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Abstract

We study the inverse problem for non-stationary system of magnetic hydrodynamics
in which it is required to determine the velocity of the fluid V(x, ), the magnetic
tension H(x, t), the pressure gradient Vp(x, t), but also the external forces f(x) and the
current rotf(x). In this case, to the conditions constituting the direct problem are
added additional conditions. The trace speed, the magnetic tension, and the pressure
gradient in the final moment, time t = T, are taken as additional information. The
strong generalized solvability of the inverse problem in the two-dimensional case is

proved.

Keywords: magnetohydrodynamics; inverse problem; final overdetermination
condition

1 Introduction

The mathematical description of the processes occurring in moving fluids leads to the
solution of the Navier-Stokes equations. References [1-8] are devoted to the study of the
questions of solvability and stability of solutions of initial-boundary value problems for
the linearized and general nonlinear Navier-Stokes equations.

Magnetohydrodynamics (MHD) is a theory of macroscopic interaction of electrically
conductive fluid and electromagnetic fields. It has important applications in astronomy
and geophysics, as well as in engineering fields such as controlled thermonuclear fusion,
nuclear reactor cooling liquid metals, electromagnetic casting of metals, MHD generators,
and MHD ion engines.

In the 1960s and 1970s the efforts of mathematicians were directed to the study of a class
of problems of magnetohydrodynamics. Fundamental work in this direction was done by
Ladyzhenskaya and Solonnikov [9, 10].

In this paper we study the three initial-boundary value problems for non-stationary
magnetohydrodynamic equations. Results on the solvability of these problems are sim-
ilar to the corresponding results on the solvability of the initial-boundary value problems
for non-stationary Navier-Stokes equations. Similar results were obtained by Mosconi
and Solonnikov in [11] for stationary MHD equations. A variety of approaches to the
mathematical study of MHD systems are reflected in the work of Ladyzhenskaya and
Solonnikov [12], Sahaev and Solonnikov [13], Stupyalis [14, 15], Alekseev and Tereshko
[16], Duvant and Lions [17], Sermange and Temam [18], Giga and Yoshida [19], and Dyer
and Edmuns [20].
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2 Statement of the problem

We consider the inverse problem of magnetic hydrodynamic in the cylinder Qr = Q x
[0, T], @ C R%. One can take the border of the area  from C2, namely dQ C C2, T =
92 x [0, T]. We need to determine v(x, ¢), H (%, 1), Vp(x, t),]?(x), and rot}(x) that satisfy the
following equations:

W = 2 1 jag

— 4 ) Vi — ad ZH/(ka - VAV =——grad( p+ akll +g(x, t)f (%), 1)

Jt P P 2

k=1 k=1

OH 1 _ .- D) -

— + —rotrotH —rot[v x H| = 50 1) rotj(x), (2)

ot ou on

divv =0, div(uﬁ) =0. (3)
We have the initial conditions

¥(x,0) = Vo(x),  H(x,0) = Ho(x), (4)
the boundary conditions

- oH. 0 H; .

Ir=0, H,r=0, —-——| =jlr=0, (5)

8x1 3962 r

and the overdetermination conditions
v, T)=Ux), HeET)=¥(k),  Vp,T)= V). (6)

Here v(x,t) is the velocity of the fluid, H (x,£) the magnetic tension, p the pressure,
glx, t)f(x) the external hydrodynamic forces, & (x, t) rot;(x) the current, u the magnetic per-
meability, o the conductivity, p the condensation, v the kinematic viscosity coefficient of
the fluid, 7 the outward pointing normal vector to the surface area S, and H, = H- 7.

The first results of the well-posedness of the inverse problem with homogeneous bound-
ary conditions for the Navier-Stokes equations appeared in the works of Prilepko and
Vasin [21] and Abylkairov [22]. Reference [23] studied the solvability of the inverse spa-
tial problem with unknown right part where we obtain a local existence theorem for the
solutions. Different inverse problems for the Navier-Stokes equations and hydrodynam-
ics were presented in [24—35]. In the work of Abylkairov [30] the inverse problem for the
Navier-Stokes equations was studied with non-standard boundary conditions. The con-
trollability of the systems of magnetic hydrodynamics has been studied in many papers
(see, for example, [16, 31-35]).

We denote by}l(ﬂ) the subspace \9@(9), consisting of solenoidal vectors and byf(Q) the
subspace W2(S2), consisting of solenoidal vectors, satisfying the following I' = 92 x [0, T']
conditions: u,|r = 0, yrot#|r = 0. Let V5(Qr) be the Banach space of functions with the
norm ||| vy(Q,) = Vraimaxo<,<7 ||#(x, t)|l2,0 + [|#xll2,0, that is obtained as a result of the

0
closure of set of smooth, solenoidal, and zero vectors near I' = 92 x [0, T]. J;,(R2) is a
subset of Wzl (2) (/ is an integer number), for which the closure in the norm of WZZ(S'Z)

of the set of continuously differentiable solenoidal vector-functions with u,|r = 0. G(S2)
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consists of grad ¢, where ¢ is a single-valued function in €2, a locally square integrable and
differentiable function in L,(2).

Lemma 1 ([4]) The following inequalities hold:
lullfq < 4lul3 ol ool l2e < 20ull3 o llualls o
0
Sor all u(x) € Wi(RQ), Q C R?,
lullf o < elluxlisg + & lull

where ¢ is optional (¢ > 0),

1

1 2 3
4
||u||4,QE(/Q|u|4dx> v luxl = (Zuik) ,

k=1
2 _ 2 _ 2
||ux||m:/ e dx:/ 2 d.
Q Q

Theorem 1 ([15]) If 0Q € C?, then the operator rot sets a one-to-one correspondence be-

0 0
tween the spaces W(Q) and J(Q), moreover, the following inequality holds:

- - 1 -
ot VI < [VIISg < <ﬁ + —)urotvn )
2,Q \/lT

1

.0
forall Ve W(Q).

Here the number [, is the smallest eigenvalue of the operator A in the field Q2 at the zero
boundary condition.

0
Theorem 2 ([15]) If 32 € C?, then the operator rot gives a one-to-one map of J1 ,(2) onto
L,(2), moreover, the following inequality holds:

lrot || < 11158 < Csll rot | (8)

- 0 -
forall = (Y1, ¥2) € J1,,(R2). Here  does not depend on the constant Cs.

3 Main results

Definition 1 The generalized solution of the inverse problem (1)-(6) is a set of function

{(v(x, ), Vp(x, t),]ZI (x, t),f(x),rot;(x)}, satisfying the correspondence (1)-(6) in the case if
0 - ~ - -

v(x,£) € W3 (Qr) NJ1(Qr), H(x, t) € W5 (Qr) NJ(Qr), f(%) € La(R), rotj(x) € Ly(R), and

the function p(x,t) € G(Qr) (Vp € Ly(Qr)) at any ¢ from [0, T], and it continuously de-
pends on ¢ in the norm of this space for [0, T.

Let us fix the functions g(x, ) and & (x, £) and define the nonlinear operators T, : L»(£2) —
Ly(2), Sg : Lr(2) — Ly(£2) by the following expression:

(T)@) = velw, T), (7)) = Hy(w, T). )
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Herer = rot;(x),j‘ :f(x), but v(x, ) and H («x, t) are the solution of the direct problem (1)-(5)
with F = glx, t)]‘(x), rotJo = E(x, t) rot}(x).

The introduced operators Ty and S¢ were well-posed as regards their definitions, since
the necessary conditions for differentiability of v, H,and p are ensured by the theory in the
work of Ladyzhenskaya and Solonnikov (see [9] Theorem 18, p.168, Theorem 19, p.169).

We suppose that g(x, T) # 0 and &(x, T) # 0 for all x € ©; we introduce the nonlinear
operators A : Ly(2) — Ly(2) and yB : Ly(2) — Ly(£2), by the following expressions:

. 1
ANe = oo

(THx),  (BAE) = (Se7)(). (10)

oun
E(x, T)
Thus, if g(x, £)f (%) € Ly(Qr), g% £)f (x) € Ly1(Qr) and &(x, ) rotj(x) € Ly(Qr), &(x,t) x

rot}(x) € Ly1(Qr), additionally g(x, ), g;(x,t) € C(Qr), &(x,8),&(x,t) € C(Qr), then, by (1)
and (2) and in terms of these operators, (7), (8) given the inverse problem can be rewritten

as

Af+8=f,  Br+i=", 11)
where

> 1 - - JT—— 1 M\flz

N= VAU + Up Uy, — =V Wy + =V 7T + s

- 1

A= I [— rotrot /1 — rot(LI X \IJ):|

E@, T) Lo

Theorem 3 Assume that Q C R?, g,gt € C(Qr), &,& € C(Qr), |g(x,t)| = gr >0, |§(x, t)| >
g7 >0 forx e Q, Ux) € W2(Q) ﬂh(Q) Ho(x) € J(R), ¥ (%) € J(R), To(x) € WZ(Q) ﬂh(Q)
V7 (x) € G(2). Then the operators A and B are completely continuous from Ly (S2) to Ly($2).

Proof Now we show that the operators T, and S; are completely continuous. Assume that
]’(x) and 7(x) are arbitrary elements of L,(£2). We take arbitrary sequences {]?N } and {#*V)
of L,(R2), such that

WN _]7” -0, [P -7 >0, asN— oc. (12)
Let us show (10) implies that

| TN - Tof| =0,  [SeFPN =87 -0, asN— oo. (13)

We consider in Q7 the following problem:

- - - 1 HN _ H)? -
Wt—vAWwaka—ﬁHﬁ’hxk=——v<p+%)+F, (14)
p P
-1 - - -
hy + — rotroth —H,I(\’ka + v,zyhxk =G, (15)
o

divWw=0, divh=0, (16)
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Mulr =0,  rot hlr=0, Wir=0, a7)

Wleo=0,  hl=0. (18)

Here we introduce the notations W = ¥N — %, i = HN — H, F = (fN —f)g WiV, + thxk,

Gx; N -7) + IV, — WkH . Here the functions "N, HV, and VpN are the %enerallzed
solution of the direct problem (1)-(5), corresponding to the external forces N (x)g(x, ¢)
and the currents & (x, )7V (x). We denote the solution of this problem, corresponding to
the external forcesf(x)g(x, t) and the currents & (x, £)7(x), by v, H, and Vp.

We can consider the problem (14)-(18) with respect to the functions W and /1 as linear,
since (v, H) and (7N, HV) have the following [9, 13-15] differential conditions: (Vea Hyx) €
Ly(Qr) x Ly(Qr) and (WY, HN) € Ly(Qr) x Ly(Qr); then (¥, H) and N, HN) are elements
L,(R2) x Ly(R2), for all ¢ € [0, T] with any finite g, and they continuously depend on ¢ in the
norm L,(2) x L;(2). The following inequality holds:

||Wt||2QT+||ht||2QT+V”W||2Q+ ||h ||29
> 9 1
+V[IPAWI3,q, + ||rotroth||2 Qr = (||F||2 or t IGII3 or) (19)

for the solution of the problem [8, 9, 13].
Let us estimate ”I?”%,QT and || é”%,QT’ By applying Theorems 1 and 2, and Lemma 1, we
obtain

IEN3,q, < [H(fN *)g||§,QT+||kaxk||§,QT+ﬁ||hk1?xk||%,@}
Wi 2.0, = [ =), - T |2, = // W )22 dude

< / [ 3] Bl e

< Q) / [V =), 1% o - IFsali3q e
- 2 - - 2
<c(RQ) [Sé)gjlg](IIVIlz,Q) [ - V)x“Z,QT’

-

”hkﬁlxk”%,QT = ” (HN _H)k Hyy ”iQT

<c(Q) [sou]I}](IIHII%)2 | (HY - )x||§,QT-

For the difference of two generalized solutions of problems [9] the following inequality
holds:

N

x() < ( 1Y fg(x,r)” ||( -7 x,r)||>exp{c0/ d>”2(s)ds}dr

1

</(f 7)lgl dx)
%( [ -iera) Jarewfe [ 00asdar

+
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T ¢ L
Sexp{c()/o CD/’Z(t)dt}/O [ﬁ”fN —f|| Slslzp|g(x,1')|
| . o
+ ﬁ“rN—r” sgp’é(x,r)qdr
T LT
<exp Co/o CD”%t)dt}(ﬁH}“ —f”/o sgp‘g(x,t)’dr
1 R . T
+ﬁ||rN—r||/o sgp|g<x,f)|df), (20)
/tCDZ(s) ds < 2cg /txz(s)Cb”Z(s) ds
0 0
- e <ﬁll7|| P rot7||) ds (21)
0 Vo

where
X0 = pIWIP + P, 920 = pull Wl + ot
"(t) = pvl| Vx| + én rot H|P?,
F=(F @) -f@)gw 0,  1otj= (@) -F@)s@x0,  x(0)=0.

By squaring and integrating both sides of inequality (20) on ¢ from 0 to T, we have
T - -
f O dt = pl W g, + ullg,
0

T L T 2
< 2Texp{200/0 d>//2(t)dt}(p|vN —fHZ(/O stglzp|g(x,t)|dt>

1w 1o T 2
+;HVN—rH </0 sgp“‘g‘(x,t)‘dt) ), (22)

then

T . . 1 N N
/0 D Odt = pv] (% ~7), [2, + oA —rotFL[2
T
< 2% / (OO (0) dt
0
T N N 1 ;:N .
o [ x0(VBI G -Pretwol + | -P)ets ] ) as
T T t 2
72 N _ 7|2
§4Tcoexp{2co/0 o] (t)dt}/o (p”f fH (/0 stslzp|g(x,r)‘d1:>
1, -2 ! 2 "2
RN (/ sup|§(x,z’)|d‘r) >q, (0)dt
o 0 Q

T o s/ (T 2
+2x/ﬁexp{c0/0 CD“(t)dt} (prN —f|| (/(; stslzp|g(x,t)|dt)

T 2\ 3
+§;;;N_;||2(/O sgp‘%‘(x,t)‘dt))
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x (/()T(p I —f“llz(Sl;zplg(xﬂf)l)2

1
) 2 2
- 2P -7 (suples 0] >dt> . (23)
o Q
Furthermore, (12), (22), (23), and (19) imply that
AN oy (12 - SN2
|G =9), 050, + |(HY -H), [0, = 0, asN—oo. (24)
Let us consider in Qr the problem
- . 1 . -
W,—-vAW =—-VP+E, divW=0, (25)
0
Wleo = ¥a(x),  Wir=0, (26)
-1 - . -
h; + —rotroth = Gy, divh =0, (27)
o
hls=0,  rothlr=0,  hlio=ho(®), (28)
where

-

W:(T/N_D)t’ Z:(HN_H)t’

> aJ [ - . R N % S N
F = &[(fN —f)g— v;:’vak + ViV, + ;(H,I(\[Hi\l[( —H/<ka)i|,

G - %["3 DG 5) ¢ ro x Y] -l m)],

V() = P(FN ~F)e@,0), T = P[PV ~7] 55,0)'

The problem (25)-(26), as well as the problem (27)-(28) with the conditions in the space
V2(Qr) is uniquely solvable [4, 9, 13]. We now take the dot product of the first equation
of (25) with the function \?V(x, t) and of (27) with Zz(x, t), respectively, in Ly(Qr), then we
obtain

1, L
T Do [0l dr
0

> o 1,- 2
_ /Q arder |70, (29)

1,- oo
i Dl g v [ Jrotics 0} de
0

:f éﬁydxdt+1||12(x,0)||§g. (30)
Qr 2 ’

Using the method of [4] we prove that (VN — 7); and (ﬁN -H ); are the solutions of the
problems (23)-(24) and (25)-(26) from V,(Qr). Estimating the right-hand sides of (29)
and (30), and by (12) and (24), we have

-

|6 =), Dl + 1Y ), 1), — 0, asN — o0, o

Thus we have proved that the operators T, and S¢ are continuous.
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Now we show the complete continuity of the operators T, and S. Let us consider the

following problem:

- - 1 - -
W, - vAW =—-—VP+F, divw =0, (32)
o
| S -
h, + — rotroth = G, divh =0, (33)
ou

hn|F=Hn|F=0: I'Otljl|[‘=0, W|F=0r
(34)

Wlieo = Ta(x), Rl = iy ().
Here

- - - A= . .
W =7, h=H, F = y [f(x)g(x, £) — ViVg + %Hkak:|,

> 0 JE) N N

G =— |:E(x )r(x) + rot[v x H]],
it ou

. L= . [T

Va(x) = P<vAvO +f(x)g(x, 0) — VorVox, + ;HOkHOxk);

S(x;LO)?(x) +rot[vg X Ho]].

- 1 .
hy(x) = P[— rotrot Hy +
o
By the differential conditions of the problem (32)-(34) we fix an arbitrary number ¢.

Since the functions || Wx(x, Bl2,e and || rotljz(x, t)|l2,o are continuous on [g, T], we could

choose ¢, € [¢, T] such that the following equalities hold:
T 2 - 2
[ Walw, )|, dt = (T — &) Walw, )]
’ (35)

T
/”m@@@ﬁﬂm=uumeMmmﬁﬁ
&€

Equations (32) and (33) imply that

T T
/ /|Wt—vPAW|2dxdt=/ /|PF1|2dxdt,
ty Q Ly Q

T 2 T -
/ / dxdt = / / |PGy|? dx dt.
ty Q ty Q

Integrating by parts (36), we obtain

(36)

- 1 -
h; + —Protroth
on

T
u||\77x(x,T)||§Q+/ /(th|2+|vPA\X’/|2)dxdt
! te JQ
T jud e 2
=/ /|PF1|2dxdt+v||Wx(x,t*)||2Q,
te JQ ’

1 - 2 Tr(-
a||roth(x,T)||2'Q+/t* /Q<|ht|2+

T
=/ /|P@1|2dxdt+ i||roth(x,t*)||§ﬂ.
te JQ o ’

: (37)
>dxdt

1 -
—Protroth
op
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By equality (35) and equality (37), we obtain

v
T-¢

T
V[ Welx, T3 o < / /Q \PFy | dxdt + | Wax8)[5,
t*

1 > 2 g > 1 7 2
a||1roth(x, T)ngft* /QIPGI|2dxdt+ m”roth(x,t)”z,QT.

w(T

By the well-known theory in [4, 13], the following inequalities hold:

N . 3 T 2
g, = [P+ 5 ([ 1Bw0lqd)
X (39)

1 b 2 7 2 3 g - ’
a” rothIIZYQT < ||h2(x) ||29 + 5 /0 “ G (x, t)||2,Q dt

for the solutions of problem (32)-(34).
Since Q@ C R?, g,g, € C(Qr), £,& € C(Qr), andf(x),rot}(x) € Ly(R2), the following in-
equalities hold:

- N l,l, -
‘P(x)g(x, ) — ViVy + ;Hkak

2,Q
< [f@e@ 1)) 0 + () sup 7, Dlsh - 760,

(2

*e(S2) sup |H 05 - [rotF e 0], o
0,

£, 1) (40)

7(x) + rot[v x H]
ou

2,2

&(x,t)

on

7(x)

< H +e(Q) sup](HT/'(x, D]50)* - |rot A, 1)

2,Q [0,T
+ (@) sup ([ A 8)]53)" - |72 0)[5 o
[0,7]
[0l = i)+ cx( sup [0, ) - [t O
0,

+ () [sup] ”H(x, t) H(;;Z . Hrotljlt(x, t) ”2,9,
0T
(41)

|G 0)],q <

,t - - -
il )r(x) H + (@) sup (| 7x, )| 52)? - [rot H(x, o)
on 2,Q [0,T] ’ ’

+au(@ sup (|0 0)° - [P Ol

By inequalities (39) and (40), we obtain

2

- 2 3 - 1 N N l,{, -
vH W(x, T) stz < (1 + 5TZ) ”Fl”%:QT + T . [2 VAV) — VorVox, + ;HOkHOxk

2,

- 2 . 2 .
+ 6] (), 0[5, + 6(<() sup 1715%) ol
[0,7]
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- 2 -
6(c(ed) sup 1H155) | rotHon%,Q],

[0,T1]
- ”roth(x, T) ||2 0= (1 + = T2> ||G1||2 or (42)
1 1 . -7
+ |:2H —— rotrot Hy + rot[vy x Hy]
T-¢| |on 2,9
£(x,0)_|? -
6‘ r (C(Q) sup ||H||2 g) ”VOx”%,Q
on 2,9 [0,7]

2 -
+ 6(c(Q) sup ||v||<2?§2) || rot Ho ||§,Q].
[0,7]
Moreover, the equality (41) implies that

B 1) ;QT <3|[f@)gx, 1) iQT

-2\ s 2
#3(@ sup I7a) - [Futu)| 30,

- 2 >
+3(a(@) su}; [F0)5g) - ot 0],
0

£ 1) (43)

66612, = |25

2,Qr

3(ci(Q v, )| H,(x,
+3( (5 sup( |t OI%)") - Irot s 02,

#3(a@ sup (1 0150)°) - [0,
0,T

Here ||F1 12 Qr and || él ”%,QT are bounded, since one can estimate v, (x, £), Vs (x, £), ﬁt(x, t)
and roth in L, (Qr) via the data of the problem and |[]?||2,Q, 7|2, By combining (40) and
(41), we have

[eslie, T 5. + | 0t e, T) 5, < Mo (44)

Thus, the operators T, and S; map any bounded set D from Ly(£2), which is the domain
of definition of T, and S; into a bounded set D from W3(R2). Then the set D is compact in
L,(2) by the Rellich theorem. Thus the operators T, and S¢ are continuous and map every
bounded set into a compact set. Consequently, the operators T, and S; are completely
continuous. The operators A and B are also completely continuous as a composition of
linear bounded and completely continuous operators. d

Theorem 4 If g,g; € C(Qr), &,& € C(Qr), Ig(x, )] > gr > 0, [£(x, )I >ér>0asx€Q,
N 0
U(x) € W2(R) NJ1(R), Hox) € J(R), U(x) € J(R), Tolx) € W;?(Q)ﬁh(ﬂ), Vr(x) € G().

Let the inequalities

1 fd - - pL -
s per(lUllag + 1V lla0), vl [Ullag+ > Wllag (45)

hold. Then the problem (1)-(6) is solvable if and only if (11) is solvable in L, (S2).
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Proof We suppose that the operator equations (11) are solvable. We introduce the nota-
tion]ﬁ(x) and 7 = rot}l (x). Then by [9-15], we can find ¥, Vp;, and 1:[1 in the necessary
classes of functions, satisfying (1)-(5) with vectorsﬁ(x)g(x, t) and & (x, £) rot71 (x). We show
that these functions satisfy the overdetermination condition (6), also. Let v(x, T) = i[l(x),
H(x, T) = Uy (x), Vp(x, T) = Vrr (x), then for the function w = U-,%=Y - ¥, we have
the following problem:

. - . [T TN
VAW + willy, + Uywy, — ;zk\llxk - ;‘I’Ikzxk =-Vg, (46)
1 o - - - -

——rotrotz + wi Wy, + Unzy, — zilly, — VixWy, = 0, (47)
o

diviw=0, divuz =0, (48)
- 0z 0z

Wr=0,  zfr=0, ——--—| =0. (49)

8x1 8.?62 r

Now we take the dot product of (46) with the function w and of (47) with z, respectively,
in LZ(Q),

v,o||ﬁ/x||2+p/ wkuxkﬁ/dx+,o/ Wi, Ui dx
Q Q
—u/zk\fkaVvdx—u/ Wy Zy, wdx = 0,
Q Q
1, L .
—lrotz||* = | iV zdx+p | Uizyzdx
o Q Q
—,u/ zklj[xkde—/L/ Wy Wizdx = 0.
Q Q

We transform the previous equalities into the following form:

vollwell® - ,o/ wklj[ﬁ/xk dx + uf zk\ilfvxk dx — /,L/ Wy Zy, wdx = 0, (50)
Q Q Q

1 >n2 g d > - -

—llrotz||* —p | wpWzy, dx+p | Uzizy dx+p [ wWizy, dx = 0. (51)

o Q Q Q

Now we add (50) and (51),

=2
Vo[ well

1 =02
+ — || rotz||
o
=p/ wkilfvxk dx—,u/ zk\flfvxk dx
Q Q
+,u/ w;ﬁ’}xk dx—,u/ i[zkixk dx,
Q Q

the right-hand side of previous equality implies that

2
[

I U
vp|lwy +;|Ir0tZII

= > 2 > = -
< pallllsallwlsq + lwlaell¥igellz:l2e
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+ 1lZlae ¥ laollillae + el Ullselz:)3 ¢
< peilUlaallivaliq + mallUllsez:l2g

+ el | WllaelZ: e + meillZlae | Wllae | #xll2e
< peillUlaallivaliq + pellUllselz:l2g

of ) =2
+ uer W g (x5 6 + 1Z03.0)-
Hence

(vo = c1(pIUllag + 1P lla)) Il

1 = > 5
+ (; - na(1Ullsg + ||‘I’||4,sz)> l[otz] < 0. (52)

By conditions (45), from inequality (52) we obtain U= Ijll, U= \ill, then Vrr(x) = Vg (x).
Thus, v1, Vp1, Hl,ﬁ(x), and 7 = rot}l () satisfy all conditions (1)-(6). Consequently, the
problem (1)-(6) is solvable.

Necessity. Assume that the problem (1)-(6) is solvable. Let us denote this solution by
v, Vp, H, rot}}. Hence, we obtain the operator equations (11). Furthermore, we see that

]?(x) and 7 = rot;(x) are solutions of this equation. d

Theorem 5 Let the condition of Theorem 4 hold. Let the following inequality hold:

M+ [R]ag + Xl <1, (53)
where
1130, = vIvalls lII tH||2 B= i (0,2]
2,Qr = V|| Vx 2,Qr + pu 1 () 2,Q7? = 2d2 N S y 4,
- 1 - - JT— 1 /L\f/2
R=——+ | VAU + Ui Uy, — =WV, + =V 7T+ —— ] |,
g T) 0 0 2

. 1 - L
A= oK |:— rotrot/ — rot(U x LI/):|,
Ex,T) | Lopn

2 1 1
M = — @3
1 e"p{ 241 ®ler } <inf9 g 7)) infa £ T)|)

dl(l

- - T
VAV — VorVox, + ;HOkHOxk

2,9
1
+ sup ‘g(x,O)‘ + —‘é‘(x,O)’
Q ou
1 - R -
+ | — rotrot Hy + rot[vy x Hy] ) exp{-BT}
ou

T 1
+/0 exp{—ﬁ(T—t)}sgp<|gt(x,t){ + ﬁ|ét(x,t)|> dt:|.

Then there exists a solution of the inverse problem (1)-(6).
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Proof It is known that for the direct problem (1)-(5), one can obtain the following inequal-

ity:
t
x2(@) +/ (1) dt
0
<plvoll3q + wlHol3q

3 T 2 T 2
+§{p</0 sgp|g(x,t)’dt) +$(/0 stép‘é(x,t)‘dt) } (54)

We return to the problem (32)-(34). We rewrite (32), (33). By differentiating (1) and (2)
with respect to ¢, we have

- - . 7 - - -

Vir + (VieVag + VicVage) — ;(Hktka + HyHy ) = vAV,
1 H2\ -

=—— grad(p + s ) +fg (55)

o ¢

S| . L 1 -

Hy + — rotrotH, — (rot[v x H]), = —&rotj, (56)
ou ou

(rot[v x H]), = HygVsy + HiVyr — VigHoy — ViHog.

Taking the dot product of (55) and (56) with pv, and [/L]_:[[ in Ly(S2), respectively, we

obtain

pd . - .
BN 015l s p [ v

- ,U«/ (Hkt]_:lxk + Hk]j[xkt)?/t dx=p /f’gt -V dx, (57)

Q Q
wd - o, 1 - - IR 1 - >
——||H¢||I* + — || rot Hy||” — 0 | H;- (rot[v X H]) dx=— | H;-&rotjdx. (58)
2 dt o t o
Q Q

Here
/ﬂ;]% - (rot[v x ]jl])tdx
- /Q Hi(HyVyy + HyVng — VigHlgy, — viHyy ) dc
- fQ (i Vo Hy — HyiHogr — Hi vieHy) dix.

By combining (57) and (58), we obtain

1d 5 . 1 . -
——a)2(t)+F2(t)=1(t)+,o‘/fgt-vtdx+—‘/Hyé,grotjdx. (59)
Zdt Q o Jo

Here we introduced the following notation:
2 A 77112 2 sz, L 77112
X7 = pIVI™+ wlHIS,  @%() = pv[val” + — [l rot HI%,

N > - 1 -
@* (&) = pllVell® + wllH>,  F*(t) = pvllvel® + I rot Hy||%,
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. 1 -
2(t) = /pllfgll + %”St rot/|l,

I(t) = / [I)xk (//LHktI_:[t — PVkeVe) + Mka (HVe — thl_:lt)] dx.
Q

By applying the Young inequality to the right-hand side of (59), we obtain

’I(t)| =< (/ (/LHktI_:[t + ,Othat)z) Vel + M/ Zﬁxkﬁtvt dx
Q Q

1 1

1
<e (/Q((E{})2 + (D%)Z)alx)2 17l +2M</QH3 2 dx>2 I EL |

= 3 @) (D)F (1),

- R 1 > >
’p/fgt'vtdx+—/Ht~§tr0tjdx
Q o Ja

T 1 -
< plfgllivell + gllét rotj | || H |l

<o(t) (ﬁ Ifell + %nst rot7||)‘

Then we have

2
% da; t(t) + P2(8) < c(t)w(t)E(L) + w(D)z(t)
g 2(¢) + o5 d>2(t)a) (t) + w(£)z(2),
do(t) 2-
= 2d2 w(t) < —CDZ(t)w(t) +2(2).
Multiplying the last inequality by exp{~B(T ~ 1)}, B = 373, we obtain
B(T-1) dw(t) + Bo(t)ePT) < ﬁQZ(t)a)(t)e_ﬂ(T_t) +2(t)e P,

26

here y(£) = w(t)e P T, oy (t) = % ®2(t), aa(t) = z(t)e P79, Then the last inequality can be
rewritten as

dy(t)

— = ey(®) +ona(d). (60)

By the Gronwall lemma, we have
dy(t
exp{—/o ay(t)dr } Zl(t)
t t
§a1(t)y(t)exp{—/ al(r)dr} +a2(t)exp{—/ al(r)dr},
0 0

%[y(t)e_ fotoq(r)dr] <w(t)e [ay(yde
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Integrating this inequality with respect to ¢ from 0 to T', we obtain
T T .
y(T)e*fo ay(r)dr Ey(O) +/ Olz(t)eifo ay(r)dr dt,
0

T T
w(T)SeXp{g—z /0 <I>2(t)dt}|:w(0)e’”+ /0 z(t)eﬂ”f)dt}

Returning to the original notation, we obtain the following inequality:

plFete, )| + | oo, )
62

T - 28
< exp{ - fo CI>2(t)dt} [(p (7406, )|+ | P, 0) )™ 328

T - 1 =~ -Z4(T-)
+/0 (ﬁ”gt(x, L‘)f(x)“ + ﬁ ||$t(x, t) rot j(x) ||>e dti|,

where 7,(x, 0) = VAT + f(x)g(x, 0) — vorVos, + %HOkFIOxk,

rot}(x) +1ot[Vo x Hol.

- 1 - ,0
H;(x,0) = — rotrot Hy + £(,0)
ou o

We consider the bounded, convex, closed set
D = {f € Ly(),r0t] € Ly(Q), If | <L, 7]l <1}.

Since (Af)(x) = ﬁ(zj)(x), (BF)(x) = £24(S:7)(x), the following inequality holds:
IAFI? + 1BF|* < M3 (61)

for the operators A and B in D.

We define in D the nonlinear operators A; and By in the following form:
Af=Af+R,  BjF=BF+A (62)

By the condition (53) the operators A; and B; map D onto itself. By virtue of this and by
Theorem 3, the operators A and B are completely continuous, and the combined Schauder
principle implies the solvability of the operator equation

Af=f  Bir=%

in D. Thus, by Theorem 4 the inverse problem is solvable (1)-(6). The proof is complete.
d

4 Conclusion

The inverse problem with final overdetermination for a non-stationary magnetic hydro-
dynamics system has been reduced to an operator equation. By skillfully using the method
proposed in [21] and [30], the compactness of the operator is proved and Schauder’s theo-
rem for the operator equation is used. The important thing is the previously unexamined
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inverse problem with final overdetermination for a non-stationary flat system of magnetic
hydrodynamics. The results were formulated in the form of theorems and were proved
rigorously. The search for new methods for facilitating the solution of the problem of the
existence of a global solution of inverse problems for the Navier-Stokes equations, free
convection, magnetohydrodynamics, and other nonlinear evolution equations is relevant.
Therefore the proposed method by [21] and [30] is definitely applicable, also to the inves-

tigation of many other inverse problems.
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