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Abstract
In this paper, we investigate heat and mass transfer in a magnetohydrodynamic
nanofluid flow due to an impulsively started stretching surface. The flow is subject to
a heat source, a chemical reaction, Brownian motion and thermophoretic parameters
which are assumed to be significant. We have further assumed that the nanoparticle
volume fraction at the wall may be actively controlled. The physical problem is
modeled using systems of nonlinear differential equations which have been solved
numerically using the spectral relaxation method. Comparing with previously
published results by Khan and Pop (Int. J. Heat Mass Transf. 53:2477-2483, 2010)
shows an excellent agreement. Some of the particular findings are that the skin
friction coefficient decreases with an increase in the nanoparticle volume fraction, the
heat transfer coefficient decreases with an increase in the nanoparticle volume
fraction and that the mass transfer coefficient increases with an increase in the
nanoparticle volume fraction.

Keywords: nanofluids; impulsively stretching surface; magnetohydrodynamic;
chemical reaction parameter; spectral relaxation method

1 Introduction
The term nanofluid denotes a liquid in which nanoscale particles are suspended in a base
fluid with low thermal conductivity such as water, oils and ethylene glycol. In recent years,
the concept of nanofluid has been proposed as a route for increasing the performance
of heat transfer liquids. Due to the increasing importance of nanofluids, there is now a
large amount of literature on convective transport of nanofluids and problems linked to
a stretching surface. Choi [] initially pointed out that addition of these nanoparticles to
the base fluid appreciably enhances the effective thermal conductivity of the fluid. An ex-
cellent collection of articles on this topic can be found in [, ] and Das et al. []. A non-
homogenous equilibrium model proposed by Buongiorno [] revealed that the massive in-
crease in the thermal conductivity occurs due to the presence of two main effects; namely
the Brownian diffusion and the thermophoretic diffusion of nanoparticles. The study of
a steady boundary layer flow of a nanofluid towards a stretching sheet was reported by
Khan and Pop []. Radiation effects on the viscous flow of a nanofluid and heat transfer
over a nonlinearly stretching sheet were studied by Hady et al. []. Kuznetsov and Nield
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[] carried out a numerical investigation of mixed convection in the nanofluid flow over a
vertical flat plate. In related work, Nield and Kuznetsov [] studied the Cheng-Minkowycz
problem for the natural convection in nanofluid flow over a flat plate. Yacob et al. []
studied the stagnation point flow of a nanofluid flow due to a stretching/shrinking sheet
using a shooting technique together with a fourth-fifth order Runge-Kutta method. Re-
cently, results of MHD mixed convection in unsteady nanofluid flow due to a stretch-
ing/shrinking surface with suction/injection were reported by Haroun et al. []. In this
study the model equations were solved using a spectral relaxation method. Stagnation
point flow of a nanofluid with heat generation/absorption and suction/blowing was inves-
tigated by Hamad and Ferdows []. Rashidi and Erfani [] used the modified differential
transform method to investigate boundary layer flow due to stretching surfaces. Some ex-
cellent articles on the flow of nanofluids include those by Rashidi et al. [], Anwar Bég
et al. [] and Garoosi et al. []. Some interesting results on discrete problems were pre-
sented by [, ].

Magnetohydrodynamic (MHD) flow and heat and mass transfer over a stretching sur-
face have many important technological and industrial applications such as in micro MHD
pumps, micro mixing of physiological samples, biological transportation and in drug de-
livery. An excellent collection of articles on this topic can be found in [, ]. The ap-
plication of magnetic field produces a Lorentz force which assists in mixing processes as
an active micromixing technology technique. Hence, transportation of conductive bio-
logical fluids in micro systems may greatly benefit from theoretical research in this area
(see Yazdi et al. []). Studies on magneto-hydrodynamics (MHD) free convective bound-
ary layer flow of nanofluids are very limited. More recently, Chamkha and Aly [] studied
magneto-hydrodynamics (MHD) free convective boundary layer flow of a nanofluid along
a permeable isothermal vertical plate in the presence of heat generation or absorption ef-
fects. Matin et al. [] studied magneto-hydrodynamics (MHD) mixed convective flow of
nanofluid over a stretching sheet. Magneto-hydrodynamics (MHD) forced convective flow
of nanofluid over a horizontal stretching flat plate with variable magnetic field including
the viscous dissipation was investigated by Nourazar et al. []. The effect of a transverse
magnetic field on the flow and heat transfer over a stretching surface was examined by
Anjali Devi and Thiyagarajan [].

Despite all the previous work, there is still a lot that is unknown about the flow and
heat and mass transfer properties of different nanofluids. For instance, the composition
and make of nanoparticles may have an impact on the performance of nanofluid as a heat
transfer medium. The aim of the present study is to analyze the effects of Brownian motion
parameter and thermophoresis parameter on unsteady boundary layer flow heat and mass
transfer of a nanofluid flow past an impulsively stretching surface in the presence of a
chemical reaction and an applied magnetic field. The model equations are solved using the
spectral relaxation method (SRM) that was recently proposed by Motsa []. The spectral
relaxation method promises fast convergence with good accuracy, has been successfully
used in a limited number of boundary layer flow, heat and mass transfer studies (see [,
]). A comparative study for a special case is presented, which shows good agreement
with Khan and Pop [].

2 Governing equations
Consider the two-dimensional unsteady boundary layer flow heat and mass transfer in a
nanofluid past an impulsively stretching vertical surface situated at y =  with stretching
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velocity u(x) = ax, where a is a constant. The temperature and nanoparticle concentration
at the stretching surface are Tw and Cw, respectively, and those of the ambient nanofluid
are T∞ and C∞, respectively. The x and y directions are taken along and perpendicular to
the sheet, respectively. Here we focus mainly in the region x, y ≥ . The Boussinesq ap-
proximation is applied here. The continuity, momentum, energy and concentration equa-
tions of an unsteady, incompressible nanofluid boundary layer flow are as follows (see
Kuznetsov and Nield []):

∂u
∂x

+
∂v
∂y

= , ()

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
μnf

ρnf

∂u
∂y + gβT (T – T∞) + gβC(C – C∞) –

σB


ρnf
u, ()

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= αnf
∂T
∂y + τ ∗

[
DB

∂C
∂y

∂T
∂y

+
DT

T∞

(
∂T
∂y

)]
, ()

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= DB
∂C
∂y +

DT

T∞
∂T
∂y – K(C – C∞), ()

where u and v are the fluid velocity and normal velocity components along x- and
y-directions, respectively; μnf , ρnf , σ , B, g are the effective dynamic viscosity of the
nanofluid, nanofluid density, electrical conductivity, the uniform magnetic field in the
y-direction and gravitational acceleration; βT , βC , T , C, αnf , τ ∗ (= (ρc)p/(ρc)f ) are the vol-
umetric thermal expansion coefficient, volumetric solutal expansion coefficient, temper-
ature of fluid in the boundary layer, fluid solutal concentration, the thermal diffusivity of
the nanofluid, the ratio of effective heat capacity of the nanoparticle material to heat ca-
pacity of the fluid; DB, DT , T∞, K are the Brownian motion coefficient, the thermophoretic
diffusion coefficient, mean fluid temperature and the chemical reaction parameter.

The boundary conditions are

t ≥ : u = Uw(x) = ax, v = , T = Tw, C = Cw at y = ,

Tw(x) = T∞ + Tx, Cw(x) = C∞ + Cx, ()

t ≥ : u, v → , T → T∞, C → C∞ as y → ∞,

and the initial conditions are

t < : u(x, y, t) = , v(x, y, t) = ,

T(x, y, t) = T∞, C(x, y, t) = C∞, ∀x, y,
()

where a is the stretching/shrinking rate and stagnation flow rate parameters, with a < 
for shrinking, a >  for stretching.

The effective dynamic viscosity of the nanofluid was given by Brinkman [] as

μnf =
μf

( – φ). , ()

where φ and μf are the solid volume fraction of nanoparticles and the dynamic viscosity
of the base fluid.
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In equations () to (), the quantities (ρcp)nf , ρnf and αnf are given by

(ρcp)nf = ( – φ)(ρcp)f + φ(ρcp)s,

ρnf = ( – φ)ρf + φρs, νnf =
μnf

ρnf
, ()

αnf =
knf

(ρcp)nf
,

knf

kf
=

(ks + kf ) – φ(kf – ks)
(ks + kf ) + φ(kf – ks)

,

where νnf , ρnf , (ρcp)nf , knf , kf , ks, ρs, (ρcp)f , (ρcp)s are the nanofluid kinematic viscosity,
the electrical conductivity, the nanofluid heat capacitance, thermal conductivity of the
nanofluid, thermal conductivity of the fluid, the thermal conductivity of the solid fractions,
the density of the solid fractions, the heat capacity of the base fluid, the effective heat
capacity of nanoparticles, respectively (see Abu-Nada []).

The continuity equation () is satisfied by introducing a stream function ψ(x, y) such
that

u =
∂ψ

∂y
, v = –

∂ψ

∂x
. ()

Introducing the following non-dimensional variables (see Liao []):

ψ = [aνf ξ ]

 xf (ξ ,η), ξ =  – exp(–τ ), τ = at,η =

[
a

νf ξ

] 


y,

θ (ξ ,η) =
T – T∞
Tw – T∞

, �(ξ ,η) =
C – C∞

Cw – C∞
,

()

where η, ξ and τ are dimensionless variables and the dimensionless time, f (ξ ,η) is the
dimensionless stream function, θ (ξ ,η) is the dimensionless temperature and φ(ξ ,η) is the
dimensionless solute concentration. By using () the governing equations () to () along
with the boundary conditions () are reduced to the following two-point boundary value
problem:

f ′′′ + φ

[
( – ξ )



ηf ′′ + ξ

(
ff ′′ – f ′ – Haf ′ + Grtθ + Grcφ

)]

= φξ ( – ξ )
∂f ′

∂ξ
, ()

θ ′′ + φPr
(

kf

knf

)[
( – ξ )



ηθ ′ + ξ f θ ′ + Nbθ

′φ′ + NTθ ′
]

= φPr
(

kf

knf

)
( – ξ )

∂θ

∂ξ
, ()

φ′′ + Sc
[

( – ξ )


ηφ′ + ξ f φ′

]
+

NT

Nb
θ ′′ – γ ξScφ = Scξ ( – ξ )

∂φ

∂ξ
, ()

subject to the boundary conditions

f (ξ , ) = , f ′(ξ , ) = , θ (ξ , ) = , �(ξ , ) = , η = , ξ ≥ , ()

f ′(ξ ,∞) = , θ (ξ ,∞) = , �(ξ ,∞) = , η → ∞, ξ ≥ , ()
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where the prime denotes differentiation with respect to η, αf = kf /(ρcp)f and νf = μf /ρf

are the thermal diffusivity and kinetic viscosity of the base fluid, respectively. Other non-
dimensional parameters appearing in equations () to () Ha, Grt , Grc, Pr, Nb, NT , Sc,
and γ denote the Hartman number, the local temperature Grashof number and the lo-
cal concentration Grashof number (see Mahdy [] and Hsiao []), the Prandtl num-
ber, Brownian motion parameter and thermophoresis parameter (see Khan and Pop [],
Nadeem and Saleem []), the Schmidt number and scaled chemical reaction parameter.
These parameters are defined mathematically as

Ha =
σB


aρnf

, Grt =
gβT (Tw – T∞)

ax
,

Grc =
gβC(Cw – C∞)

ax
, Pr =

νf

αf
,

Nb =
(ρc)pDB(Cw – C∞)

νf (ρp)f
, Sc =

νf

DB
,

γ =
K
a

, NT =
(ρc)pDT (Tw – T∞)

T∞νf (ρp)f
.

()

The nanoparticle volume fraction parameters φ and φ are defined as

φ = ( – φ).
[

 – φ + φ

(
ρs

ρf

)]
, φ =

[
 – φ + φ

(ρc)s

(ρc)f

]
. ()

2.1 Skin friction, heat and mass transfer coefficients
The skin friction coefficient Cf , the local Nusselt number Nux and the local Sherwood
number Shx characterize the surface drag, wall heat and mass transfer rates, respectively.

The shearing stress at the surface of the wall τw is defined as

τw = –μnf

(
∂u
∂y

)
y=

= –
Uwμf

( – φ).x

√
Uwx
νf ξ

f ′′(, ξ ), ()

where μnf is the coefficient of viscosity.
The skin friction coefficient is obtained as

Cfx =
τw

ρf U
w

, ()

and using equation () in () we obtain




( – φ).Cfx = –ξ– 
 Re– 


x f ′′(, ξ ). ()

The heat transfer rate at the surface flux at the wall is defined as

qw = –knf

(
∂T
∂y

)
y=

= –knf
(Tw – T∞)

x

√
Uwx
νf ξ

θ ′(, ξ ), ()

where knf is the thermal conductivity of the nanofluid.
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The local Nusselt number (heat transfer coefficient) is defined as

Nux =
xqw

kf (Tw – T∞)
. ()

Using equation () in equation (), the dimensionless wall heat transfer rate is obtained
as

(
kf

knf

)
Nux = –ξ– 

 Re


x θ ′(, ξ ). ()

The mass flux at the wall surface is defined as

qm = –D
(

∂C
∂y

)
y=

= –D
(Cw – C∞)

x

√
Uwx
νf ξ

�′(, ξ ), ()

and the local Sherwood number (mass transfer coefficient) is obtained as

Shx =
xqm

D(Cw – C∞)
. ()

The dimensionless wall mass transfer rate is obtained as

Shx = –ξ– 
 Re



x �′(, ξ ), ()

where Rex represents the local Reynolds number and is defined as

Rex =
xu∞
νf

. ()

3 Cases of special interest
In this section some particular cases of equations () to () where the equations are
reduced to ordinary differential equations are considered.

Case (): initial steady-state flow. For steady flow when φ =  (regular fluid), we have
ξ =  corresponding to t = , thus f (η, ) = f (η), θ (η, ) = θ (η) and �(η, ) = �(η). In this
case equations () to () reduce to

f ′′′ +


φηf ′′ = , ()

θ ′′ +



kf

knf
Prφηθ ′ + φ

kf

knf
PrNbθ

′φ′ + φ
kf

knf
PrNTθ ′ = , ()

φ′′ +



Scηφ′ +
NT

Nb
θ ′′ = , ()

subject to the boundary conditions

f () = , f ′() = , θ () = , �() = ,

f ′(∞) = , θ (∞) = , �(∞) = ,
()
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where prime denotes differentiation with respect to η. Equation () subject to the bound-
ary conditions () admits the exact solution (see Liao [])

f (η) = η

(
 – erf

(
η



))
+

√
π

(
 – exp(–η/)), ()

where erf(v) is the error function defined as

erf(v) =
√
π

∫ v


e–z

dz. ()

Case (): final steady-state flow. In this case, we have ξ =  (t → ∞), corresponding to
f (η, ) = f (η), θ (η, ) = θ (η) and φ(η, ) = φ(η).

Equations () to () reduce to the following forms:

f ′′′ + ff ′′ – f ′ +  – Haf ′ + Grtθ + Grcφ = , ()

θ ′′ +
kf

knf
Prφ

(
f θ ′ + Nbθ

′φ′) +
kf

knf
PrNTθ ′ = , ()

φ′′ + Sc
(

f φ′ – γφ +
NT

Nb
θ ′′

)
= , ()

subject to the boundary conditions (). Equations () to () were solved using the SRM,
Motsa []. The SRM is an iterative procedure that employs the Gauss-Seidel type of re-
laxation approach to linearize and decouple the system of differential equations. Further
details of the rules of the SRM can be found in [, ]. The linear terms in each equation
are evaluated at the current iteration level (denoted by r + ) and nonlinear terms are as-
sumed to be known from the previous iteration level (denoted by r). The linearized form
of () to () is

f ′′′
r+ + a,rf ′′

r+ + a,rf ′
r+ – φξ ( – ξ )

∂f ′

∂ξ
= R,r , ()

θ ′′
r+ + b,rθ

′
r+ –

kf

knf
Prφξ ( – ξ )

∂θ

∂ξ
= R,r , ()

φ′′
r+ + cr,φ

′
r+ + c,rφr+ – Scξ ( – ξ )

∂φ

∂ξ
= R,r , ()

where

a,r = φ

[
η


( – ξ ) + ξ fr

]
, a,r = –φξHa,

R,r = –φξ
[
Grtθr + Grcφr – f ′

r
]
,

b,r =
kf

knf
Prφ

[
η


( – ξ ) + ξ fr+ + Nbφ

′
r+

]
, R,r = –

kf

knf
PrφξNTθ ′

r ,

c,r =
η


( – ξ )Sc + Scξ fr+, c,r = –Scξγ ,

R,r = –
NT

Nb
θ ′′

r+.
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It must be noted that equations ()-() are now linear and, being decoupled, can be
solved sequentially to obtain approximate solutions for f (η, ξ ), θ (η, ξ ) and φ(η, ξ ). In this
study, the Chebyshev spectral collocation method was used to discretize in η and finite
differences with central differencing for derivatives was used to discretize in ξ . Starting
from initial guesses for f , θ and φ, equations ()-() were solved iteratively until the
approximate solutions converged within a certain prescribed tolerance level. The accuracy
of the results was validated against results from literature for some special cases of the
governing equations.

4 Results and discussion
The nonlinear boundary value problem () to () subject to the boundary conditions
() and () cannot be solved in closed form, so these equations are solved numerically
using the spectral relaxation method (SRM) for Cu-water and Ag-water nanofluids for  ≤
ξ ≤ . The thermophysical properties of the nanofluids used in the numerical simulations
are given in Table . Extensive calculations have been performed to obtain the velocity,
temperature, concentration profiles as well as skin friction, the local Nusselt number and
the local Sherwood number for various values of physical parameters such as φ, Ha, Grt ,
Grc, Pr, Nb, NT , Sc and γ .

To determine the accuracy of our numerical results, the heat and the mass transfer co-
efficients are compared with the published results of Khan and Pop [] in Tables  and .
Here, we have varied the NT with Nb while keeping other physical parameters fixed. Ta-

Table 1 Thermophysical properties of the base fluid and the nanoparticles [35] and [36]

Physical properties Base fluid (water) Copper (Cu) Silver (Ag)

Cp (J/kgK) 4,179 385 235
ρ (Kg/m3) 997.1 8,933 10,500
k (W/mK) 0.613 401 429
α × 107 (m2/s) 1.47 1,163.1 1,738.6
β × 105 (K–1) 21 1.67 1.89

Table 2 Comparison of values of –θ ′(0, ξ ) for various values of NT and Nb with φ = 0 (regular
fluid), Ha = Grt = Grc = γ = 0, ξ = 1, Pr = 10, Sc = 10

NT Nb = 0.1 Nb = 0.2 Nb = 0.3

[6] Present results [6] Present results [6] Present results

0.1 0.9524 0.9519 0.5056 0.5052 0.2522 0.2522
0.2 0.6932 0.6930 0.3654 0.3662 0.1816 0.1841
0.3 0.5201 0.5219 0.2731 0.2760 0.1355 0.1394
0.4 0.4026 0.4040 0.2110 0.2117 0.1046 0.1044
0.5 0.3211 0.3185 0.1681 0.1639 0.0833 0.0779

Table 3 Comparison of values of –φ′(0, ξ ) for various values of NT and Nb with φ = 0 (regular
fluid), Ha = Grt = Grc = γ = 0, ξ = 1, Pr = 10, Sc = 10

NT Nb = 0.1 Nb = 0.2 Nb = 0.3

[6] Present results [6] Present results [6] Present results

0.1 2.1294 2.1294 2.3819 2.3817 2.4100 2.4097
0.2 2.2740 2.2745 2.5152 2.5145 2.5150 2.5134
0.3 2.5286 2.5242 2.6555 2.6513 2.6088 2.6047
0.4 2.7952 2.7883 2.7818 2.7787 2.6876 2.6862
0.5 3.0351 3.0413 2.8883 2.8944 2.7519 2.7574
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Table 4 Comparison of the SRM solutions for f ′′(ξ , 0), –θ ′(ξ , 0), and –φ′(ξ , 0) against those of
the SQLM at different values of ξ , NT = 0.1, Nb = 0.1, Pr = 7, Grt = 0.1, Grc = 0.1, Sc = 1, φ = 0.2,
γ = 2, Ha = 3

ξ f ′′(ξ , 0) –θ ′(ξ , 0) –φ′(ξ , 0)

SRM SQLM SRM SQLM SRM SQLM

0.1 –1.024404 –1.024404 0.861024 0.861024 0.372386 0.372386
0.2 –1.062742 –1.062742 0.864900 0.864900 0.389380 0.389380
0.3 –1.088333 –1.088333 0.872739 0.872739 0.386305 0.386305
0.4 –1.108200 –1.108200 0.882753 0.882753 0.372517 0.372517
0.5 –1.124261 –1.124261 0.894651 0.894651 0.350129 0.350129
0.6 –1.136890 –1.136890 0.908632 0.908632 0.318838 0.318838
0.7 –1.145390 –1.145390 0.925350 0.925350 0.276272 0.276272
0.8 –1.146964 –1.146964 0.946411 0.946411 0.216141 0.216141
0.9 –1.127531 –1.127531 0.977047 0.977047 0.118365 0.118365
1.0 –4.252384 –4.252384 1.495226 1.495226 0.463421 0.463421

Figure 1 Effect of various nanoparticle values fraction φ on (a) and (b) for Grt = 0.2, Ha = 0.2,
Grc = 0.2, NT = 0.01, Pr = 7, Nb = 0.01, γ = 1, Sc = 1 and ξ = 0.5.

bles  and  give a comparison of the SRM results with those obtained by Khan and Pop
[] when Ha = Grt = Grc = γ = φ = , Pr = , Sc =  and ξ =  for different values of the
Brownian motion and thermophoresis parameters. It is observed that the present results
are in good agreement with results in the literature. In Table , approximate solutions of
the skin friction coefficient, surface heat transfer and surface mass transfer rates at dif-
ferent values of flow parameters are presented and compared with the SQLM solutions.
Values of the skin friction coefficient, reduced Nusselt and Sherwood numbers at different
values of ξ are presented in Table . The table also shows a comparison of the SHAM and
SQLM results. As can be seen from the table, the results match perfectly well for the set
accuracy level.

The effects of physical parameters on various fluid dynamic quantities are show in Fig-
ures -.

Figures - illustrate the effect of the nanoparticle volume fraction φ on the velocity,
temperature and concentration profiles, respectively, in the case of a Cu-water nanofluid.
It is clear that as the nanoparticle volume fraction increases, the nanofluid velocity and the
temperature profile increase while the opposite trend is observed for the concentration
profile. Increasing the volume fraction of nanoparticles increases the thermal conductiv-
ity of the nanofluid, and we observe that thickening of the thermal boundary layer and the
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Figure 2 Effect of various nanoparticle values fraction φ on (a) and (b) for Grt = 0.2, Ha = 0.2,
Grc = 0.2, NT = 0.01, Pr = 7, Nb = 0.01, γ = 1, Sc = 1 and ξ = 0.5.

Figure 3 Effect of various nanoparticle values
fraction φ on skin friction coefficient for Grt = 0.2,
Ha = 0.2, Grc = 0.2, NT = 0.01, Pr = 7, Nb = 0.01,
γ = 1 and Sc = 1.

Figure 4 Effect of various nanoparticle values fraction φ on (a) and (b) for Grt = 0.2, Ha = 0.2,
Grc = 0.2, NT = 0.01, Pr = 7, Nb = 0.01, γ = 1 and Sc = 1.
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velocity in the case of an Ag-water nanofluid are relatively less than in the case of a Cu-
water. We also note that since the conductivity of silver is higher than that of copper, the
temperature distribution in the Ag-water nanofluid is higher than that in the Cu-water
nanofluid. With increase in the nanoparticle volume fraction, the concentration bound-
ary layer thickness increases for both types of nanofluids considered, and the opposite
trend is observed when the concentration profile decreases.

Figure  shows that the skin friction coefficient –f ′′(, ξ ) increases monotonically with
increasing ξ . The result is true for both types of nanofluids. The minimum value of the skin
friction in the case of the Cu-water nanofluid is achieved at a smaller value of ξ in compar-
ison with the Ag-water nanofluid. Furthermore, in this paper it is found that the Ag-water
nanofluid shows higher drag as compared to the Cu-water nanofluid. The dimensionless
wall heat transfer rate and the dimensionless wall mass transfer rate are shown as functions
of ξ in Figure (a) and (b), respectively. We observe that the wall heat transfer rate –θ ′(, ξ )
decreases, while the opposite trend is observed in the case of the wall mass transfer rate
–�′(, ξ ). The Cu-water nanofluid exhibits higher wall heat transfer rate as compared to
the Ag-water nanofluid, while the opposite trend is observed for the wall mass transfer
rate. The presence of nanoparticle tends to increase the wall heat transfer rate and to de-
crease the wall mass transfer rate with increasing the values of dimensionless variable ξ .

Figures - show the influence of the Hartman number on the velocity, temperature,
skin friction coefficient –f ′′(, ξ ), the local Nusselt number –θ ′(, ξ ) and the local Sher-
wood number –�′(, ξ ). The effect of Hartman number Ha is to decrease the nanofluid
velocity and the wall heat transfer coefficient, whereas it increases the skin friction coef-
ficient and the wall mass transfer coefficient. A similar observation was made by Haroun
et al. []. The momentum boundary layer thickness decreases with increase in the Hart-
man number. In the case of the Cu-water nanofluid it is relatively higher than that of the
Ag-water nanofluid for nanofluid velocity. Figure  shows the skin friction coefficient as a
function of ξ . It is clear that for the Cu-water nanofluid and the Ag-water nanofluid, the
skin friction coefficient increases when ξ increases. We note that the Ag-water nanofluid
exhibits higher drag to the flow as compared to the Cu-water nanofluid. Figure  shows
the wall heat and mass transfer rates for different values of the Hartman number Ha, it
is clear that the value of wall heat transfer rate decreases when ξ increases, in the case of

Figure 5 Effect of various values of the Hartman number Ha on (a) and (b) for Grt = 0.2, φ = 0.2,
Grc = 0.2, NT = 0.01, Pr = 7, Nb = 0.01, γ = 1, Sc = 1 and ξ = 0.5.
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Figure 6 Effect of various values of the Hartman
number Ha on skin friction coefficient for
Grt = 0.2, φ = 0.2, Grc = 0.2, NT = 0.01, Pr = 7,
Nb = 0.01, γ = 1 and Sc = 1.

Figure 7 Effect of various values of the Hartman number Ha on (a) and (b) for Grt = 0.2, φ = 0.2,
Grc = 0.2, NT = 0.01, Pr = 7, Nb = 0.01, γ = 1 and Sc = 1.

Figure 8 Effect of thermophoretic parameter NT
on concentration profiles for Grt = 0.2, φ = 0.2,
Grc = 0.2, Ha = 2, Pr = 7, Nb = 0.01, γ = 4, Sc = 1
and ξ = 0.5.

the Ag-water nanofluid it is less than that in the case of the Cu-water nanofluid. Further,
the wall mass transfer rate increases when ξ increases, we observe that in the case of a
Cu-water nanofluid it is less than that of an Ag-water nanofluid.

Figures  to  show the effect of the thermophoretic parameter NT on the concentration
profile, wall heat and mass transfer rates, respectively. In the case of a Cu-water nanofluid
and an Ag-water nanofluid the concentration profile increases and the wall heat and mass
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Figure 9 Effect of thermophoretic parameter NT on (a) and (b) for Grt = 0.2, φ = 0.2, Grc = 0.2, Ha = 4,
Pr = 7, Nb = 0.01, γ = 4 and Sc = 4.

Figure 10 Effect of Brownian motion parameter Nb on (a) and (b) for Grt = 0.2, φ = 0.2, Grc = 0.2,
Ha = 2, Pr = 7, NT = 0.02, γ = 3 and Sc = 4.

transfer rates decrease with an increase in the thermophoretic parameter. It is observed
that the concentration profile and the wall heat transfer rate in the case of the Ag-water
nanofluid are less than those of the Cu-water nanofluid, while the opposite trend is ob-
served in the case of the wall mass transfer rate. We found that the wall heat transfer rate
got higher value when ξ = , and then the opposite trend is observed when ξ = . The mass
transfer rate got less value when ξ = , while in the case ξ =  it got the higher value. The
fast flow from the stretching sheet carries with it nanoparticles leading to an increase in
the mass volume fraction boundary layer thickness.

Figure (a) and (b) shows the effect of the Brownian motion parameter Nb on the wall
heat and mass transfer rates. Figure (a) shows that the heat transfer rate decreases with
increasing Nb. The mass transfer at the wall increases with the increase in Nb. The heat
transfer rate for the Cu-water nanofluid is higher than that for the Ag-water nanofluid,
while the opposite is true for the mass transfer rate (see Figure ).

Figure (a) and (b) shows the impact of the Soret number on the concentration pro-
files and the mass transfer coefficient, where the concentration profiles grow less while
the mass transfer coefficient increases with an increase in the Soret number. Again, Fig-
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Figure 11 Effect of chemical reaction parameter γ on concentration profiles and the local Sherwood
number for Grt = 0.2, φ = 0.2, Grc = 0.2, Ha = 2, Pr = 7, NT = 0.01, Nb = 0.01, Sc = 0.6 and ξ = 0.5.

ure (a) and (b) shows that as the Soret number increases, the boundary layer thickness
for the solute concentration reduces. The mass transfer coefficient is increasing when the
Soret number is positive.

5 Conclusions
We have investigated the heat and mass transfer in unsteady MHD boundary layer flow in
nanofluid due to an impulsively stretching surface with chemical reaction and an applied
magnetic field. Other parameters of interest in this study included the Brownian motion
parameter and thermophoresis parameter. In this paper we considered Cu-water and Ag-
water nanofluids and assumed that the nanoparticle volume fraction can be actively con-
trolled at the boundary surface. We have solved the model equations using the spectral
relaxation method, and to benchmark our solutions we compared our results with some
limiting cases from the literature. These results were found to be in a good agreement.
From the numerical simulations, some results can be drawn as follows:

(i) The velocity profiles increase with increase in the nanoparticle volume fraction,
while the opposite trend is observed with increase in the value of the Hartman
number.

(ii) The temperature profiles increase with increasing nanoparticle volume fraction
values.

(iii) The skin friction decreases with an increase in the values of the nanoparticle
volume fraction, while the opposite trend is observed for increasing values of the
Hartman number.

(iv) The heat transfer coefficient decreases with increase in the values of the
nanoparticle volume fraction, the Hartman number, thermophoretic and Brownian
motion parameters.

(v) The mass transfer coefficient increases with an increase in the nanoparticle volume
fraction, chemical reaction parameter, Hartman number and Brownian motion
parameter, while the opposite trend is observed for increasing values of the
thermophoretic parameter.
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Abbreviations
t: time; p: pressure; a: positive constant; qw : wall heat flux; qm : wall mass flux; Pr: Prandtl number; Sc: Schmidt number;
Ha: Hartman number; NT : thermophoresis parameter; Nb : Brownian motion parameter; Shx : local Sherwood number;
Rex : local Reynolds number; Nux : local Nusselt number; Grt : local temperature Grashof number; Grc : local concentration
Grashof number; knf : thermal conductivity of nanofluid; Cfx : skin friction coefficient; f (ξ ,η): dimensionless stream
function; T∞ : ambient temperature; C∞ : ambient concentration; g: acceleration due to gravity; B0 : uniform magnetic field;
u, v: velocity components along x, y directions; x: coordinate along the sheet; y: coordinate normal to the sheet; T : local
fluid temperature; Tw : temperature at the stretching surface; DB : Brownian motion coefficient; DT : thermophoretic
diffusion coefficient; C : solutal concentration; Cs : concentration susceptibility; Cw : concentration at the stretching surface;
vw : prescribed suction velocity; K : chemical reaction parameter; ks : solid volume fraction; kf : thermal conductivity of fluid.
Greek symbols: ρnf : nanofluid density; νnf : nanofluid kinematic viscosity; μnf : coefficient of viscosity; (ρcp)nf : nanofluid
heat capacitance; αnf : thermal diffusivity of nanofluid; μnf : effective dynamic viscosity nanofluid; (cp)nf : specific heat of
fluid at constant pressure; τw : shearing stress at the surface of the wall; γ : scaled chemical reaction parameter;
σ : electrical conductivity; φ : fraction of nanoparticles; φ1 , φ2 : nanoparticle volume fraction; ψ (x, y): dimensionless stream
function; (ρcp)f : heat capacity of base fluid; ρf : density of base fluid; μf : dynamic viscosity of fluid; φ : fraction of
nanoparticles; ρs : density of solid fractions; βC : volumetric solutal expansion coefficient; βT : volumetric thermal
expansion coefficient; (ρcp)s : effective heat capacity of nanoparticle. Subscripts: f : fluid; nf : nanofluid; s: solid.
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