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Abstract
This paper is concerned with the existence and multiplicity of non-negative solutions
to the semilinear equation –�Hu = K (ξ )|u|2�–2u +μ|ξ |αHu in a bounded domain
� ⊂ H

N with Dirichlet boundary conditions. HereHN is the Heisenberg group and
2� = 2q/(q – 2) is the critical exponent of the Sobolev embedding on the Heisenberg
group. The function K (ξ ) may be sign changing on �. Using the variational method,
we prove that this problem has at least two non-negative solutions provided μ, α,
and K (ξ ) satisfy some conditions.
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1 Introduction
This paper is concerned with the existence and multiplicity of non-negative solutions to
the semilinear equation on the Heisenberg group H

N of the form

⎧
⎨

⎩

–�Hu = K(ξ )|u|�–u + μ|ξ |αHu in �,

u(ξ ) =  on ∂�,
(.)

where  ∈ � and � is a bounded domain with smooth boundary of the Heisenberg group
H

N . The �H (see the definition below) is the Kohn Laplacian on the Heisenberg group.
� is the critical exponent for the semilinear Dirichlet problem of the Kohn Laplacian, and
the exponent N/(N – ) is critical for the semilinear equation –�u = |u| N

N– –u + h(u) in
a domain of RN with the Dirichlet boundary condition. The function K(ξ ) ∈ L∞(�) and
K(ξ ) = K+ – K– with K+ = max{K(ξ ), } �=  and K– = max{–K(ξ ), } �= , which is why we
use the terms indefinite nonlinearity in the title.

We start with some basic notions (see e.g. []). The Heisenberg group H
N is identified

with R
N+ under the following group composition: for all ξ = (x, y, t) and ξ ′ = (x′, y′, t′),

ξ ◦ ξ ′ =
(
x + x′, y + y′, t + t′ + 

(
x · y′ – x′ · y

))
,
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where ‘·’ denotes the inner product in R
N . For any ξ ∈ H

N , the left translations on H
N is

defined by

τξ : HN → H
N , τξ

(
ξ ′) = ξ ◦ ξ ′.

For λ > , a family of dilation on H
N is defined by

δλ : HN →H
N , δλ(x, y, t) =

(
λx,λy,λt

)
.

The homogeneous dimension of HN is q = N +. For ξ ∈H
N , |ξ |H is the intrinsic distance

of the point ξ to the origin, namely

|ξ |H =

( N∑

j=

(
x

j + y
j
) + t

) 


.

The Kohn Laplacian �H on H
N is defined as

�H =
N∑

j=

(
X

j + Y 
j
)
,

where

Xj =
∂

∂xj
+ yj

∂

∂t
, Yj =

∂

∂yj
– xj

∂

∂t
.

For every u ∈ C∞
 (�), the subelliptic gradient is defined as

∇Hu = (Xu, . . . , XN u, Yu, . . . , YN u).

The closure of C∞
 (�) under the norm

∫

�
|∇H · | dξ is denoted by S,

 (�). From [, ], we
also know that the following Sobolev type inequality holds: there exists Cq >  such that

|u|q/(q–) ≤ Cq‖u‖S,
 (HN ) for all u ∈ S,


(
H

N)
, (.)

where | · |q/(q–) is the norm in Lq/(q–). The number q/(q – ) := � is the critical Sobolev
exponent, since for a bounded domain � and  < p < q/(q – ), the S,

 (�) is compactly
embedded into Lp(�), while this inclusion is only continuous if p = q/(q – ).

There are several papers studying the existence and nonexistence of solutions of semilin-
ear equations with Kohn Laplacian in the past two decades. For instance, Citti [] studies
the equation

–�H u + au = u
q+
q– in �, u =  on ∂�, (.)

where � is a smooth bounded domain in H
N . Since (.) involves a nonlinearity of critical

growth, Citti [] has proven a representation formula for the Palais-Smale sequence and
then proved the existence of one non-negative solution of (.) under suitable conditions
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of a. Some results of Liouville type for semilinear equations on the Heisenberg group have
been studied by Birindelli et al. [, ]. Uguzzoni [] has proven a nonexistence theorem
for a semilinear Dirichlet problem involving critical nonlinearity on the half space of the
Heisenberg group. Yamabe-type equations on the Heisenberg group have been studied in
[–]. Garofalo et al. [] have studied some other existence and nonexistence of solutions
for the Kohn Laplace semilinear equations. Other existence and nonexistence results for
elliptic problems on Heisenberg have been studied in [–]. Very recently, Han et al.
[] have proven a class of Hardy-Sobolev type inequalities on H-type group and got the
existence of a nontrivial solution for a related equation. A multiplicity result related to
noncontractible domain has been studied in []. But we do not see any multiplicity results
as regards the semilinear equation with critical exponent on the Heisenberg group with
general bounded domain.

The purpose of the present paper is to prove that under suitable assumptions on K(ξ )
and μ, the problem under consideration has at least two non-negative solutions. Here and
subsequently, we say that u ∈ S,

 (�) is a solution of (.) if and only if for any ψ ∈ C∞
 (�),

we have
∫

(∇H u∇Hψ – μ|ξ |αHuψ
)

dξ –
∫

K(ξ )|u|�–uψ dξ = .

u ∈ S,
 (�) is said to be a non-negative solution of (.) if u is a solution and u ≥  but

u �≡ . According to the Sobolev inequality [], we know that the functional

L(u) =



∫
(|∇H u| – μ|ξ |αH |u|)dξ –


�

∫

K(ξ )|u|�
dξ

is well defined and C on S,
 (�). Note that from Lemma . (see Section ) the eigenvalue

problem

–�Hu = μ|ξ |αHu, u ∈ S,
 (�),

has a sequence of eigenvalues  < μ < μ ≤ μ ≤ · · · ≤ μm < · · · , μm → ∞ as m → ∞,
with the first eigenvalue μ simple, and all the eigenvalues are of finite multiplicity. Up to
a normalization, the first eigenfunction e corresponding to μ is non-negative. The basic
assumptions are:

(A)  < K() = maxξ∈�̄ |K(ξ )| and there is R >  such that for ξ ∈ B(, R),
K(ξ ) = K() + O(|ξ |βH) with  + α < β < q;

(A)
∫

�
K(ξ )e∗

 dξ < , where e >  is as mentioned before.
Our main results are

Theorem . Suppose that (A) holds. If μ ∈ (,μ), then (.) has at least one non-
negative solution.

Theorem . Suppose that (A) and (A) hold.
() If μ = μ, then (.) has at least one non-negative solution;
() if  < α < q

 – , then there is μ∗ > μ, such that for any μ ∈ (μ,μ∗), (.) has at least
two non-negative solutions.
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The proofs of Theorem . and Theorem . are based on critical point theory. Our
idea originates from [, ]. More precisely, we will minimize the functional L over a
suitable subset of S,

 (�) according to the range of μ. However, since the embedding
S,

 (�) ↪→ L� (�) is not compact, the standard minimization argument cannot be applied
directly. We have to estimate the minimum level of the functional L carefully such that it
is contained in the range where the Palais-Smale ((PS) for short, see Definition .) condi-
tion holds. On getting one non-negative solution, we can modify the argument from [].
However, in order to get the existence of a second solution, one needs a priori estimate
about the property of the first solution. In [], Drabek et al. overcome this difficulty by
the fact that any solutions belong to L∞. While in [], the author has managed to get
two positive solutions by establishing an exact local behavior of positive solutions near
singularity. But for the semilinear equation on Heisenberg group, the operator –�H is de-
generate. It is not easy to get the boundedness of the solution to semilinear equation with
critical exponent. One of our contributions here is to estimate the integrals in a suitable
way and do the energy estimates without the boundedness of the solution.

This paper is organized as follows. Section  contains some preliminaries. Particular
attention is focused on several integral estimates for solutions of (.), which will play an
important role in the study of multiple solutions of (.). The third and fourth sections are
devoted to the proofs of Theorem . and Theorem ., respectively.

2 Preliminaries
Throughout this paper, C, Cj (j = , , . . .) will denote various positive constants whose
exact value are not important. The dual space of a Banach space E is denoted by E∗. By
| · |p we denote the norm in Lp(�). S,

 (HN ) is the closure of C∞
 (HN ) under the norm of

∫

HN |∇H · | dx. B(ξ , r) is a ball centered at ξ with radius r. O(εm) denotes |O(εm)|/εm ≤ C
and o(εm) denotes |o(εm)|/εm →  as ε → . All integrals are taken over � unless stated
otherwise. The following minimization problem will be useful in what follows:

S = inf

{∫

HN
|∇Hu| dξ ; u ∈ S,


(
H

N)
,
∫

HN
|u|�

dξ = 
}

.

Jerison et al. [] have proven that S is achieved by

ω(x, y, t) =
C

(t + ( + |x| + |y|))
q–



with suitable positive constant C. Moreover, ω(x, y, t) satisfies

–�Hu(ξ ) =
∣
∣u(ξ )

∣
∣�–u(ξ ), ξ ∈H

N , u ∈ S,


(
H

N)
. (.)

All non-negative solutions of (.) are of the form

ωλ,ξ ′ = λ
q–

 ω
(
δλ

(
τ–
ξ ′

))
, λ > , ξ ′ ∈ H

N .

Moreover,
∫

HN
|∇Hωλ,ξ ′ | dξ =

∫

HN
|ωλ,ξ ′ |�

dξ = S
q
 .
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Define a cut-off function φ(ξ ) and denote wλ(ξ ) = λ
q–

 ω(δλ(ξ )). Setting vλ(ξ ) := φ(ξ )wλ(ξ ),
one can have from direct computations (see e.g. []) that as λ → +∞,

∫

|vλ|�
dξ = S

q
 + O

(
λ–q) (.)

and
∫

|∇H vλ| dξ = S
q
 + O

(
λ–(q–)). (.)

Using this idea, we can deduce the following lemma, which will play an important role in
the proofs of Theorem . and Theorem ..

Lemma . Let vλ be defined as above. If  + α < β < q, then as λ → +∞,
∫

|ξ |βH |vλ|�
dξ = O

(
λ–β

)
;

∫

|ξ |αH |vλ| dξ = O
(
λ–(α+)).

Proof Keep the definition of vλ in mind. We have
∫

�

|ξ |βH |vλ|�
dξ =

∫

|ξ |H <R
|ξ |βH

(
λ

q–
 ω

(
δλ(ξ )

))�

dξ

= λ–β

∫

|η|H <λR
|η|βH

(
ω(η)

)�

dη

= λ–β

(∫

|η|H <
|η|βH

(
ω(η)

)�

dη +
∫

<|η|H <λR
|η|βH

(
ω(η)

)�

dη

)

≤ λ–β

(

C +
∫ λR


ρβ–q– dρ

)

= O
((

λ–)β)
+ O

((
λ–)q) = O

((
λ–)β)

for λ large enough,

where we have used the assumption of β < q. Similarly, we have
∫

�

|ξ |αH |vλ| dξ =
∫

|ξ |H <R
|ξ |αHw

λ

(
δλ(ξ )

)
dξ

= λ––α

∫

|η|H <λR
|η|αHω(η) dη

= λ––α

(∫

|η|H <
|η|αHω(η) dη +

∫

<|η|H <λR
|η|αHω(η) dη

)

≤ λ––α

(

C +
∫ λR


ρ–q+α– dρ

)

= O
((

λ–)+α)
+ O

((
λ–)q–) for λ large enough.

Therefore  < α < q –  implies that for λ large enough,
∫

�

|ξ |αH |vλ| dξ = O
(
λ–(+α)).
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The proof is complete. �

Next, we prove a regularity result for the solutions of (.). The idea originates from
Brezis-Kato []; see also Struwe []. The following lemma will play a key role in the
process of studying a second non-negative solution of (.).

Lemma . If u ∈ S,
 (�) is a solution of (.), then u ∈ Lr(�) for each r ∈ (, +∞).

Proof Since u is a weak solution of (.), we test the equation with a test function ϕ =
u min{|u|s, m}, where s ≥  and m > . Integrating by parts we obtain

∫

∇H u∇H
(
u min

{|u|s, m})dξ =
∫

|u|�
min

{|u|s, m}dξ

+ μ

∫

|ξ |αHu min
{|u|s, m}dξ .

For each sufficiently large M > , we deduce that

∫
∣
∣∇H

(
u min

{|u|s, m
})∣

∣dξ

≤ (s + )
∫

|u|�
min

{|u|s, m}dξ + C
∫

u min
{|u|s, m}dξ

= (s + )
∫

|u|≤M
|u|�

min
{|u|s, m}dξ + C

∫

u min
{|u|s, m}dξ ,

(s + )
∫

|u|>M
|u|�

min
{|u|s, m}dξ

≤ (s + ) meas(�)M�+s + C
∫

u min
{|u|s, m}dξ ,

(s + )
(∫

|u|>M
|u|�

dξ

) �–
�

(∫
(
u min

{|u|s, m}d
)�

dξ

) 
�

≤ C +



∫
∣
∣∇H

(
u min

{|u|s, m
})∣

∣ dξ + C
∫

u min
{|u|s, m}dξ ,

which implies that

∫
∣
∣∇H

(
u min

{|u|s, m
})∣

∣dξ ≤ (s + ) meas(�)M�+s + C

∫

u min
{|u|s, m}dξ .

Letting m → +∞, we obtain

∫
∣
∣∇H

(
u|u|s)∣∣ dξ ≤ (s + ) meas(�)M�+s + C

∫

|u|(s+) dξ .

Now iterate, letting s = , sj +  = (sj– + ) q
q– , if j ≥ , to obtain the conclusion. �

We end these preliminaries by the definition of the (PS) conditions and an additional
lemma.
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Definition . Let c ∈R, E be a Banach space and I ∈ C(E,R). We say that I satisfies (PS)c

condition, if any sequence (un)n∈N in E such that I(un) → c and I ′(un) →  has a convergent
subsequence. If this holds for every c ∈R, we say that I satisfies the (PS) condition.

Lemma . Let � ⊂ H
N be a bounded open domain with smooth boundary. Then S,

 (�)
is continuously and compactly embedded to L(�, |ξ |αH dξ ).

Proof Since α > , we can get the conclusion by a combination of [], Lemma ., and
[], Lemma .. �

3 Existence of a non-negative solution
In this section, we will prove Theorem .. The  < μ < μ and (A) will be assumed
throughout this section. Define another functional

G(u) =
∫

|∇H u| dξ – μ

∫

|ξ |αH |u| dξ –
∫

K(ξ )|u|�
dξ , u ∈ S,

 (�),

and denote the Nehari set

Nμ =
{

u ∈ S,
 (�)\{} : G(u) = 

}
.

We have first of all the following.

Lemma . There is ρ >  such that ‖u‖ ≥ ρ for all u ∈Nμ.

Proof For any u ∈Nμ, the assumption (A) and the Sobolev inequality imply that

‖u‖ – μ

∫

|ξ |αH |u| dξ =
∫

K(ξ )|u|�
dξ ≤ K()|u|�

� ≤ K()S– �

 ‖u‖�
.

Therefore ( – μ

μ
)‖u‖ ≤ K()S– �

 ‖u‖� . Hence we can choose

ρ =
((

 –
μ

μ

)

K()–S
�



) 
�–

such that Lemma . holds. �

Note that for any u ∈Nμ,

L(u) =

q

(

‖u‖ – μ

∫

|ξ |αH |u| dξ

)

=

q

∫

K(ξ )|u|�
dξ .

We define

d = inf
u∈Nμ

L(u). (.)

From Lemma ., one sees immediately that there is a positive constant C such that c ≥
C > . Next, we have the following lemma.
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Lemma . There is a sequence (un)n∈N ⊂Nμ such that

L(un) → c, L′(un) →  in
(
S,

 (�)
)∗. (.)

Proof Let (ũn)n∈N ⊂ Nμ be a minimizing sequence of (.). By the Ekeland variational
principle, we can find a sequence (un)n∈N ⊂Nμ such that

L(un) → c, L′∣∣
Nμ

(un) → ,

where L′|Nμ is the derivative of L restricted to Nμ. The Lagrange multiplier rule implies
that there is an ∈ R such that

L′(un) – anG′(un) →  and
〈
L′(un), un

〉
= an

〈
G′(un), un

〉
.

Since un ∈ Nμ, one deduces that 〈G′(un), un〉 �=  and then 〈L′(un), un〉 = . Hence an = .
The conclusion follows. �

Lemma . Let (un)n∈N ⊂Nμ be as in Lemma .. If c < 
q

S
q


|K |(q–)/∞
, then (un)n∈N possesses

a convergent subsequence in S,
 (�).

Proof The proof can be proceeded by following the same lines as [], Lemma .; see
also Drabek []. �

Lemma . Under the assumptions of Theorem ., we have

c <

q

S
q


|K |
q–

∞
.

Proof It suffices to find some u ∈ Nμ such that L(u) < 
q

S
q


|K |(q–)/∞
. Let vλ be defined as in

Section , we have from direct computation that there is a t with

t =
(‖vλ‖ – μ

∫ |ξ |αH |vλ| dξ
∫

K(ξ )|vλ|� dξ

) q–


such that tvλ ∈Nμ. Moreover, we obtain from (.), (.), and Lemma .

L(tvλ) =

q

t


(

‖vλ‖ – μ

∫

|ξ |αH |vλ| dξ

)

=

q

(

‖vλ‖ – μ

∫

|ξ |αH |vλ| dξ

) q

(∫

K(ξ )|vλ|�
dξ

) –q


=

q
(
S

q
 + O

((
λ–)q–) – O

((
λ–)α+)) q


(|K |∞S

q
 + O

((
λ–)β)

+ O
((

λ–)q)) –q


<

q

S
q


|K |
q–

∞
for λ large enough,

where we have used the fact that  + α < β and  + α < q – . �
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Proof of Theorem . Combining Lemmas .-., we have an w ∈ Nμ which leads to c.
Since if (un)n∈N minimize L over Nμ, then so does (|un|)n∈N, we can assume that w is a
non-negative critical point of L. Hence w is a non-negative solution of (.). �

4 Existence results for μ ≥ μ1

In this section, we will prove Theorem .. The multiplicity result can be obtained by
minimizing L over different subset of S,

 (�). The idea originates from Drabek et al. [],
where the authors study an indefinite problem in the classical Euclidean space R

N , and
some refinement from Chen [], where the author studied an indefinite problem with
singular term. The additional assumption (A) will hold throughout this section. Since
we will prove Theorem . for different μ, we denote Lμ ≡ L from now on. Define the
following Nehari type set:

Mμ =
{

u ∈ S,
 (�) : G(u) ≡ 〈

L′
μ(u), u

〉
= 

}
. (.)

We further split Mμ into three disjoint subsets,

M+
μ =

{
u ∈Mμ :

〈
G′(u), u

〉
> 

}

=
{

u ∈Mμ : ‖u‖ – μ

∫

|ξ |αH |u| dξ >
(
� – 

)
∫

K(ξ )|u|�
dξ

}

=
{

u ∈Mμ :
∫

K(ξ )|u|�
dξ < 

}

,

M
μ =

{
u ∈Mμ :

〈
G′(u), u

〉
= 

}

=
{

u ∈Mμ : ‖u‖ – μ

∫

|ξ |αH |u| dξ =
(
� – 

)
∫

K(ξ )|u|�
dξ

}

=
{

u ∈Mμ :
∫

K(ξ )|u|�
dξ = 

}

,

and

M–
μ =

{
u ∈Mμ :

〈
G′(u), u

〉
< 

}

=
{

u ∈Mμ : ‖u‖ – μ

∫

|ξ |αH |u| dξ <
(
� – 

)
∫

K(ξ )|u|�
dξ

}

=
{

u ∈Mμ :
∫

K(ξ )|u|�
dξ > 

}

.

Remark . Now some remarks are in order.
() K+ �=  implies that M–

μ �= ∅. Indeed, since

‖vλ‖ – μ

∫

|ξ |αH |vλ| dξ = S
q
 + O

((
λ–)q–) – O

((
λ–)+α)

> 

for λ large enough, we know that tvλ ∈M–
μ with

t =
(‖vλ‖ – μ

∫ |ξ |αH |vλ| dξ
∫

K(ξ )|vλ|� dξ

) (q–)


.



Huang et al. Boundary Value Problems  (2015) 2015:165 Page 10 of 17

() Mμ and M
μ are closed in S,

 (�).
() For μ ∈ (,μ], M+

μ = ∅. However, for μ > μ, M+
μ �= ∅. Indeed, we obtain from

∫
K(ξ )e�

 dξ <  and direct computation

(‖e‖ – μ
∫ |ξ |αH |e| dξ

∫
K(ξ )e�

 dξ

) q–


e ∈M+
μ. (.)

In view of Remark ., we will prove Theorem . in the following outline. For μ = μ,
we will minimize Lμ on M–

μ and prove the minimizer can be achieved and can be chosen
to non-negative. For μ > μ, we will minimize Lμ on M+

μ and M–
μ, respectively and show

the minimizers exist. Then we will get two non-negative solutions of (.). The following
lemmas are useful in what follows.

Lemma . There is τ >  such that ‖ u
‖u‖ – e‖ ≥ τ for all u ∈M–

μ with μ > .

Proof Suppose the contrary. There are μ̃n and un ∈M–
μ̃n

such that vn := un
‖un‖ → e. Using

the fact that

 ≤ ‖un‖ – μ̃n

∫

|ξ |αH |un| dξ <
(
� – 

)
∫

K(ξ )|un|�
dξ ,

and the strong convergence of vn to e, we deduce that

 ≤ ‖vn‖ – μ̃n

∫

|ξ |αH |vn| dξ <
(
� – 

)
(∫

K(ξ )|vn|�
dξ

)

‖un‖�–.

Hence one obtains

 ≤ (
� – 

)
∫

K(ξ )|vn|�
dξ → (

� – 
)
∫

K(ξ )e�

 dξ < ,

which is a contradiction. �

Lemma . For τ given in Lemma ., there is a μ∗ > μ such that ‖u‖ ≥ μ∗
∫ |ξ |αH |u| dξ

for any u with ‖u‖ =  and ‖|u| – e‖ ≥ τ .

Proof Arguing by a contradiction, we assume that there are ‖un‖ =  with ‖un – e‖ ≥ τ

and μ̃n → μ with μ̃n > μ such that ‖un‖ = μ̃n
∫ |ξ |αH |un| dξ . Going if necessary to a sub-

sequence, still denoted by (un)n∈N, we may assume that un ⇀ u in S,
 (�) and therefore

un → u in L(�, |ξ |αH dξ ) (note that we have from Lemma . that
∫ |ξ |αH |un – u| dξ → 

as n → ∞). Combining this with μ̃n → μ and ‖u‖ – μ
∫ |ξ |αH |u| dξ ≥  for any u ∈

S,
 (�), we obtain

 ≤ ‖u‖ – μ

∫

|ξ |αH |u| dξ

≤ lim
n→∞

(

‖un‖ – μ̃n

∫

|ξ |αH |un| dξ

)

= . (.)

If u = , then we conclude from

‖un‖ = μ̃n

∫

|ξ |αH |un| dξ → μ

∫

|ξ |αH |u| dξ
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that ‖un‖ → , which contradicts ‖un‖ = . Assume u �= , then (.) and the variational
characterization of μ imply u = te for some t �= . From

 ≤ ‖te‖ – μ

∫

|ξ |αH |te| dξ ≤ lim
n→∞

(

‖un‖ – μ̃n

∫

|ξ |αH |un| dξ

)

= lim
n→∞‖un‖ – μ

∫

|ξ |αH |te| dξ = , (.)

we have limn→∞ ‖un‖ = ‖te‖. Hence

‖un – te‖ = ‖un‖ – ‖te‖ – 〈un, te〉 → . (.)

It follows that un → te and t = . But this is impossible. The proof is complete. �

Lemma . For any μ ∈ (μ,μ∗), M–
μ is closed in S,

 (�) and open in Mμ.

Proof The openness in Mμ is obvious. For the closedness, we argue by a contradiction.
Suppose for un ∈ M–

μ, un → u strongly in S,
 (�) with u /∈ M–

μ. Then u ∈ M
μ, or

equivalently
∫

K(ξ )|u|� dξ = . From un ∈M–
μ, we deduce that as n → ∞,

 ≤ ‖un‖ – μ

∫

|ξ |αH |un| dξ <
(
� – 

)
∫

K(ξ )|un|�
dξ

→
∫

K(ξ )|u|∗
dξ = . (.)

Denote vn = un/‖un‖ and divide (.) by ‖un‖. Using the fact that un ∈M–
μ, ‖vn‖ =  and

Lemma ., Lemma ., we obtain

 ≤ (μ∗ – μ)
∫

|ξ |αH |vn| dξ ≤ ‖vn‖ – μ

∫

|ξ |αH |vn| dξ → . (.)

It follows that vn →  strongly in L(�, |ξ |αH dξ ). Therefore by (.), one gets ‖vn‖ → ,
which contradicts the fact that ‖vn‖ = . �

Lemma . There is μ∗ > μ such that for any μ ∈ (μ,μ∗), M+
μ is bounded in S,

 (�).

Proof Suppose the contrary, there are μ̃n > μ and un ∈ M+
μ̃n

such that μ̃n → μ and
‖un‖ → +∞ as n → ∞. Note that un ∈M+

μ̃n
implies that

 >
(

‖un‖ – μ̃n

∫

|ξ |αH |un| dξ

)

>
(
� – 

)
∫

K(ξ )|un|�
dξ

=
(
� – 

)
(

‖un‖ – μ̃n

∫

|ξ |αH |un| dξ

)

. (.)

Dividing (.) by ‖un‖ and letting vn = un/‖un‖, we obtain from μ̃n → μ

∫

K(ξ )|vn|�
dξ → . (.)
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On the other hand, from ‖vn‖ = , we may assume that there is a subsequence of (vn)n∈N,
still denoted by (vn)n∈N such that vn ⇀ v weakly in S,

 (�). Then using (.) and an argu-
ment similar to those in the proof of (.) that v = te for some t �= . The same argument
as in (.) and (.) lets us arrive at vn → te strongly in S,

 (�). Thus as n → ∞, we get

∫

K(ξ )|vn|�
dξ →

∫

K(ξ )|te|�
dξ < ,

which is a contradiction to (.). The proof is complete. �

We are now in a position to prove the existence of one non-negative solution of (.) in
the case of μ = μ.

Proof of (i) of Theorem . As pointed out in Remark ., when μ = μ, M+
μ = ∅. Hence

we consider the minimization problem

c = inf
u∈M–

μ
Lμ (u). (.)

Note that ((‖vλ‖ – μ
∫ |ξ |αH |vλ| dξ )/

∫
K(ξ )|vλ|� )(q–)/vλ ∈ M–

μ , we can see from an ar-
gument similar to the proofs of Lemmas .-. that c is achieved by some w. It then
follows that w is a solution of (.) with μ = μ. Moreover, w can be chosen to be non-
negative. The proof is complete. �

Next we turn to the case of μ > μ. Let d = infu∈Mμ Lμ(u). From the previous lemma,
Lμ is bounded from below on M+

μ for μ ∈ (μ,μ∗). Since te ∈ M+
μ when μ > μ, the

infimum of Lμ on M+
μ must be negative. The characterization of Mμ (see the beginning

of Section ) implies that d = infu∈M+
μ

Lμ(u). Moreover, we have the following lemma.

Lemma . For μ < μ < min{μ∗,μ∗}, d is obtained by some u∗ ∈ M+
μ, which define a

non-negative solution of (.).

Proof Similar to the previous proof, we know that there is u∗ ∈Mμ such that Lμ(u∗) = d.
Moreover, u∗ solves (.) and can be chosen to be non-negative. Since d <  and Lμ(u) = 
for u ∈M

μ and Lμ(u) >  for u ∈M–
μ, we can conclude that u∗ ∈M+

μ. �

Let

d = inf
u∈M–

μ

Lμ(u).

Lemma . For μ < μ < min{μ∗,μ∗}, there is a sequence (un)n∈N ⊂ M–
μ such that

Lμ(un) → d, L′
μ(un) → , and if the d < d + 

q
S

q


|K |(q–)/∞
, then (un)n∈N possesses a convergent

subsequence in S,
 (�).

Proof The idea of the proof is the same as [], Lemma .; see also []. We only outline
the proof here. Similar to the proof in Lemma ., there is a sequence (un)n∈N ⊂M–

μ such
that

Lμ(un) → d, L′
μ(un) →  in

(
S,

 (�)
)∗.
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We first claim that (un)n∈N is bounded in S,
 (�). Indeed if ‖un‖ → ∞, we denote vn =

un/‖un‖, then ‖vn‖ = . From un ∈M–
μ, we have

 ≤
∫

K(ξ )|un|�
dξ

= ‖un‖ – μ

∫

|ξ |αH |un| dξ <
(
� – 

)
∫

K(ξ )|un|�
dξ . (.)

Dividing (.) by ‖un‖, we get

 ≤ (μ∗ – μ)
∫

|ξ |αH |vn| dξ ≤ ‖vn‖ – μ

∫

|ξ |αH |vn| dξ

= ‖un‖�–
∫

K(ξ )|vn|�
dξ → .

Therefore, vn →  strongly in L(�, |ξ |αH dξ ) and hence ‖vn‖ → , which contradicts
‖vn‖ = . Thus (un)n∈N is bounded in S,

 (�).
Going if necessary to a subsequence, we may assume that un converges to u weakly in

S,
 (�) and almost everywhere in �. Moreover, ∇H un → ∇H u a.e. in �. Combining these

with L′
μ(un) →  we have L′

μ(u) = . In particular, we have u ∈Mμ. Hence

Lμ(u) =

q

(

‖u‖ – μ

∫

|ξ |αH |u| dξ

)

≥ d.

If un → u strongly in S,
 (�), then we complete the proof. If un does not converge

strongly to u in S,
 (�), then we denote ũn = un – u. From L′

μ(un) = , we can deduce that,
for n large enough,

∫

|∇H ũn| dξ –
∫

K(ξ )|ũn|�
dξ = o().

Suppose that
∫ |ũn|� dξ �→  as n → ∞, we may deduce from the Sobolev inequality (.)

that

Lμ(ũn) ≥ 
q

S
q


|K |(q–)/
∞

.

Therefore we obtain from the Brezis-Lieb lemma again for n large enough

d + o() = Lμ(un) ≥ 
q

(

‖u‖ – μ

∫

|ξ |αH |u| dξ

)

+ Lμ(ũn) + o()

≥ d +

q

Sq/

|K |(q–)/
∞

,

which is a contradiction. Thus we can conclude that un → u strongly in S,
 (�). �

Lemma . There is μ∗ > μ such that for any μ ∈ (μ,μ∗), the d < d + 
q

S
q


|K |(q–)/∞
.
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In order to prove Lemma ., we need some further lemmas, which play a key role in
the proof of Lemma .. It is Lemma . and Lemma . that we need to address the
regularity for the solution of (.).

Lemma . Let w be a non-negative solution of (.). If  < α < q
 – , then for λ large

enough,

∫

w�–
 vλ dξ = o

(
λ– q–


)

and
∫

w(vλ)�– dξ = o
((

λ–)+α)
.

Proof Since w ∈ Lr(�) for any r ∈ (,∞), we obtain from the Hölder inequality

∫

w�–
 vλ dξ ≤

(∫

vγ

λ dξ

) 
γ
(∫

w
(�–)γ

γ –
 dξ

) γ –
γ

,

where γ >  and q > (q – )γ . Note that

∫

vγ

λ dξ =
∫

|ξ |H <R

(
wλ(ξ )

)γ dξ = λ
(q–)γ



∫

|ξ |H <R

(
w

(
δλ(ξ )

))γ dξ

= λ
(q–)γ

 –q
∫

|η|H <λR

(
w(η)

)γ dη

= λ
(q–)γ

 –q
(

C +
∫ λR


ρ–+q–(q–)γ dρ

)

.

From the choice of γ , we have

∫

vγ

λ dξ = C · λ q–
 γ –q + C · λ– q–

 γ .

Therefore as λ is sufficiently large, one deduces that

∫

w�–
 vλ dξ = o

(
λ– q–


)
.

Similarly, we can use the regularity of w to prove that as λ is large enough, there is β with
 < β < q

q++(+α) such that

∫

w(vλ)�– dξ = C · (λ–)
q
β

– q+
 ,

where we have used the assumption  < α < q
 – . Therefore as λ is sufficiently large, one

has
∫

w(vλ)�– dξ = o
((

λ–)+α)
.

The proof is complete. �

Lemma . Let w be a non-negative solution of (.). Then there are s >  and μ̃ > μ

such that w + svλ ∈M–
μ for all  < μ < μ̃.
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Proof For any s > , since G(w) =  and w satisfies (.), we have

G(w + svλ) = G(svλ) + s
∫

K(ξ )w�–vλ dξ

+
∫

K(ξ )
(
w�

+ (svλ)�
– |w + svλ|�)

dξ . (.)

Using the elementary inequality

|a + b|p ≥ |a|p + |b|p – M
(|a|p–|b| + |a||b|p–), ∀p > , a, b ∈R, (.)

and the fact that K(ξ ) is bounded in �, we obtain

∣
∣
∣
∣

∫

K(ξ )
(
w�

+ (svλ)�
– |w + svλ|�)

dξ

∣
∣
∣
∣

≤ Cs
∫

w�–vλ dξ + Cs�–
∫

wv�–
λ dξ .

Therefore for any finite s, we obtain from (.) and Lemma .

G(w + svλ) = G(svλ) + o
((

λ–)(+α))

= s
∫

|∇H vλ| dξ – s�

∫

K(ξ )v�

λ dξ – o
(
λ–(+α))

for λ large enough. Thus there is s >  such that G(w + svλ) = , which implies that w +
svλ ∈Mμ.

Next, to see w + svλ ∈M–
μ, it suffices to prove that

∫

K(ξ )|w + svλ|�
dξ >  for λ large enough. (.)

Indeed, using inequality (.) and Lemma ., we obtain

∫

K(ξ )|w + svλ|�
dξ

=
∫

K(ξ )w�
dξ + s�



∫

K(ξ )v�

λ dξ + o
((

λ–)+α)

=
∫

(|∇H w| – μ|ξ |αHw)dξ + s�



∫

K(ξ )v�

λ dξ + o
((

λ–)+α)

≥
(

 –
μ

μ

)∫

|∇H w| dξ + s�



∫

K(ξ )v�

λ dξ + o
((

λ–)+α)

for λ large enough. It follows from G(w + svλ) =  that there is μ̃ > μ such that

∫

K(ξ )|w + svλ|�
dξ > ,  < μ < μ̃.

The proof is complete. �
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Proof of Lemma . Using the fact that Lμ(u∗) = d, u∗ satisfies (.) and (.), Lemma .,
we obtain from a direct computation for λ large enough

Lμ(u∗ + svλ) ≤ Lμ(u∗) + Lμ(svλ) + o
((

λ–)+α)
.

In view of Lemma ., it suffices to prove that

sup
s>

Lμ(u∗ + svλ) < d +

q

S
q


|K |
q–

∞
.

Note that

sup
s>

Lμ(svλ)

=

q

(

‖vλ‖ – μ

∫

|ξ |αH |vλ| dξ

) q

(∫

K(ξ )|vλ|�
dξ

) –q


=

q
(
S

q
 + O

((
λ–)q–) – O

((
λ–)α+)) q


(|K |∞S

q
 + O

((
λ–)β)

+ O
((

λ–)q)) –q


=

q

S
q


|K |
q–

∞
– O

(
λ–(+α)) + o

(
λ– q–


)

for λ large enough. Denote μ∗ = min{μ∗,μ∗, μ̃}. Then one has

sup
t>

Lμ(u∗ + tvλ) = d +

q

S
q


|K |
q–

∞
– O

(
λ–(+α))

+ o
(
λ–(+α)) + O

(
λ– q–


)

< d +

q

S
q


|K |
q–

∞
.

�

Proof of (ii) of Theorem . The proof is a combination of Lemma ., Lemma .,
Lemma ., and the fact that if (un)n∈N is a minimizing sequence of d, then so is (|un|)n∈N.
The proof is complete. �
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