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Abstract

In this paper, we study the simultaneous and non-simultaneous blow-up problem for
a system of two nonlinear diffusion equations in a bounded interval, coupled at the
boundary in a nonlinear way. Under certain hypotheses on the initial data and
parameters, we prove that non-simultaneous blow-up is possible. Moreover, we get
some conditions on which simultaneous blow-up must occur, as well as the
non-simultaneous blow-up conditions for every initial data. Furthermore, we get a
result on the coexistence of both simultaneous and non-simultaneous blow-ups.
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1 Introduction and main results

In this paper, we study the nonlinear parabolic system

— m A{ (X’
= (")t MU e D — (0,1) % (0, T), 1)
Ve = (Vn)xx + )szﬂ,

with nonlinear coupling boundary conditions

(um)x(l’ t) =y (1’ t),
(Vn)x(l: t) = uP2y®2 (L t)y

(w")(0,8) = 0, re@n 2
(Vn)x(o: t) = 0;

and the initial data
0y =@, 101), (1.3)

v(x,0) = vo(x),

where m,n > 1, o, B,p1,92 > 0, p2, q1 > 0, the initial conditions ug, vg > § > 0, are continu-
ous bounded and satisfy
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0’ my\// )\' o > 0’
()" dag =0, 1,1, (1.4)

0, (vg)" +A2vy =0,

Remark 1.1 Combining (1.4) with the comparison principle, we can actually get following

relationships:

Uy Uy, Vi, Vi > 0, u,v>58>0, forallxe[0,1]andt€[0,T).

The reaction-diffusion system (1.1)-(1.3) can be used to describe heat transfer in a mixed
medium with absorptions and nonlinear boundary flux, and some chemical reaction pro-
cesses with the slow diffusion phenomenon (see [1, 2]).

In [3], Song and Zheng considered the blow-up conditions of the following problem:

(), = Au + u®1vP, V)= Av+utvP, (x,8) e Q x (0, T),
g—j;zu‘“vm, 3—;=uq2vﬂ2, (x,2) € 92 x (0, T),
u(x’ 0) = U (x)1 V(x; O) = VO(x)r X € 51

where Q is a bounded domain in RN, m,n > 0, a;, Bi,pi,q; > 0. If we let u” =%, v = 7,
N =1, p1 = q1 = 0, we just get system (1.1)-(1.3). From the conclusions in [3], we know that
the solution of system (1.1)-(1.3) blows up if and only if one of the following conditions
holds:

(1) max{a,pi}>1,

(2) max{g,q2}>1,

3) p2q1 > 1 =p1)(1 - q2).
In this case we can only have

lim sup{ [u(, 0)] , + [V, 0)] .} = o0

However, from the above result, we cannot show that blow-up is simultaneous or non-
simultaneous. The blow-up rate is not known yet.

Recently, the simultaneous and non-simultaneous blow-up problems of parabolic sys-
tems have been widely considered by many authors [4—14]. For example, when m = n =1,
A; = 0, Pinasco and Rossi [6] considered the system of heat equations coupled via a non-
linear boundary flux with @ C RN and found that u blows up at time 7 and v remains
bounded up to time T for certain initial data if and only if p; >1 and p; <p; — 1.

When X; =0, =8 =0, m>0, n>0, Briandle et al. [4] studied problem (1.1)-(1.3) and
proved that the non-simultaneous blow-ups occur if and only if

2p; < max{p1 -1,2p—(m+ 1)}.

They also found some conditions under which # blows up and v remains bounded for
every initial data.

When m = n =1 and A; < 0, Zheng and Qiao [10] also got the sufficient and necessary
conditions of non-simultaneous blow-up.

In this paper, by using a modification of methods in [4] and [10] we will focus on the
simultaneous and non-simultaneous blow-up problems to (1.1)-(1.3), and we get our main
results as follows.
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Theorem 1.1 When %, > 0, if max{o, p1} > m and

max{2p; — m,a} > 2p,y +1, (1.5)

then there exists initial data (uo, vo) such that u blows up at a finite time T, while v remains
bounded up to T.

Theorem 1.2 When X; > 0 and max{o,p1} > m, if u blows up at time T and v remains
bounded up to T, then (1.5) holds.

Theorem 1.3 When x; <0, if p1 > m and 2p; —m > max{2p, + 1, a}, then there exists initial

data (ug,vo) such that u blows up at a finite time T, while v remains bounded up to T.
Remark1.2 Whenm =#n =1and A; < 0, Theorem 1.3 is consistent with Theorem 1 in [10].
By interchanging the roles of u and v, we get the following results.

Corollary 1.4 When X; >0,
(i) if max{B,qq2}>nand

max{2q, —n, B} > 2q; +1, (1.6)

then there exists initial data (ug,vo) such that v blows up at a finite time T, while u
remains bounded up to T

(i) When max{B,q2} > n, if v blows up at a finite time T and u remains bounded up
to T, then (1.6) holds.

Corollary 1.5 When 1; <0, if g2 > n and 2q, — n > max{2q, + 1, B}, then there exists initial

data (ug, vo) such that v blows up at a finite time T, while u remains bounded up to T.

Theorem 1.6 When X; > 0, if max{o,p1} > m and 2p, + 1 > max{2p; — m,a}, then for
any initial data (ug,vy) the solution (u,v) to (1.1)-(1.3) blows up simultaneously at a finite

time T.

Theorem 1.7 When X; > 0, if max{a, p1} > m and (1.5) holds, then the set of initial data
such that u blows up and v remains bounded is open in the L™ topology. If max{B,q2} > n
and (1.6) holds, then the set of initial data such that v blows up and u remains bounded is
open in L™ topology.

Next, inspired by [9, 12], we consider the coexistence of both simultaneous and non-

simultaneous blow-ups, and we get the blow-up rate if simultaneous blow-ups occur.

Theorem 1.8 When X; >0, if

max{o, p1} > m, 1.7)
2p; — m > max{a, 2p; + 1}, .
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and

max {8, gz} >,

(1.8)
2q, —n>max{f,2q; +1},

then there may occur both simultaneous and non-simultaneous blow-ups. Moreover, if (u, v)
blow up simultaneously, then there exist positive constants c, C such that

oT-6)" < max u(-,t) < C(T-1)™,

o(T-0)"< r[%zﬁ(v(yt) <C(T-t%", ast—T,

where

o - n-2q;+2q +1
! Aprqy — (n —2go + 1)(m - 2p; + 1)’

m—2p; +2py +1

0y = .
2T apoqi - (n-2qo + )(m—2p; +1)

Finally, let us show that, under certain conditions, blow-up is always non-simultaneous.

Theorem 1.9 When ;> 0, if

p1 > max{m, "2},
> > max{n, 3£},

and

2y + 2 +1> 0,
:” Prepti= (1.9)

m—2p; +2py+1<0,
then u blows up and v remains bounded for any initial data.

Theorem1.10 When X; > 0, ifmax{a, p1} > m, max{B, g2} < 1 and (1.5) holds, then u blows
up and v remains bounded for any initial data.

The rest of this paper is organized as follows. In the next section, we first get some blow-
up results of scalar problems, and using them to prove Theorems 1.1-1.3. In Section 3, we
consider the coexistence of both simultaneous and non-simultaneous blow-ups, Theo-
rems 1.7, 1.8 are proved. In Section 4, we show that non-simultaneous blow-ups always
occur, and we prove Theorems 1.9 and 1.10.

2 Non-simultaneous and simultaneous blow-up

In this section, in order to prove Theorems 1.1-1.3, we will start with the following problem:

ur = )y + Autd, (x,2) € (0,1) x (0, T),
(uh)(1,t) = u? (1, t)h(t), (uh(0,£)=0, te(0,T), (2.1)
u(x, 0) = ugy(x), x € [0,1],

Page 4 of 14
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where /> 1,q,p > 0,and A, € R, h(¢) is a continuous, bounded, nondecreasing, and strictly
positive function.

When 4 =1, A; =1, problem (2.1) has been already studied in [15-17]. There, it is shown
that solutions blow up if and only if

max{q, p} > L.

By the comparison principle, when 1; > 0, the solutions of (2.1) blow up if and only if the
same restriction.

When A < 0, we know from [18], if p > [ and g < 2p — [, that the solutions of (2.1) blow
up for large initial data.

We give the blow-up rate of the solution of (2.1) in the following two lemmas.

Lemma 2.1 Let u be a solution of (2.1) with A, > 0, if max{q, p} > [, then there exist positive
constants ¢ and C, such that

o(T-1)°< r[r(l)aﬁ( u(t) <C(T-1)"°. (2.2)

1
2p—1-1°
(i) When2p<qg+1,0= qi.

(i) When2p>q+1,0=

1

(iii) When2p=q+l,0=ﬁ=m~

Proof Notice that if case (i) holds, by max{q,p} >/ and 2p > q + [, we get p > [. If case (ii)
holds, it follows from max{q, p} > [ and 2p < g + [ that g > [. Thus, by a similar proof to that
of Theorem 3.1 in [15], we can prove easily Lemma 2.1. We omit it here. O

Lemma 2.2 When A <0, p>1, and 2p > q + I. If u be a solution of (2.1), then there exist
positive constants c and C, such that

o(T-1)7°< max u(t) <C(T -1, (2.3)
0,1
where o = ﬁ.
Proof The proof is similar to that of Theorem 1.2 in [18]. We omit it here. O

Furthermore, we need to consider the following problem.

Ve = Vg + AVl (x,8) € (0,1) x (0, T),
ve(1,8) = C(T — £)=vk2 (1, 1), v(0,8)=0, te(0,T), (2.4)
v(x, 0) = vo(x), x € [0,1],

where k;,s >0 and A, € R.

Lemma 2.3 If's < 1/2, then given v, there exists T small enough such that the solution of
(2.4) verifies

sup [, )] < 2Ivoll
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Proof For given vy, we denote
K = maxvg = vo(1),
(0.1]
let £y be the first time that
max v(-, ty) = v(1, tg) = 2K.
[0.1]

If such ty does not exist, v will remain bounded with v < 2K, the conclusion follows.
Let I'(x, £) be the fundamental solution of the heat equation in [0, 1], so

Mo t) = — {"‘2 }
X, = €X —_— .
2/t P 4¢

It is well known that I satisfies (see [19]),

1
f -y i-2dy <1,
0

t
1
- dt <C't-z,
lF(lt I)Z(t—r) T < z
¢ 1
/ZF(O,t—I)drzﬁvt—z,

x—)y
2(t-1)

or
B—(x—y,t—r): Fx-yt-1), xy€l0,1,0<z<t
Ny

By Green’s identity of (2.4), we have

1 t pl
V(x,t):/ F(x—y,t—f)v(y,z)dy+/ /0 F(x—y,t—t)(kgvkl(y,r))dydr
0 z

£a Lar
+/ —V(l,r)F(x—l,t—r)dr—/ —x-1Lt-7)vQ,1)dt
. Ox z 377y

tar
+/ —(x,t = 7)v(0,7)dT,
z 8773/

where 0 <z<t<T,0<x<1 Withz=0,and x — 1, it follows that

1 t pl
V(l,t)fvo(l)/ l"(l—y,t)dy+/ / F(l—y,t—r)dykzvkl(l,r)dt
0 0o Jo

¢ 1 ¢ 1
+ /0 C(t—1)*vRqQ, T)Zﬁ(t —-7) 2 dr + (1, t)/0 =7 r'Q,t-1)dr.
Furthermore, we have
v(1,to) < vo(1) + A 1(1, £o)
. C 2(1, 1) / [O(to — 1) V24t + (1, ) C* Vo (2.5)
2y 7)o ’ '
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(1) If A5 < 0, (2.5) becomes

V(L ty) < vo(l) +

c g

2\/Evkz (l,to)/(; (to — )2 dt + v(1, t)C* V1. (2.6)
Since s < 1/2, for N = 222K*~1 1 3 if we choose T sufficiently small enough, foto(to -
7)~2dt can be smaller than 2./7/NC, also /£, < /T <1/(NC*). Thus

N-1

1
v(1,%0) < vo(1) + ﬁvkz,

since (1, ty) = 2K,

2N -1)

1
K <K+ —(2K)*,
N

and hence
N <2kl

this is a contradiction.
(ii) If A, > 0, for

(2K)*2 + 2K

S P I
K+ @Kk

if we choose T sufficiently small enough, [,°(¢o — 7)™~ dt can be smaller than 2/7/NC,
also /fo < /T <1/(NC*). Thus

1 1
v(1,£0) < vo(1) + NV]Q(L to) + AavM (1, to) + ]T]V(l’ to)

and hence

<(21<)k2+21<
= K+ A (2K)k’

this is also a contradiction. O

Lemma 2.4 For given vy, let v(x,t) be the solution of the following problem:

Ve = (V)gx + AaVP, (x,2) € (0,1) x (0, T),
V)1, 8) = C(T —t)=Sv22(1, ), v)(0,8)=0, te(0,T), (2.7)
v(x, 0) = vo(x), x € [0,1],

where n > 1, B,q2,s >0, and Ay € R. If s <1/2, then there exists T small enough such that
v(x, t) satisfies

sup [, 1) < 2Ivoll
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Proof Given vy, let z be a solution of (2.4), with zo(x) = vj(x), ki =

B
n’
C(z0) = (n(2]120lloo) 7 )" in front of z;. Let ¥ = 27, then

ky = 2. A constant

Clzo)nv" 'V = (V) ax + AV,

(x,2) € (0,1) x (0, T),
V)1, 8) = C(T - £)~v2(1, 1), ¥)(0,£)=0, te(0,T),
U(x,0) = 25" (x) = vo(x), x€10,1],

since s < 1/2, from Lemma 2.3, we know that a small enough T can be found, such that

sup e8] < 2lzollec

z is also bounded away from zero and z; > 0, so we have

Therefore v is a supersolution of problem (2.7). Hence

1
sup [[v(8)], = sup [V, 0] < (2lvollz) " O
0<t<T 0<t<T

Lemma2.5 Ifn >1ands > 1/2, then every nonnegative, nontrivial solution of the following
problem blows up at time T,

Ve = (Vn)xm
()L t) = C(T - 2)%,
v(x,0) = vo(x),

(,2) €(0,1) x (0, 7),
(v)(0,£) =0, te(0,7),

(2.8)
x € [0,1].

Proof It is an immediate conclusion of Theorem 3.2(i) in [4].

Proof of Theorem 1.1 First, we consider u to be a solution of the following problem:

u, = (") xx + Mu”,
@™)x(1,2) = 81w (1,2),
Z(xr O) =Ug (x),

(x,2) € (0,1) x (0,77,
(Zm)x(o: t) =0, te (O, T/)x

x € [0,1].

Since max{«, p1} > m > 1, u blows up at finite time 7”. From Lemma 2.1, we also have the
estimate

u(-t) < C(T' - t)fa, for all (x,¢) € [0,1] x [0, T’).

In particular, uo(x) = u(x,0) < C(T’)77, thatis, T’ < (%)”“.

Since v> 6 > 0, for all (x,¢) € [0,1] x [0, T), u is a supersolution of u. Then u also blows
up, and the blow-up time T is smaller than 7’. Thus we have T < T’ < (%)””. Aso >0,

we can choose the initial data u(x) large enough such that T is small.
Given vy, we denote

K =maxvy =vp(1).
[0,1]

Page 8 of 14
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We claim that there exists u, large enough such that v < 3K for all (x, £) € [0,1] x [0, T]. If
this claim is not true, there exists 0 < ty < T, which is the first time v(1, ty) = 3K. So when
t€[0,t0], v<3K,whent € [ty, T], v> 3K. We denote a cutoff function

~ V(x! t)! (x, t) € [0! 1] X [01 tO]y
V(x, t) =
3K, (x,8) € [0,1] x [to, T1,
obviously, V is a bounded, continuous, and nondecreasing function.

Let % be a solution of following problem:

U = (U") e + MU, (x,t) € (0,1) x (0,7),
@)1, £) = 17 (1, 1), (@7™),(0,6) =0, te(0,T),
(%, 0) = uo (%), x€[0,1].

% blows up at 7', by Lemma 2.1,
U(,t) < C(T -1y, forall (x¢) €[0,1] x [0, 7).

AsV <vfor (x,t) €[0,1] x [0, T], % is a subsolution of u, thus we have T' < T. Therefore,
ulL,) =L)< C(T-" <C(T-t)°, 0<t<t.

Now we consider the equations of v,

Ve = (V)ax + AVP, (x,2) € (0,1) x (0, £),
(V)(1,8) = u”2v‘12(1 t) < C(T -t)yP2°v22(1,t), te(0,t),
o )( t) = t € (0,ty),

v(x,0) = VO(x): x€[0,1].

So v is a subsolution of (2.7). Let v be the solution of (2.7), where s = pyo.

(i) If2p; > @ + m, from (1.5) we have 2p; —m > 2py +1, thuss—p20 = 2p < 1/2.

(ii) If 2py < + m, from (1.5) we have a > 2p, + 1, also get s = % < 1/2.

(iii) If2py = o + m, from (1.5) we have 2p; —m = =2p, +1, and we get

s= P2 _ P2 <1/2.
a-1 2pp—-m-1
By Lemma 2.4, we have ¥(1, £y) < 2K. But on the other hand, we have
3K =v(1,ty) <v(1,ty) < 2K,
which is a contradiction; we conclude that v remains bounded up to time T O

Proof of Theorem 1.2 Let h(t) = v(1, ). Since max{«, p;} > m, and v is a bounded, continu-

ous nondecreasing function in [0, 77, by Lemma 2.1, we know

o(T -1t)™° <maxu(,t).
[0.1]
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Since v > §, v satisfies

Ve = (V) + 2oV = (V)

V)1, 8) = uP2v12(1, t) > 61 (T — t)7P2°,
(V)x(0,£) =0,

v(x,0) = vo(x).

So v is a supersolution of (2.8). Let v be the solution of (2.8) with s = pyo. By Lemma 2.5,

we have s < 1/2, otherwise v will blow up, and v cannot be bounded.

P2
2p1—-m-1

(i) If2p) < + m, from s = p—zl <1/2, we have « > max{2p, + 1,2p; — m}.

a—

(i) If2p; > + m, from s = <1/2, we have 2p; — m > max{2p; + 1,a}.

(iii) If 2p1 = o + m, from s = £ = 2p£2m_1 <1/2,wehave 2p; —m =a > 2p, + 1.
From the previous three cases, we have (1.5). O

Proof of Theorem 1.3 By using the blow-up rate estimate in Lemma 2.2 instead of the
estimate in Lemma 2.1, Theorem 1.3 can be proved by the same steps as in the proof of

statement (i) in Theorem 1.1. We omit it here. O

Proof of Theorem 1.6 Under our assumptions # must blow up. If there exists initial data
that u blows up at finite time 7', while v remain bounded up to that time, from Theorem 1.2
we have (1.5) holds, which is a contradiction. O

3 Coexistence of simultaneous and non-simultaneous blow-ups
In this section, we consider the coexistence of both simultaneous and non-simultaneous
blow-ups, and we prove Theorems 1.7 and 1.8.

Proof of Theorem 1.7 Let (u,v) be a solution of (1.1)-(1.3) with initial data (ug,vo) such
that u blows up at T while v remains bounded, that is, v < C. We only need to find a L*°-
neighborhood of (1, v9) such that any solution (i, ¥) of (1.1)-(1.3) with initial data (o, Vo)
in this neighborhood maintains the property that # blows up while v remains bounded.
In fact, as the solutions of (1.1)-(1.3) are bounded up to time 7 — ¢, the continuity of
solution respect to initial conditions holds up to T — ¢, which means for any €, there is
a 8o, ||(zho, Vo) — (0, Vo) lloo < 80, such that ||(&z, V) — (14, V) ||eo < €9. When we let €g = 1, there
is a 8o, such that [|(&, ¥) — (4, V)]0 < 1, so we get || &t — || < 1 and ||P — v||x < 1. Moreover,
u becomes large at time 7 — ¢ and v < C up to T - ¢, so have found a neighborhood of
(40, vp) in L™ such that, if (&, ) has initial data in such neighborhood, then i becomes
large at time T — ¢ and ¥ < C + 1 up to T — ¢. The argument in the proof of Theorem 1.1
allows us to conclude that & blows up and ¥ remains bounded, if we consider time T — ¢
as the initial time. d

Proof of Theorem 1.8 Under our assumptions, from Theorem 1.1, we know that the set of
(¢40, vo) such that u blows up and v remains bounded is nonempty. From Corollary 1.4(i),
we also know the set of initial data for v blowing up and u being bounded is nonempty.
Moreover, Theorem 1.7 concludes that such sets are open. Clearly, the two open sets are
disjoint. That is to say, there exist (9, vo) such that # and v blow up simultaneously at a
finite time 7.
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Next, we will get a simultaneously blow-up rate, if there are simultaneous blow-ups.
Define

M(t) = u(1,t) = max u(-, t), N(t) =v(1,t) = max v(-,t), foreachte(0,T).

[0,1] [0,1]
Set
1
oM, s) = mu(ay +1,bs+t), ye[-1/a,0],s€[-t/D,0],
1
Yn(,s) = mv(cy +1,ds+t), yel[-1/c0],s€[-t/d,0],

where a, b, ¢, d are positive functions of ¢ defined as follows:

M-e1-m) M-@p1-m-1)
a = _ =),
Na N241
N-(a2-n) N-2q2-n-1)
YR ST ke

Then we have

0§¢waN E]-;

(pM(Or 0) = l/fN(O, O) = 1:

0] b ad
ﬂ:_.utzo’ ﬂzo
s M as

Moreover, (¢, ¥) satisfies the following problem:

(oam)s = (@hp)yy + Akar(or)®,
(UN)s = (W)yy + hakn(¥n)P,
(@31)5(0,5) = @319 (0,8),
(¥R)y(0,5) = 97 w37 (0,5),

where

M~ @p-m-a) N-Qaz-n-p)
kaa = N2’ ky = M2

Obviously, a,b,c,d, ky,ky — Oast — T.

We claim that there exist positive constants ¢ and C, such that
¢ < (pm)s(0,0) < C, c<(¥n)s(0,0)<C (3.1)

for every small a.

Here, we only consider the estimate of (¢41)s(0,0); that of (yn)s(0,0) can be proven in
a similar way. Given {<pM].}, there is a continuous function ¢ and a subsequence, which
we denote again by {¢a}, such that ¢, — ¢ as M — oc. Therefore, there exists a neigh-
borhood of (0,0), U, such that ¢ > 1/2 in U. Since we have uniform convergence in U
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(we can assume that U is compact), for j large enough, we have 1/4 < ¢m; <1in U. Thus
the functions ¢y, are solutions of uniformly parabolic equations in U, using the Schauder
estimates

”(/)M] ||C2+a,1+zx/2 < C, in E,

the upper bound in (3.1) follows immediately. To obtain the lower estimate, assume for
finding a contradiction that there exists a sequence {om) N} such that (<pM/.)S(0, 0) — 0.
Since g, = ¢, Y, > ¥, 0<p, ¥ <1, ¢(0,0) =¥(0,0) =1, %—‘f, % > 0, and g satisfies

Ps = (Wm)yy:
(9")y(0,5) = 9*1(0,5)¥#2(0, ),

w = @y satisfies

W = (WI(pm_lW)yy’
(" 1), (0,5) = P w0, 9 (0,5) + pag Y7 (0,5 2 0.

On the other hand, (goM].)S(O,O) — ¢5(0,0), so w(0,0) = ¢s(0,0) =0, since u; >0, w = ¢; >
0, hence w has a minimum at (0,0), and by Hopf’s lemma, w = 0, which implies ¢ does

not depend on s. Thus ¢ = ¢(y) satisfies

0= ((pm)yy,
(@™)y(0) = " (0)y#2(0) = 1,

so (¢")(y) = 1+ y, which contradicts the fact that 0 < ¢ < 1; thus (3.1) holds.
Rewriting the estimate in terms of M and N, we have

c<M™PIM N < C, c<N"22N'|IM*? < C, (3.2)

and hence

Mm—Zpl +2p2M/
c<—— <(,
— Nr2p+2a N/ —

CNn—2q2+2q1N/ < Mm—2p1+2p2M/ < CNH_2q2+2q1N,.
Integrating the above inequality on (¢, T') we obtain

(n=2q9 +1)(m=2p1 +1)-4po q1
c< N N m=2p1+2po +1

Integrating on (¢, T), the estimate of v follows. Through a similar computation the estimate
of u can be given. O

4 Non-simultaneous blow-ups always happen
In this section, we will show that under certain conditions non-simultaneous blow-ups
always occur, and we will prove Theorems 1.9 and 1.10.
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Proof of Theorem 1.9 Assume that there is an initial data (i, vo), such that # and v both
blow up at time 7. Following the steps of the proof of Theorem 1.8, we get (3.2). Thus

MM = eN*B,  N'PRN' < CM*2,
First, we assume that 2q; — 2g, + n + 1 > 0, after a straightforward computation we obtain
CM(t)2p2—2p1+m+1 +C> CN(t)2q1—2q2+n+l —c

As2p, —2p1 + m+1<0, and 2¢q; — 2¢q5 + n + 1 > 0, we obtain a contradiction with the
assumption of simultaneous blow-ups.
If 2q; — 2g5 + n+1 =0, we have

CM(t)2721+m+l L C > cInN(t) - ¢,
also a contradiction. O

Proof of Theorem 1.10 It is well known that under the assumptions, v cannot blow up
without the help of u. So the blow-up time of v cannot be larger than that of . u blows
up at finite time T, by considering the solution at time T — ¢ as initial data, we may as-
sume that the blow-up time is as small as desired. Following the same steps of the proof
of Theorem 1.1, the conclusion follows. O
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