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Abstract

In this paper, we investigate nonlinear second-order double impulsive differential
equations integral boundary value problem with p-Laplacian on an infinite interval
with the infinite number of impulsive times. Based on the cone theory and monotone
iterative technique, we establish the existence of minimal nonnegative solution and
iteration of positive solutions for such a boundary value problem. The main results are
new and extend the existing results. At last, some examples are worked out to
demonstrate the use of the main results.
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1 Introduction
Boundary value problems on infinite intervals appear often in applied mathematics and
physics, for example, in the study of the unsteady flow of a gas through semi-infinite porous
medium, in analyzing the heat transfer in radial flow between circular disks, in the study of
plasma physics, and in an analysis of the mass transfer on a rotating disk in non-Newtonian
fluid, see [1, 2] and the references therein. For extensive applications, this kind of BVPs at-
tract lots of scholars to devote themselves to developing them. Scholars do some work and
apply many techniques to deal with such problems, see [3—-10] and the references therein.
While boundary value problems with integral boundary conditions for ordinary differen-
tial equations on an infinite interval also arise in different fields such as heat conduction,
chemical engineering, underground water flow, thermoelasticity, and plasma physics. In
the past few years, many people have started to be active in studying the existence of the so-
lutions to nonlinear integral boundary value problems (IBVPs) on infinite intervals. Some
conclusions appeared in the meantime, see [11-18] and the references therein.
Considering the theory of impulsive differential equations, it has been emerging as an
important area of investigation in recent years and has been extensively applied in chemi-
cal technology, population dynamics, and so on. It is much wider because all the structure
of its emergence has deep physical background and realistic mathematical model and coin-
cides with many phenomena in nature. For an introduction of the basic theory of impulsive
differential equations in R”, see [19—21] and the references therein.
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We notice that there has been increasing interest in studying nonlinear differential equa-
tion and impulsive integro differential equation on an infinite interval with an infinite
number of impulsive times to identify a few, see [22—26] and the references therein. There
are relatively few papers available for integral boundary value problems for impulsive dif-
ferential equations on an infinite interval with an infinite number of impulsive times up
to now, see [27-31] and the references therein.

Recently, in [32], Zhang ez al. investigated the existence of minimal nonnegative solution
for the following second-order impulsive differential equation IBVP:

=x"(t) =f(t,%(0),5' (1)), te€],tFt
Ax't:tk =L(x(tx), k=12,...,
Ax/|t=tk = 7/<(9C(tk))x k=1,2,...,
x(0) = [y gx()dt,  x'(c0) =0,

where f € C(J x ] x J,]), I, Iy € C(R,R), ] = [0,+00), 0 =ty <ty < -+ <ty < -+, tgy — OO
for k=1,2,...,and g(t) € L[J,]J] with 0 < fowog(t) dt <1. Ax|;, denotes the jump of x(¢) at
t =, that is,

Al = (tf) - (t7),

where x(¢{) and x(t;) represent the right-hand limit and left-hand limit of x(¢) at ¢ = #,
respectively, Ax'|, has a similar meaning to «'(¢).

More recently, in [33], Zhang studied the existence and iteration of positive solutions
for nonlinear second-order impulsive IBVP with p-Laplacian on infinite intervals

(@ (¥ () +q(@)f (£, x(6), %' (2)), t€]T.,
Ax|t:¢k =1k(x(tk)), k= 1,2,...,
x(0) = [y g@x()dt,  x/(00) = oo,

where ¢,(s) = [s|P~%s, p > 1, ] = [0,+00), J, = (0,+00), J, = J:\{ti, 25 i 1, 0 < 1 < B <
ce<tp <o, e — oo fork=1,2,...,and g(¢) € LY, J] with [y~ g(t)dt <1, [ tg(t) dt <
00, and 0 < x'(00) = limy_, , o0 %' (£).

However, to the authors’ knowledge, the corresponding theory for double impulsive in-
tegral boundary value problems with p-Laplacian operator and infinite impulsive times
on infinite intervals has not been considered till now. Motivated by the above mentioned
works, in this paper, we study the existence of solutions for nonlinear double impulsive
IBVPs of second-order differential equations with p-Laplacian on an infinite interval

(Pp&' () +a(e)f (6,x(1),x' () =0, te],t#t,
Ax|¢:,;k =L(x(t)), k=1,2,...,

Adp(x) 1=, = L&), k=1,2,...,

x(0) = [T ex(®)dt,  x'(c0) =0,

(1.1)

where ¢,(s) = |s|P~%s, p > 1, n > 0 is a constant, f € C(J>,]), ] = [0,+00), 0=ty <ty <--- <
tk <+, txy > oo for k=1,2,... and note Jy = [0,4] and J; = (¢, 1] (i =1,2,...), g(¢) €
L'],]] with f;ocg(t) dt <1, f;oo tg(t) dt < +00, I, I € C(R,R), and

Axlpey = %(8) - x(8), Ay (%) et = 8 (+' (&) = b (' (£))-
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It is clear that

Bols+ 1) < 27U ep(s) + ¢p(1), p=2,5,t>0, 12)
v T #u(5) + Bp(2), 1<p<2,5t>0, :
L 21 (951(5) + ;1) p =250, .

= {¢;1(S) + ¢, (t), l<p<2,st>0. 13)

Throughout this paper, we adopt the following assumptions:

(H;1) Suppose that f € C[J x J x J,J], and there exist p,q,r € C(J,]) such that
[t u,v) < p(O)dp(u) + q()pp(v) + r(t), Vte]JandVu,ve],
and note

pt= / . a@®)p(t)1 + )P dt < +o0, q = / - a(t)q(t) dt < +oo,
0 0

r*= /0+<>0 a(t)r(t) dt < +oo.

(Ha) I, Irx € C(J,]) and there exist nonnegative constants a; > 0, bx > 0, ¢x > 0, di > 0
such that

0<Ii(u)<aru+by, VYue](k=123,...),

0 <Ii(w) < cxpp(u) +dp, Vue] (k=1,2,3,..))

and note

o0 o0
a* = Z(tk + Day < +00, b* = Zbk < 400,
k=1

k=1
o0 o0

¢ = Z(tk +1)P e < +00, d* = de < 400,
k-1 k-1

with a* < (1/3)(1 - fnoo g(t)dt) and c* < ¢,(1/(3n)), where n is a constant and it firstly
appears in (3.12).

(H3) f(&u1,v1) <f(t,12,v2), Ie(ur) < Ii(ua), Ii(ur) < Ti(up) for ¢ € J, uy < tip, v < vy (k =
1,2,3,...).

(Ha) Suppose that f € C[J x J x ],]J], f(¢,0,0) # 0 on any subinterval of J, and u, v are
bounded, f(¢, (1 + £)u, v) is bounded on /.

(Hs) a(#) is a nonnegative measurable function defined in J\{0}, and a(¢) does not identi-

cally vanish on any subinterval of J\{0}, and

0< / a(t) dt < +00, 0< / 0, (/ a(s) ds) dt < +00.
0 0 ¢
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2 Preliminary results
In this section, we firstly present some definitions and lemmas, which will be needed in

the proof of the main results.

Definition 2.1 Let E be a real Banach space. A nonempty closed set P C E is said to be a
cone provided that

(1) au+bvePforallu,ve Pandalla>0,b>0,

(2) u,—u € P implies that u# = 0.

Definition 2.2 A map « : P — [0, +00) is said to be concave on P if

a(tu +(1- t)V) >a(u)+ (1 -t)a(v) forallu,vePandte[0,1].
Definition 2.3 (see [8]) Let V={x e X:|x| <} ({>0), V;:= {%,x e Viu{(t),xe V}
is called equiconvergent at infinity if and only if for all ¢ > 0, there exists 7' = T'(¢) > 0 such

that for all x € Vj, the following holds:

x(t1) B x(t2)
1+ t 1+ ty

<&, |x’(t1) - x/(t2)| <g, forallt,t, >T.

Lemma 2.4 (see [34, 35]) If{’f(—fz,x € V}and {x'(t),x € V} are both equicontinuous on any
compact intervals of [0, +00) and equiconvergent at infinity, then V is relatively compact
onX.

Definition 2.5 Let] =J\{t},t,...%,...},x € ENC2[J,R] is called a nonnegative solution
of IBVP (1.1) if x(¢) > 0, x'(¢) > 0 and x(¢) satisfies IBVP (1.1). Moreover, x(¢) is called a
minimal nonnegative solution if x is an arbitrary nonnegative solution of (1.1), then x(¢) >
x(t), x'(t) > %' (¢t) forallt € .

Let

PC[],R] = {x :x is a map from J into R such that x(¢) is continuous at ¢ # #,
left continuous at ¢ = #; and x(t,i) existfor k=1,2,.. .},
PCYJ,R] = {x € PC[J,R] : ¥ (t) exists and is continuous at ¢ # #,

left continuous at ¢ = #; and x/(t;) exist for k=1,2,.. .},

E= {x € PC[J,R] :sup(’x(t)|/(1 + t)) < 00, sup|x/(t)| < oo}
te]

te]

lx(8)]
1+t ’

with the norm [lx|| = max{[|x[ls, ' loc}, where ]l = sup,¢; B, lx' |l = sup,; [¥'(£)]. At

the same time, define a cone P C E by
P= {x € E:x(t) > 0,x'(t) > 0}.

Lemma 2.6 Suppose that (H), (Hy) hold. Then, for all x € P, f0+°° at)f (¢, x(t),x'(¢t)) dt,
v Le(x(ty) and Y52, T(x(t,)) are convergent.
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Proof By (H;) and (H;), we have

F(bx(0,#(0) < pO)L+ 27 ¢p( (f))w(t)qs,,( ©) + (o),

Ie(x(t)) < ar( + &) f (&)

+ bk,

+

Te(x(t)) < (1 + tk)p—1¢p< (1) ) vd.

1+

Thus

[ aerex050) <ro,(150],) + a6, (50].) +1* <o

Z[k(x(tk)) <a* ||x(t) ||1 +b* < 00,
k=1

[e.¢]

Li(x(50) < ¢ (| (@) | ,) + d* < 0.

k=1

The proof is complete.
Lemma 2.7 Let y(t) € L'[0, +00) and fnwog(t) dt <1, then the IBVP

(pp(X' @) =—y(8), tel,t#t,

Ax|p—g = Ik(x(fk)), k=12,..., 21)
A¢p(x/)|t=tk :Ik(x(tk))) k=1,2,...,

x(0) = fn+oog(t)x(t) dt, x/(00) =0,

has a unique solution

x(t) = - f“"’g(t) = [Z /t ( f (t)drt - ka(x(tk))) ds

ti<t

+ /n g(t)fti ¢)1;1 (/S+ooy(r)dr - ;fk(x(tk))) dsdt + ;Ii(x(ti))]
+ / | ;" < / - y()ydr - I (x(tk))) ds. (2.2)

ti=s

Proof For t € [0, 4], integrating (2.1) from 0 to ¢, we have

f((bp(x/(f)))/d'f:—/ y(r)dr.
0 0

That is,

6, (< (1)) = ,(x'(0)) - fo yors 2.3)
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which implies that

& (¥ (£7)) = 6 ('(0) ~ /0 () dr. (2.4)

For t € [#, 1,], integrating (2.1) from ¢ to £, we have

/(%(x,(f)))/dfz—/ y(r)dr.

5]

That is,

6, (< (1)) = b, (¢ (£1)) - / ors 2.5)

i

Adding (2.4) and (2.5) together, we have

6, (¥ (1)) = by (+(0)) - fo (@) dr + T (x(t1))- (2.6)

Repeating the previous process, for any ¢ € [0, +00), we get that

t
¢p(xf(t)) = ¢p(xf(0)) —/ y(t)dt + Zlk(x(tk)). (2.7)
0 te<t
Taking limit for £ — +o0, by the boundary condition, we have
() =9, ( / y@dr -3 I (x(tk))). (2.8)
¢ >t
For t € [0, 1], integrating (2.8) from O to ¢, we have
t +00 _
x(t) = x(0) + / ¢>};1 (/ y(r)dt - Zlk (x(tk))> ds, (2.9)
0 s ti>s
which implies that
15} +00 _
x(87) =x(0) + / qﬁ;l (/ y(z)dr - Zlk(x(tk))) ds. (2.10)
0 s f>s
For t € [, £,], integrating (2.8) from ¢ to ¢, we have
t +00 _
x(t) = x(tf) + / ¢;l (/ y(t)dt - Zlk(x(tk))) ds. (2.11)
5% s te>s
Adding (2.10) and (2.11) together, we have

x(2) = x(0) + /0 lqs; ( / y(t)dt - ka(x(tk))> ds

tie=s

+ / &' ( / - y(r)dr - ka(x(tk))) ds + I (x(t)). (2.12)

ti=s
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Repeating the previous process, for any ¢ € [0, +00), we get that

Zf (f (r)dr—ZIk(x(tk))>ds

ti<t tg=s

+ f Kn ( / - y(t)dr - ka(x(tk))> ds+ Yy I(x(t)). (2.13)

tr=s ti<t

By (2.13) and the boundary condition, for any ¢ € [0, +00), we have

#6) = - f+°°g(t) 7 [;‘ /t 1 ( / y(t)dt ~ ;Jk(x(tk))) ds
+ / g0 / ¢! < / y(t)dr - ka(x(rk))> dsdt + Zli(x(ti))]
n ti s te>s ti<t
. t¢_1< +0<>y(t)d1' - ka(x(tk))> ds.
/t:' v /S tr=s
This completes the proof. O

Define an integral operator T: P — E by

1
1- f*”g(t) dt

[Z/[l 1 </+ a(t)f (t,%(1),%' (1)) dr - ij(x(tk))> ds

ti<t tg=s

t - ,2(0),8 (0))dr = Y Ti(x(t)) | dsdt
; / ¢t / ,,(f a()f (2, x(0), () e ;k(m))) 5
+ Zli(x(ti))]

t<t

+ / ¢;1 (/ a(t)f (t,%(1),%' (1)) dr - ka (x(tk))) ds. (2.14)

tg=s

(Tx)(2) =

Obviously, T is well defined and x € PC(J, R) is a solution of BVP (1.1) if and only if x is a
fixed point of T'.

Lemma 2.8 Assume that (H;)-(H3) hold. Then the operator T maps P into P, and

I Tx|| < Allxll + B, VxeP. (2.15)

Moreover, for x,y € P with x(t) < y(£), x'(t) < y'(t), for all t € ], and one has

(@) < (D®), ()@ <(Ty)'@®), Vte], (2.16)
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where

1 N o0
A= 71—fnoog(t) " [a + (2 +./n (t-1Dg() dt)Al],

1 . *©
B=W|:b +<2+/n (t_l)g(t)dt>A2]r

A ¢, "+ + ), l<p<2,
1= 2ﬁ¢;1(p*+q*+c*), }922,

(2.17)

¢, (r* +d*), l<p<2,
Ay=17 "1
27T (qb[;l(r* +d¥), p>2.

Proof Letx € P. From the definition of T, (H;)-(Hs) and (2.15), we can obtain that T is an
operator from P to P, and

(@ 11

1+¢ 1+t1—fn+°°g(t)dt

) / f o) < / +°° a(t)f (t,x(v),% (r)) dt - Zik(x(tk))> ds

ti<t tg=s

+ /nmog(t) /;qb;l (/s+oo a(t)f(r,x(t),x'(r)) dr - thZ:STk(x(tk))> dsdt
+ Zli(x(ti))

X

% _/t &' (/; a(t)f (z,x(),%' (1)) dt - ij(x(tk))) ds
' tg=>s
1

=

1- fn“"” gt dt

1 t +00 / o
mfo d);l (/0 a(t)f (t,x(1),#' (1)) dr + glk(x(tk))> ds

X

+00 t 1 +00 , 0 —
+/n g(t)f0 ¢, (/O a(r)f(r,x(r),x (r)) dr + Zlk(x(tk))) dsdt

k=1

+ Zli(x(ti))
i-1
1 / ¢1;1 (/ a(o)f (v, (), %' (1)) dt - ka(x(tk))> ds

+—
1+t
ti=s

1 +00

x ¢! (/om a(o)f (t,%(2), %/ (1)) dt + ij(x(tk))> * Zlf(x(ti))]'
k=1

i=1
(2.18)
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Therefore,

(T 1 =
2 Sl_fnmg(t)dt[<2+/n (¢~ Vgt e

x 6, (" b (Ixll1) + a6y (%' o) + 7" + b (Illl) + )
+ a*(||x||1) + b*:|

<A|x||+B, Vte].

Direct differentiation of T implies, for ¢ # &,

@0 -6, [ ate (eaox ) de - o) ).

=t

Thus, we have

[(Tx) (8)] < d);l (/ a(t)f (v, %(x), % (1)) dr + ka(x(tk))) <Al|«x||+B, Vte].
0 i=1

It follows that (2.15) is satisfied and equation (2.16) is easily obtained by (H3). O
Lemma 2.9 Let (H), (Hy), and (Hs) hold. Then T : P — P is completely continuous.

Proof For any x € P, by (2.14), we have

¢p((Tx)' (2)) = / a(t)f (t,%(1),%' (1)) dr - ka(x(tk)), (2.19)

>t

(6 ((T2) (1)) = —a(t)f (£, (1), % (2)). (2.20)
It follows from (2.14), (2.19) and (H,) that
(T¥)(1) =0, (Ix)'{®)=0, (Ix)"(1) <0,

that is, T'(P) C P. Next, we divide the proof into two steps.

Step 1. We prove that T is continuous.

Let x, — x as n — 00 in P, then there exists ry such that sup,cy (o) [1%ll < 70. Set B, =
sup{f (¢, (1 + t)u, v), (£, u,v) €] x [0,70]?}, and we have

+00

/ a(r)[f(r,xy,(t),x’”(r)) —f(t,x(r),x/(r))’dr <2B, / a(t)dr <+o00. (2.21)
0 0
Therefore, by the Lebesgue dominated convergence theorem, we have

|6, ((T2)'(8) = ¢, ((T2)'(2) |

[ (oo @) dr - YT

k=t
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_ / a(0)f (z,5(2),% (1)) dr + 3 Te(x(8)

t>t

5/ a(@)|f (1, 2(0), (1)) = £ (x,2(0), %' (0)) | dT + Y | T (ta) — Tue(te) |

fe>t

From above and (H,), (Hs), we get

‘ (Txn)(2)  (Txa)(2)

1+t 1+t
I N
T 1+t 1—f*°° (¢) dt
[Z/ (/ a(t)f (t,%,(7), %, (7)) dv - Zik(xn(tk))> ds
ti<t 4 ti=s
—Z/ (/ (@)f (7, %(x), /(1)) dr—ka(x(tk))) ds
+/ g(t)/ (/ a(r)f 7,%,(T), %, (r) dr - Zlk x,,(tk))> dsdt

_/ t)/ </ a()f (7,%(2),% (1)) dr = 3 Te(x(1) )dsdt
tg=>s
+ Zli(xn(ti)) - Zli(x(ti))]

ti<t ti<t

+/ ¢;1</ a(r)f(r %,(T), % (r) dr—Zlk X tk))) ds

tk=s

_/ 4,1;1 </ a(v)f (v, (), %' (1)) dt - ka(x(tk))> ds

< W[Z;/t (/ a(T)f (t,%4(7), 2, (7)) d - th:SIk xn(tk)))
- ¢1;1 <f a(t)f (t,x(1),%' (1)) dr - Zik(x(tk))) ds
S tk=s
; f 0 f gy ( / 7 @) (60,2, (0)) it S (o) )
- ;! (/ a(t)f (v, x(x), % (1)) dr - ka(x(tk))) dsdt

tr=s

+Z|1 (xa(t))) - x(t))|:|
¢1;1 </+ma(r)f(7: %,(T), % d‘l: —Zlk xn(tk )

t
’ /
t ti=s
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ds

_¢; </ a(f)f(-[,x(t),x/(l')) dr - ij(x(tk)))

tr=s

-0 (n— o),

and

|(Tx,)'(8) - (Tx) (0)|

¢1;1 (/ a(f)f(f:xn(f)’xln(r)) dr - ij(x”(tk)))

t=t

_ d)z;l (/ a(‘l:)f(r,x(‘l:),x/(r)) dt - ka(x(tk))) ’

t>t

-0 (n— o).

We can easily get || Tx, — Tx|| — 0 (n — 00). Hence, T is continuous.
Step 2. We prove that T is compact provided that it maps bounded sets into relatively

compact sets.
First, let 2 be a bounded subset of P, then there exists r > 0 such that ||x|| < r for all

x € Q. By (2.18), we have

(ol _ 1

1+t 1- fn+°°g(t) dt

X |:(2 + /+Oo(t -1)g(t) dt)¢p1 <Br /+oo a(t)dt + c*¢p(r) + d*>
n 0

+a’r+ b*] =Ry,

and

¢! (/ a(t)f (t,x(1),% () dt - ij(x(tk))>‘

tr=s

< ;' f a(@)f (v,2(0), % (1)) dr + ) Te(w(8)
0 k=1

() (8)| =

< ¢1§1 (B,/H><> a(t)dt + c*¢p(r) + d*) =Ry,
0

where R, = W[(2 +o f;oog(t) dt)Ry + a*r + b*]. Hence, || Tx|| < max{Ry, R;}. So T2

is bounded.
Second, for any L € (0, +00) and ¢/, " € Jy N [0, L] with ¢’ < t”, we have

(Tx)(£)  (Tx)(")
1+¢ 1+t

) ‘ 1 1

1+t 1- [, et
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5 [ ([ wrtsniora- Sriar)e

ti<t/ t>s

+ g(t) ( r)f 7,%(7),x (‘L') dr - Ik x(tk) >dsdt
[Caof (" 2
+ Zli(x(ti))]

ti<t’
1 1
L+t 1 [ g(e)dt

[Z/t (/+ a(r)f (z,x(t), %/ (v)) dr - ka(x(tk))) ds

t<t” tk=s

+ /:oog(t)/ti qb;l (f;oo a(r)f(r,x(r),x/(t)) dr — ;ik(x(t/())) dsdt
+ Zfi(x(ft))]

ti<t”

+ ﬁ/; ;! (/; a(x)f (t,%(x), %' (1)) dr - ka(x(tk))> ds

tg=s

-1 jﬁ/ ft ¢, (/ a()f (v, (), %' (1)) dt - Zik(x(tk))> ds

tg=s

1
1- [~ e(t)dt

[Z ft 1 ( / ~ a(r)f (v,x(z), % (1)) dT-ZTk(x(tk))) ds

ti<t" t>s

+Zl (x(2)) ]

ti<t”

IA

1
1+t 1+t

. 1
(1+¢) (1—af*°°g(t)dt)

x/ g(t)/ (/ a(@)f (v,2(1),' (1)) dr = Y Ti(x(t)) )dsdt

t=s

1

1+7 /t: ¢;1(/S+ a(t)f (t,x(1),% (1)) dr —Zlk (%(t)) )ds

tie=s

- % ft ¢, (/ a(x)f (t,%(x), %' (1)) dr - Zik(x(tk))> ds

tg=s

1
1- [~ et)dt

[Z "y ¢, (/ a(t)f (t,%(1),%' (1)) dr - ka(x(tk))) ds

ti<t” t>s

IA

Page 12 of 22
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1
1« fn*“’ g(t)dt

1 1
* Z:Ii(x(ti))]'l+t’ 1+t

ti<t”

% /;oog(t) /; ¢;1 (/swo a(‘[)f(l’,x(‘[),x/(‘t)) drt - ka(x(tk))) dsdt

te=s

t’ +00 _ 1 1
-1 / _ -
+ /0 é, (/S a(r)f(t,x(r),x (r)) dt tkz:slk(x(tk))> ds 7 17
1 1 1
t//R * b* t//R _
E[l—fnwog(t)dt( o+ar b+ 0]’1”/ 1+¢'
Ry

e t' —t")g(t)dt — 0, uniformlyast — ¢’,
1-f g(t)dt/,7 ( )

and

|¢p(Tx),(t,) - ¢p(Tx),(t”) |

// a(t)f (v, 4(x), % (1)) dt - Z I (x(t0)

tkzt/

_/ a(t)f (t,x(1),#' (1)) dr + Z Tk(x(tk))‘

1"
t>t"

5// a(t)f (t,x(1),% (1)) dr + Z Iie(x(t))

' <ty <t"

t//
< B,/ a(t)dr + Z (ckqﬁp(r) + dk) — 0, uniformlyas# — t’,
t/

¢ <t <t"

for all x € Q. So T'Q2 is equicontinuous on any compact interval of /i (k=1,2,...).
Third, we prove that for any € > 0, x € ©, there exists sufficiently large N > 0 such that

(TR)(E) (TR N e »
| 1x+t’ lit// <é, |(T9C) (t)_(Tx) (t)|<5, Vt,t > N.

For any x € 2, we have
t

in [0 ([ e (e @)dr - D h) ) s

t>+0o 1+t J,
i tg=>s

= lim qb;l </ a(r)f(r,x(r),x/(t)) drt - ka(x(tk))>

t—>+00
tp=t
=0

and

1 1
lim — ——
t=voo Lt 1— [ g(t) dt

« [Z/ ! ¢;1(/+OO a(o)f (v, x(), %' (1)) dt - ka(x(tk))) ds

ti<t ¥ i1 tg=s
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' /n+oog(t) /; % (/s+oo a(0)f (z,2(2),x'(v)) de - gjk(x(tk))) dsdt
+ Zli(x(t,-))]

ti<t

1 1
<lim ———
_H+ool+t1—fn+°°g(t)dt

x [ / ;! ( / a(t)f (t,x(1),% (v)) dr - ka(x(tk))) ds

tg=>s

+R0/ tg(t) dt+a*r+b*]
n

=0.
Hence, we obtain that

lim =
t—+00

(Tx)(2) ’
1+¢

and
im0

= lim q);l (f*oo a(r)f(r,x(r),x/(t)) drt - ka(x(tk))) ds=0.

tr=t

So T is equiconvergent at infinity. By Lemma 2.4, we obtain T'Q2 is relatively compact,
that is, T is a compact operator.
Therefore, T : P — P is completely continuous. The proof is complete. 0

Remark 2.10 Similarly, we may prove that when (H;) and (H;) hold, then T: P — P is
completely continuous.

3 Main result

Theorem 3.1 Let conditions (Hy)-(Hs) be satisfied. Suppose further that A < 1. Then IBVP
(1.1) has the minimal nonnegative solution x with ||x|| < %, where A and B are defined as
in Lemma 2.8. Moreover, if we let xo(t) = 0, x,,(t) = (Tx,,1(2)) forallt € ] (n=1,2,...), then
x,(t) € P with

0=uxo(t) <xi(t) <--- <wu(t) <x(t), Vte], (3.1)

0=xy(t) <xi(t) <--- <x,(6) <X(¢), Vte], (3.2)
and {x,(t)} and {x,,(t)} converge uniformly to x(t) and ¥ (t) on J; (i = 1,2,...), respectively.

Proof By Lemma 2.8 and the definition of operator T, we have x,(t) € P and

”xn” EA”xn—IH +B! n= 1)21---7 (33)

Page 14 of 22
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O=wo(t) <m(t) <---<w,() <---, Vte], (3.4)

0=xy(t) <xy(t) <--- < () <---, Vte]. (3.5)
By (3.3), we can get

l%4ll < All%y1]l + B < A(All %2l + B) + B=A*|x,5| + AB+B
< A*(Allxy3] + B) + AB + B= A®||x,3]| + A’ B+ AB+B < -~
<A"|xo|| +A" B+ A" ?B+...+AB+B
_BQ-A") B

=

1-A m (1’121,2,...). (36)

From (3.4)-(3.6), we know that lim,,_, ;o %,(£) and lim,,_, ;o x/,(¢) exist. Suppose that

lim x,(t) = %(¢), HEIPOQ x,(t) = h(g), Vie]. (3.7)

n—+00

According to the definition of x,(£), we have
x,(t) = ¢, <¢p(xoo) + / S (T %01 (1), 2,1 (7)) d - ka(x(tk))),
t ty>t
Vie ,t#4t (n=1,2,..), (3.8)

(¢ (2,(0)) = —a@)f (t;x01(8),%, (1), Vte],t#t (n=1,2,...). (3.9)

From (3.6), we obtain

O] _ B
1+t T 1-A

, |x/n(t)|§%, Vie ,tZt (n=1,2,...).

It follows that x,(¢) is equicontinuous on every J; (i = 0,1,2,...). Combining this with the
Ascoli-Arzela theorem and diagonal process, there exists a subsequence which converges
uniformly to ¥ on J; (i = 0,1,2,...), which together with (3.4) imply that x,(t) converges
uniformly to x(¢) on J; (i =0,1,2,...), and x(¢t) € PC[J,R], ||x|1 < %. On the other hand,
by (H;), (3.6) and (3.9), we have

[%(6)] < a(@) (pE)(t + 1P X 1 + g0 |7, || +7(0))

1-4 W4
—s()eCU,L.), Ve (n=1,2..).

sa(r)(p(t)(t+1)P-1 B w2 +r(t>)

Since s(t) is bounded on [0,M] (M is a finite positive number), x/ (¢) is equicontinuous
on every J; (i =0,1,2,...). Combining this with the Ascoli-Arzela theorem and diagonal
process, there exists a subsequence which converges uniformly to 4(¢) on J; (i = 0,1,2,...),
which together with (3.5) imply that x/,(¢) converges uniformly to /4(t) on J; (i = 0,1,2,...),
and h(t) € PC[J,R], ||h]loc < :Z;. From above, we know that X'(¢) exists and ¥ (¢) = h(t)

B

for all ¢ € J. It follows that x € P and ||X|| < ;5. Now taking limits from two sides of
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x,(t) = (Tx,1)(¢), we have x(£) = (Tx)(t), that is, T has a fixed point. By Lemma 2.7, x(¢) is
a nonnegative solution of IBVP (1.1).

Suppose that x € PN C%[J,R] is an arbitrary nonnegative solution of IBVP (1.1). Then
x(t) = (Tx)(¢). It is clear that x(¢) > 0, '(¢) > 0, V¢ € J. Suppose that x(¢) > x,,_1(¢), x'(¢) >
x,,_1(¢) for t € J. By (2.14), we have (Tx)(t) > (Tx,-1)(2), (Tx) (¢) > (Tx,-1)'(¢) for all t € J.
This means that x(¢) > x,(t), x'(t) > x, (¢) forall £ € J (n =1,2,...). Taking limit, we have
x(t) > %(t), ' (t) > ¥'(¢) for all ¢ € J. The proof of Theorem 3.1 is complete. O

Next, for notational convenience, we denote that

m= 21%%(% /;Oo(t—l)g(t)dt>¢;l (/:ca(r)dt), (3.10)
m = W (2 + /n Oo(t —~1)g(t) dt) 0, ( /0 ” a(t) dt), (3.11)
5= 2T W (2 + /n - 1g0) dt), (3.12)
;{:Ijjfiﬁﬁﬁ(2+fj%t—1g0ﬁﬁ), (3.13)
A= max{ 1- [~ gft; dt - 3a*" 1 —n Z)i;(;()c) } 19
A max{ -/ g(bt; dt-3a7 1 - 3?;)(;(1) } (315

Theorem 3.2 Assume that (H,)-(Hs) hold, and there exists

d> 3A, p=2,
3N, 1<p<2,

such that

(A1)
¢p(%)» r=2,

$p(-L), 1<p<2 for (t,u,v) € [0, +00) x [0,d] x [0,d].
P\3m’ ) )

f@a+ﬂmﬂ5[

Then IBVP (1.1) admits positive, nondecreasing on [0, +00) and concave solutions w* and
v such that 0 < |w*|| < d, and lim,,_, ,oo Wy, = lim,,_, ;oo A"Wo = w*, where

wo(t) =d+dt, te], (3.16)
and 0 < |v¥|| <d, and lim,_, ,oo v,, = lim,,_, .00 A"vg = V¥, where vo(t) =0, t € ].

Proof We only prove the case that p > 2, another case can be proved in a similar way. By
Lemma 2.9, we know that 7" : P — P is completely continuous. From the definition of T
and (Hs), we can easily get that Tx; < Tx, for any x1,%; € P with x; < x5, x| < ). Denote
that

Py={xePl|x| <d}. (3.17)
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In what follows, we first prove that T : Py — Py. If x € Py, then |x|| < d. By (1.3), (2.18),
(3.10), (3.12) and (3.14), we get that

(@) 1 2l [0
s f;“g(t)dt[z (2+ [ - vetoae)

(o ([ o) stemi)

and

<271 <¢p1 (@(%)) +¢,'(c*)d + ¢, (d*)) <d.

Thus, we get that || Tx|| < d. Hence, we have proved that T': Py — P.
Let wo(¢) =d + dt, 0 < t < +00, then wy(£) € Py. Let wy(£) = Two(£), wa(t) = T?wp(2), then
by Lemma 2.9, we have w;(t) € P; and w,(¢) € P,. Denote that

W1 (8) = Tw,(8) = T wo(2), n=0,1,2,.... (3.18)
Since T : P; — P,, we have that
wa(t)e T(Py) C Py, n=12,.... (3.19)

It follows from the complete continuity of T that {w, ]}, has a convergent subsequence
{wn }22; and there exists w* € P, such that Wy — W
By (3.18), (H3) and (A;), we get that

1
1- fn+°° gt)dt

x [Z /t_l] ¢,§1 (/S a(v)f (v, wo(T), wo(v)) dr — ka(wo(tk))) ds

ti<t t=s

wi(t) =

+ /nwog(t) /t;q)pl (/S+OO a(t)f (T, wo(), wy(r)) dr — t;sjk(WO(tk))) dsdt
+ Zli(wo(ti))]

ti<t

+ /t ¢;1 (/Swo a(t)f (T, wo(T), wy(r)) dr - ka(wo(tk))> ds

tie=s
1 +00
- W[(f o)
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< ¢;1 (/0 a(r)f(f,wo(r),w()(t)) dart + ij(wo(tk))>:|

k=1

+ 1! (/0 a(t)f (t,wo(z), wy(1)) dt + ka(wo(tk)))
k=1

1
1—[17 g(t)dt( )

1 +00
- W[(zn /,7 (t_l)g(t)dt>

+00 d
X ¢1;1</(; a(r)q‘)p(%) dt +c*¢p(d)+d*)]

;(
1 fn*“ g dt

1 a2 00
<t pgnal (e e veoa)

(o) o ([ s i)

1
T
1- fn g(t)dt

<d+dt =w(t),

a‘d +b*)

(a*d + h*)

and
wy(t) = (Two)'(t)

= ¢, (/tm a()f (¢, wo(t), wo(v)) dr — ij(WO(tk))>

ti=t

) e )

<d=wy(t), 0=<t<+oo.
So, by (3.18), (H3) and (A;), we have

wy(t) = (Tw1)(2) < (Two)(£) = wa(2), 0 <£<+00, (3.20)

wy(t) = (Twy)'(£) < (Two)'(t) = (w1)'(£), 0 <t<+o0. (3.21)
By induction, we see

Wit (£) < wy(2), W, @) <wy)' (), 0=<t<+oo,n=0,1,2,.... (3.22)
Hence, we claim that w, — w* as n — oo. Applying the continuity of 7" and w,1(¢) =
Tw,(2), we know Tw* = w*. Let vy = 0, 0 < ¢ < +00, then vo(¢) € Py. Let v = Tvg, v = T?v.

By Lemma 2.9, we get v; € P, and v, € P;. Denote

Vo = Tv, =T, n=0,1,2,.... (3.23)



Yu et al. Boundary Value Problems (2015) 2015:147 Page 19 of 22

Since T : Py — Py, wehave v, € T(P;) C Py, n=1,2,....It follows from the complete con-
tinuity of T that {v,},°; is a sequentially compact set. Furthermore, we assert that {v,}°,
has a convergent subsequence {v,, };°;, and there exists v* € P, such that Vi = V.

For v; = Tvy € P4, we obtain

vi(t) = (Tvo) () = (To)(#) = 0, 0 <t <+0o0, (3.24)

vi(£) = (Tvo) (£) = (To) = 0, 0 <t<+oo0. (3.25)
By (H3) and (A;), we have

va(t) = (Tvi)(8) = (Two)(t) = vi(t), 0 =<t<+00, (3.26)

vy (t) = (Tn) (8) = (Two) () = () (), 0 << +o0. (3:27)
By induction, we see
Vi1 (£) = vu(8), va@®) =) (@), 0<t<+oo,n=0,12,.... (3.28)

Hence, we claim that v, — v* as n — 00. Applying the continuity of T and v,,,1(£) = Tv,(¢),
we know Tv* = v*.

Since f(£,0,0) #0, 0 < t < +00, then the zero function is not the solution of IBVP (1.1).
Thus, v* is a positive solution of IBVP (1.1). By Lemma 2.7, we know that w* and v* are
positive, nondecreasing on [0, c0) and concave solutions of IBVP (1.1).

We can easily get that the theorem holds for 1 < p < 2 in a similar way. O

Theorem 3.3 Assume that (H,)-(Hs) hold, and there exists

3A, >2,
d,>d,_1>--->d; > p=
3N, 1<p<2,
such that
(A2)
ﬁ > 9
f&Q+0uy) < ¢p(3§2’)’ P==
(), 1<p<2,

for (t,u,v) € [0,+00) x [0,di] x [0, d].
Then the boundary value problem (1.3) admits positive, nondecreasing on [0, +00) and con-
cave solutions wi and vi such that 0 < | Wil < dy, and lim,_, ;oo Wi, = limy,_, oo A"Wyo = Wi,
where
wo(t) =di +dit, te], (3.29)

and 0 < Vil < d, and lim,,_, .00 Vi = 1im,,_, 100 A"Vio = Vi, where vo(£) =0, t € ].

Proof 1t is similar to the proof of Theorem 3.2. 0
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4 Example
Example 4.1 Consider the following IBVP for double impulsive differential equation with
p-Laplacian on an infinite interval:
_rrin(l+gp®) e L arctan(¢p (x'))
(') + e [ o5y 3+ oo tU=0, tel it
Axliey = r () + DT, G =25k=12,...,

4.1)
In(gp et (
A¢p(x)|t o= Sk(“zfﬁT +1), t=25k=12,...,
x(0) = [ te2x()dt,  x/(+00)=0
In( 3
Here, p =3, a(t) = ™, f(£,5(t), %' (1)) = Sorate) + ¢ a{;‘oa(“l(j’;; +1, (x(t) = & ((t0) + 1),
Te(x(ty)) = %(% +1), g(t) = % e 2, 5 = 1. Evidently, x(¢) = 0 is not the solution of

IBVP (4.1).

It is clear that [ Le % dt <1 and (Hs) is satisfied. Since
12

t

1 e
t,x(%), /(¢ _ _ / 1,
S (6202 (0) < 1000+ 2 Wt 100(1+t2)¢”’(x)+
3 1 1 1
I o1 . ) +—, k=12,....
W= et WS S ma W
So we have
1 et
t)= ——, )= —m—, t)=1,
PO=1oavr 1D oy ¥
3 1 1 1
= —, b = —, =, d = —,
=16 ak KEg KT o5 2k)5k k= 5
Then we easily obtain that
nd 1 it 1 it 1
oSt Dag==, b =S b=2, fo+ 120, = —,
a ;(k"' )ik 2 ; k=3 ; ©+ 1) ck 100

100

. +00 ~ L . +00 ~
q —/(; a(t)q(t)dt = 500" r -/0 a(t)r(t)dt =1,

+00 1 +00 1
dt=—, —1Deg(t)dt = —.
/ﬂ s0dt= / (- Vgyde=

Thus, (H;) and (H;) are satisfied. Clearly, A & 0.8166 < 1. By Theorem 3.1, we obtain that
BVP (4.1) has a minimal positive solution ¥ and ||x| < 19.9189.

T=d=g  p= [ awpoutae- o

Example 4.2 Consider the following IBVP for double impulsive differential equation with
p-Laplacian on an infinite interval:

(IW'[x) + e ¥f (£, x(8),x'(£)) =0, tel,t#t,
Ax|t=tk=2ik(2kx(tk)+1)ﬁ t=25k=12,...,

/ 9p(x(1))
A& 1=y = 5214k(% +1), u=25k=12,...,
x(0)= [ 1+t)4x () dt, x'(+00) = 0.

(4.2)
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Here,
1 1 1 u \4 v
Fuy) = | 58O 155 g w= 4, (4.3)
U 1 . 1 1 .
5lsin@®)] + o (7)) + 550w =4

It is clear that (Hy) and (Hy) hold for p = 3, a(t) = e™*, g(t) = 4/(1 + t)*. By direct compu-
tation, we obtain that

+00 1 +00 +00 1
/0 a(t)dt = 7 ./0 ¢p(/¢ a(s)ds) dt = 7

which implies that (Hs) holds.

Obviously,
1 b 1 1 d 1
ar=—, =—, Cp=—"—, = —,
KT 12 ak k= ok K7 B2(1 + 26)214K k= 5014k
Hence, we can obtain that
=) (4 + Dag = =, b =) be=1, =) (e + D% = —,
a* =Y (t+Da 3 > b ¢ =Y (e + 1)’ 76
k=1 k=1 k=1
S 1 +00 1 +00 1
ar = dy = —, t)dt=—, t—1e(t)dt = —,
Ydege [ soasp [ e-neoa-g
k=1
13 26
m=—, n=—, A=2
5 5

Take d = 13. In this case, we have

d 5 25
#(50) - (5)- 5

On the other hand, nonlinear term f satisfies

256 13 273

1 d
LA+ uv) < —+ oy~ -2 o (L), tesuvelo,13],
S @ uv) < o2+ 355+ 150 100<¢”(3m> Jou,v €[0,13]

which means that (A,) holds. Thus, we have checked that all the conditions of Theorem 3.2
are satisfied. Therefore, we obtain that IBVP (4.2) has two iteration positive solutions.
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