and � bounded open in X. Let
 ∈ � and T : K ∩ �̄ → K be condensing. Suppose that Tx = λx for all x ∈ K ∩ ∂� and all
λ ≥ . Then

i(T , K ∩ �, K) = .

Lemma . [] Let X be a Banach space and K a cone in X. For r > , define Kr = {x ∈
K : ‖x‖ < r}. Assume that T : K̄r → K is a compact map such that Tx = x for x ∈ ∂Kr . If
‖x‖ ≤ ‖Tx‖ for all x ∈ ∂Kr , then

i(T , Kr , K) = .

3 Main results
Theorem . Assume for all i = , , . . . , n,

(H) (λ,λ, . . . ,λn) ∈R
n
+ \ {(, , . . . , )};

(H) f i ∈ C(Rn
+,R+) is nondecreasing on R

n
+, that is,

f i(u, u, . . . , un) ≤ f i(v, v, . . . , vn), if (u, u, . . . , un) ≤ (v, v, . . . , vn)

and there exists at least one j ∈ {, , . . . , n}, such that f j(, , . . . , ) > ;
(H) there exist constants mi >  such that

f i(v) ≥ miϕ

( n∑

i=

vi

)

;

(H)

lim‖v‖→∞
f i(v)

ϕ(
∑n

i= vi)
= ∞.

Then there exists a bounded and continuous surface 
 separating Rn
+ \ {(, , . . . , )} into

two disjoint subsets � and � such that problem (.) has at least two convex solutions for
(λ,λ, . . . ,λn) ∈ �, at least one convex solution for (λ,λ, . . . ,λn) ∈ 
 and no solution for
(λ,λ, . . . ,λn) ∈ �. Moreover, let 
+ ∪ 
 be the parametric representation of 
, where


+: λn = λn(λ,λ, . . . ,λn–) > , 
: λn = λn(λ,λ, . . . ,λn–) = .

Then on 
+, the function λn = λn(λ,λ, . . . ,λn–) is continuous and nonincreasing on R
n–
+ \

{(, , . . . , )}, that is, if (λ,λ, . . . ,λn–) ≤ (λ′
,λ′

, . . . ,λ′
n–), then

λn(λ,λ, . . . ,λn–) ≥ λn
(
λ′

,λ′
, . . . ,λ′

n–
)

and on 
, the function λn– = λn–(λ,λ, . . . ,λn–) is continuous and nonincreasing on
R

n–
+ \ {(, , . . . , )}.
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We need some lemmas to prove Theorem .. The following lemma is a prior estimate
for solutions of problem (.).

Lemma . Assume (H)-(H) hold. Let � be a compact subset of Rn
+ \ {(, , . . . , )}. Then

there exists a constant C� >  such that for all (λ,λ, . . . ,λn) ∈ � and all possible positive
solutions v = (v, v, . . . , vn) of (.) at (λ,λ, . . . ,λn), one has

‖v‖ ≤ C� .

Proof Suppose by contradiction that there exists a sequence {(v(m)
 , v(m)

 , . . . , v(m)
n )}∞m= of

positive solutions of (.) at (λ(m)
 ,λ(m)

 , . . . ,λ(m)
n ) such that (λ(m)

 ,λ(m)
 , . . . ,λ(m)

n ) ∈ � for all
m and

∥
∥
(
v(m)

 , v(m)
 , . . . , v(m)

n
)∥
∥ → ∞.

Then v(m) = (v(m)
 , v(m)

 , . . . , v(m)
n ) ∈ K and thus

min

 ≤t≤ 



( n∑

i=

v(m)
i (t)

)

≥ 


∥
∥v(m)∥∥. (.)

Since � is compact, the sequence {(λ(m)
 ,λ(m)

 , . . . ,λ(m)
n )}∞m= has a convergent subsequence

which we denote without loss of generality still by {(λ(m)
 ,λ(m)

 , . . . ,λ(m)
n )}∞m= such that

lim
m→∞λ

(m)
i = λ∗

i , i = , , . . . , n

and at least one λ∗
j > , hence for m sufficiently large, we have λ

(m)
j ≥ λ∗

j / > . Then from
(H), we may choose Rj >  such that

f j(v) ≥ Lϕ

( n∑

i=

vi

)

for all
n∑

i=

vi ≥ Rj, (.)

where L satisfies




ϕ–
(

λ∗
j


L

)∫ 





ϕ–
(∫ s




NτN– dτ

)

ds > .

Combining (.) with (.), we get

∥
∥v(m)∥∥ =

∥
∥Tλ(m) v(m)∥∥

≥ max
t∈[,]

∣
∣T

λ
(m)
j

v(m)(t)
∣
∣

=
∫ 


ϕ–

(∫ s


λ

(m)
j NτN–f j(v(m)(τ )

)
dτ

)

ds

≥
∫ 






ϕ–
(∫ s




λ∗
j


NτN–f j(v(m)(τ )

)
dτ

)

ds

≥
∫ 






ϕ–

(∫ s




λ∗
j


NτN–Lϕ

( n∑

i=

v(m)
i (τ )

)

dτ

)

ds
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≥
∫ 






ϕ–
(∫ s




λ∗
j


NτN–Lϕ

(



∥
∥v(m)∥∥

)

dτ

)

ds

=



ϕ–
(

λ∗
j L



)∫ 





ϕ–
(∫ s




NτN– dτ

)

ds · ∥∥v(m)∥∥

>
∥
∥v(m)∥∥

for m sufficiently large. This is a contradiction. �

Lemma . Assume (H)-(H) hold. If (.) has a positive solution at (λ̄, λ̄, . . . , λ̄n). Then
(.) also has a positive solution at (λ,λ, . . . ,λn) for all (λ,λ, . . . ,λn) ≤ (λ̄, λ̄, . . . , λ̄n).

Proof Let (v̄, v̄, . . . , v̄n) be a positive solution of (.) at (λ̄, λ̄, . . . , λ̄n) and let (λ,λ,
. . . ,λn) ∈ R

n
+ \ {(, , . . . , )} with (λ,λ, . . . ,λn) ≤ (λ̄, λ̄, . . . , λ̄n). Then (v̄, v̄, . . . , v̄n) is an

upper solution and (, , . . . , ) is a lower solution of (.) at (λ,λ, . . . ,λn), respectively. It
is easy to see that (v̄, v̄, . . . , v̄n) = (, , . . . , ) and (v̄, v̄, . . . , v̄n) ≥ (, , . . . , ). By (H), we
obtain (, , . . . , ) is not a solution of (.) at (λ,λ, . . . ,λn), Lemma . implies that (.)
has a positive solution at (λ,λ, . . . ,λn). �

Lemma . Assume (H)-(H) hold. Then there exists (λ∗
 ,λ∗

, . . . ,λ∗
n) > (, , . . . , ) such

that (.) has a positive solution for all (λ,λ, . . . ,λn) ≤ (λ∗
 ,λ∗

, . . . ,λ∗
n).

Proof Let βi(t) =
∫ 

t ϕ–(
∫ s

 NτN– dτ ) ds = 
 ( – t), t ∈ [, ], i = , , . . . , n, be the unique

solution of
{

((–v′
i(t))N )′ = NtN–, i = , , . . . , n,

v′
i() = vi() = .

Let Mi = maxt∈[,] f i(β(t),β(t), . . . ,βn(t)), then by (H), Mi > , i = , , . . . , n, and at
(λ∗

 ,λ∗
, . . . ,λ∗

n) = ( 
M

, 
M

, . . . , 
Mn

), we get

((
–β ′

i (t)
)N)′ – λ∗

i NtN–f i(β(t),β(t), . . . ,βn(t)
)

= NtN– – λ∗
i NtN–f i(β(t),β(t), . . . ,βn(t)

)

= –NtN–[λ∗
i f i(β(t),β(t), . . . ,βn(t)

)
– 

]

≥ , t ∈ (, ), i = , , . . . , n.

This shows that (β(t),β(t), . . . ,βn(t)) is an upper solution of (.) at (λ∗
 ,λ∗

, . . . ,λ∗
n). On

the other hand, (, , . . . , ) is obviously a lower solution and (, , . . . , ) ≤ (β(t),β(t), . . . ,
βn(t)). Thus by Lemma ., (.) has a positive solution at (λ∗

 ,λ∗
, . . . ,λ∗

n), and by Lemma .
we complete the proof. �

Define

S =
{

(λ,λ, . . . ,λn) ∈R
n
+ \ {

(, , . . . , )
}

: (.) has a positive solution at

(λ,λ, . . . ,λn)
}

.

Then by Lemma ., S = ∅, and it is easy to see that (S,≤) is a partially ordered set.
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Lemma . Assume (H)-(H) hold. Then (S,≤) is bounded above.

Proof Let (λ,λ, . . . ,λn) ∈ S and v = (v, v, . . . , vn) be a positive solution of (.) at
(λ,λ, . . . ,λn). Then by (H), we get

‖vi‖ =
∫ 


ϕ–

(∫ s


λiNτN–f i(v(τ )

)
dτ

)

ds

≥
∫ 






ϕ–
(∫ s




λiNτN–f i(v(τ )
)

dτ

)

ds

≥
∫ 






ϕ–

(∫ s




λiNτN–miϕ

( n∑

i=

vi(τ )

)

dτ

)

ds

≥
∫ 






ϕ–
(∫ s




λiNτN–miϕ

(



‖v‖
)

dτ

)

ds

=



ϕ–(λimi)
∫ 






ϕ–
(∫ s




NτN– dτ

)

ds · ‖v‖.

Thus

λi ≤ 
mi

ϕ

(
‖vi‖

∫ 





ϕ–(
∫ s




NτN– dτ ) ds‖v‖

)

≤ d
mi

, i = , , . . . , n,

where

d = ϕ

(


∫ 





ϕ–(
∫ s




NτN– dτ ) ds

)

.

Therefore S is bounded above by (λ̄, λ̄, . . . , λ̄n) = ( d
m

, d
m

, . . . , d
mn

). �

Similar to Lemmas .-. in [], we can prove the following lemmas.

Lemma . Assume (H)-(H) hold. Then every chain in S has a unique supremum in S.

Lemma . Assume (H)-(H) hold. Then there exists λ̃i ∈ [λ∗
i , λ̄i] such that (.) has a

positive solution at (, . . . , ,λi, , . . . , ) for all  < λi ≤ λ̃i and no solution at (, . . . , ,λi, ,
. . . , ) for all λi > λ̃i.

Lemma . Assume (H)-(H) hold. Then there exists a continuous surface 
 separating
R

n
+ \ {(, , . . . , )} into two disjoint subsets � and � such that � is bounded and � is

unbounded, (.) has at least one solution for (λ,λ, . . . ,λn) ∈ � ∪ 
 and no solution for
(λ,λ, . . . ,λn) ∈ �. The function λn = λn(λ,λ, . . . ,λn–) is nonincreasing, that is, if

(λ,λ, . . . ,λn–) ≤ (
λ′

,λ′
, . . . ,λ′

n–
) ≤ (λ̃, λ̃, . . . , λ̃n–),

then

λn(λ,λ, . . . ,λn–) ≥ λn
(
λ′

,λ′
, . . . ,λ′

n–
)
.

Moreover, if λn = , then the function λn–(λ,λ, . . . ,λn–) is nonincreasing.
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Lemma . Assume (H)-(H) hold and let (λ,λ, . . . ,λn) ∈ �. Then there exists ε > 
such that (v∗

 + ε, v∗
 + ε, . . . , v∗

n + ε) is an upper solution of (.) at (λ,λ, . . . ,λn) for all
ε ∈ (, ε], where (v∗

 , v∗
, . . . , v∗

n) is the positive solution of (.) corresponding to some
(λ∗

 ,λ∗
, . . . ,λ∗

n) ∈ 
 satisfying

(λ,λ, . . . ,λn) <
(
λ∗

 ,λ∗
, . . . ,λ∗

n
)
.

Proof From (H), there exists a constant M >  such that

 < M ≤ min
t∈[,]

f i(v∗
 (t), v∗

(t), . . . , v∗
n(t)

)
, i = , , . . . , n.

Then by the uniform continuity of f i on a compact set, there exists ε >  such that

∣
∣f i(v∗

 + ε, v∗
 + ε, . . . , v∗

n + ε
)

– f i(v∗
 , v∗

, . . . , v∗
n
)∣
∣ <

M(λ∗
i – λi)
λi

for all t ∈ [, ], i = , , . . . , n and  < ε ≤ ε. Let ṽ∗
i (t) = v∗

i (t) + ε, i = , , . . . , n, then ṽ∗′
i () =

, ṽ∗
i () >  and

((
–ṽ∗′

i (t)
)N)′ – λiNtN–f i(ṽ∗

 (t), ṽ∗
(t), . . . , ṽ∗

n(t)
)

= λ∗
i NtN–f i(v∗

 (t), v∗
(t), . . . , v∗

n(t)
)

– λiNtN–f i(ṽ∗
 (t), ṽ∗

(t), . . . , ṽ∗
n(t)

)

= λiNtN–[f i(v∗
 (t), v∗

(t), . . . , v∗
n(t)

)
– f i(ṽ∗

 (t), ṽ∗
(t), . . . , ṽ∗

n(t)
)]

+
(
λ∗

i – λi
)
NtN–f i(v∗

 (t), v∗
(t), . . . , v∗

n(t)
)

> –NtN–M
(
λ∗

i – λi
)

+
(
λ∗

i – λi
)
NtN–f i(v∗

 (t), v∗
(t), . . . , v∗

n(t)
)

=
(
λ∗

i – λi
)
NtN–[f i(v∗

 (t), v∗
(t), . . . , v∗

n(t)
)

– M
]

≥ , i = , , . . . , n

for all t ∈ [, ], i = , , . . . , n. Hence (ṽ∗
 (t), ṽ∗

(t), . . . , ṽ∗
n(t)) is an upper solution of (.) at

(λ,λ, . . . ,λn) for all ε ∈ (, ε]. �

Proof of Theorem . Because we have proved the above lemmas, we only need to
prove the existence of the second positive solution of (.) for (λ,λ, . . . ,λn) ∈ �. Let
(λ,λ, . . . ,λn) ∈ �. Denote

ṽ∗
i (t) = v∗

i (t) + ε, i = , , . . . , n, t ∈ [, ],

where ε is given in Lemma .. Define the set

D =
{

v = (v, v, . . . , vn) ∈ X : –ε < vi(t) < ṽ∗
i (t), t ∈ [, ], i = , , . . . , n

}
.

Then D is bounded open in X and  ∈ D. The map Tλ : K ∩ D̄ → K is condensing, since it is
completely continuous. Let v ∈ K ∩ ∂D, then there exists t ∈ [, ] such that vi(t) = ṽ∗

i (t)
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for some i ∈ {, , . . . , n}. Let ṽ∗ = (ṽ∗
 , ṽ∗

, . . . , ṽ∗
n), then by (H) and Lemma ., we have

Tλi v(t) =
∫ 

t

ϕ–
(∫ s


λiNτN–f i(v(τ )

)
dτ

)

ds

≤
∫ 

t

ϕ–
(∫ s


λ∗

i NτN–f i(ṽ∗(τ )
)

dτ

)

ds

< ṽ∗
i (t) = vi(t) ≤ θvi(t)

for all θ ≥ . Thus v = θv for all v ∈ K ∩ ∂D and all θ ≥ . Lemma . implies that

i(Tλ, K ∩ D, K) = .

For some λi > , it follows from (H) that there exists Ri >  such that

f i(v) ≥ Lϕ

( n∑

i=

vi

)

, ∀
n∑

i=

vi ≥ Ri, (.)

where L satisfies




ϕ–(λiL)
∫ 






ϕ–
(∫ s




NτN– dτ

)

ds > .

Let R∗ = max{C� , Ri,‖ṽ∗‖}, where C� is given in Lemma . with � a compact set in
R

n
+ \ {(, , . . . , )} containing (λ,λ, . . . ,λn). Let

KR∗ =
{

v ∈ K : ‖v‖ < R∗},

then by Lemma .,

Tλv = v, ∀v ∈ ∂KR∗ .

Furthermore, if v ∈ ∂KR∗ , then

min
t∈[ 

 , 
 ]

( n∑

i=

vi(t)

)

≥ 


‖v‖ ≥ Ri.

Thus by (.),

f i(v(t)
) ≥ Lϕ

( n∑

i=

vi(t)

)

, ∀t ∈
[




,



]

.

Therefore

∥
∥Tλv(t)

∥
∥ ≥ max

t∈[,]

∣
∣Tλi v(t)

∣
∣

≥
∫ 






ϕ–
(∫ s




λiNτN–f i(v(τ )
)

dτ

)

ds
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≥
∫ 






ϕ–

(∫ s




λiNτN–Lϕ

( n∑

i=

vi(τ )

)

dτ

)

ds

≥
∫ 






ϕ–
(∫ s




λiNτN–Lϕ

(



‖v‖
)

dτ

)

ds

=



ϕ–(λiL)
∫ 






ϕ–
(∫ s




NτN– dτ

)

ds · ‖v‖

> ‖v‖.

It follows from Lemma . that

i(Tλ, KR∗ , K) = .

Consequently by the additivity of the fixed point index,

 = i(Tλ, KR∗ , K)

= i(Tλ, K ∩ D, K) + i(Tλ, KR∗ \ K ∩ D, K)

=  + i(Tλ, KR∗ \ K ∩ D, K),

which implies

i(Tλ, KR∗ \ K ∩ D, K) = –.

Thus Tλ has at least one fixed point in K ∩ D and another in KR∗ \ K ∩ D. This implies that
(.) has at least two positive solutions at (λ,λ, . . . ,λn) ∈ �. Thus (.) has at least two
negative solutions at (λ,λ, . . . ,λn) ∈ �. �
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