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Abstract
Using a new technique for dealing with the bending term of the fourth order
p-Laplacian elasticity problems, several new and more general results are obtained for
the existence of at least single, twin or triple positive solutions. It is interesting to
point out that estimates on the norms of these solutions will also be provided.
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1 Introduction
It is well known that many nonlinear problems can be reduced to the search for solutions
of various differential equations. Fixed point methods are often used for proving the exis-
tence of such solutions. An overview of such results can be found in Guo et al. [], in Guo
and Lakshmikantham [], and in Demling [].

At the same time, we notice that some new techniques via appropriate transformation
are proved to be very effective in studying the solvability of differential equations. Such
techniques have attracted the attention of Zhang et al. [] and Wong [], etc. In [], Zhang
et al. considered the existence of positive solutions of the following problems:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x(n)(t) + f (t, x(t), x′(t), . . . , x(n–)(t)) = θ , t ∈ J , t �= tk , k = , , . . . , m,
�x(n–)|t=tk = –Ik(x(n–)(tk)), k = , , . . . , m,
x(i)() = θ , i = , , . . . , n – ,
x(n–)() = x(n–)() =

∫ 
 g(t)x(n–)(t) dt,

(.)

where J = [, ].
First, by means of the linear transformation

x(n–)(t) = y(t),

the authors converted (.) into

{
x(n–)(t) = y(t), t ∈ J ,
x(i)() = θ , i = , , . . . , n – ,
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and
⎧
⎪⎨

⎪⎩

–y′′(t) = f (t, x(t), x′(t), . . . , x(n–)(t)), t ∈ J , t �= tk ,
�y′|t=tk = –Ik(y(tk)), k = , , . . . , m,
y() = y() =

∫ 
 g(t)y(t) dt.

(.)

Then it follows from Lemma . in [] that they converted the results obtained for problem
(.) to the counterpart for problem (.).

In [], Wong transformed the following problems:

{
(–)my(m+)(t) = F(t, y(t), y′(t)),  < t < ,
y() = , y(k–)() = y(k–)() = ,  ≤ k ≤ m

(.)

into
{

y′(t) = x(t), t ∈ J ,
y() = ,

and
{

(–)mx(m)(t) = F(t, y(t), y′(t)),  < t < ,
x(k–)() = x(k–)() = ,  ≤ k ≤ m

(.)

by using

y′(t) = x(t).

So the existence of a solution of the complementary Lidstone boundary value problem
(.) follows from the existence of a solution of the Lidstone boundary value problem (.).
From the proof of the main results of [], we notice that the above paper requires F to
satisfy some assumptions of monotonicity which are essential for the technique used.

Being directly inspired by [, ], in the present paper, by using a transformation tech-
nique and a fixed point method, we shall investigate the existence and multiplicity of pos-
itive solutions for the fourth order p-Laplacian elasticity problems

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(φp(y′′(t)))′′ = F(t, y(t), y′′(t)),  < t < ,
ay() – by′() =

∫ 
 g(s)y(s) ds,

ay() + by′() =
∫ 

 g(s)y(s) ds,
φp(y′′()) = φp(y′′()) =

∫ 
 h(s)φp(y′′(s)) ds,

(.)

where a, b > , φp(t) = |t|p–t, p > , φq = φ–
p , 

p + 
q = , F : [, ]×R×R → R is continuous.

Problem (.) occurs in beam theory; see [, ], for example for a beam with small defor-
mation; a beam of a material which satisfies a nonlinear power-like stress and strain law;
a beam with two-sided links which satisfies a nonlinear power-like elasticity law. If p = ,
g =  and h = , in mechanics, problem (.) is called the cantilever beam equation [, ].
The equation describes the deflection of an elastic beam fixed at the right and freed at the
left.
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Most research papers on fourth order elasticity problems consider nonlinear terms that
as regards F in (.) involve y only, and derivative-dependent nonlinearities are seldom
tackled; see [–] to name a few. Besides achieving new results, the presence of the
derivative y′′ in the nonlinear term F requires a special technique to tackle the problem.

The main features of this paper are as follows. First, compared with [–], besides
achieving new results, estimates on the norms of these solutions will also be provided.
Second, we transform problem (.) into a differential systems without bending term, i.e.,
the technique to deal with bending term is completely different from that of [, –].
Finally, it is pointed out that we do not need any monotone assumption on F , which is
weaker than the corresponding assumptions on F in [].

The rest of the paper is organized as follows: In Section , we first present some defi-
nitions and lemmas which are needed throughout this paper and then state several fixed
point results: Krasnosel’skii’s fixed point theorem in a cone, a new fixed point theorem due
to Avery and Henderson and Leggett-Williams’ fixed point theorem. In Section , we use
Krasnosel’skii’s fixed point theorem to obtain the existence of at least one or two positive
solutions of problem (.). Section  will further discuss the existence of twin positive so-
lutions of problem (.). Two new results will be presented by new fixed point theorem
due to Avery and Henderson. Section  is due to develop existence criteria for (at least)
three positive solutions of problem (.). In particular, our results in these sections are
new when p =  (the semilinear case). Finally, in Section , an example is included to ver-
ify the theoretical results. To the best of the authors’ knowledge, it is the first paper where
the transformation technique and fixed point method are applied to the fourth order p-
Laplacian elasticity problems.

2 Preliminaries
To establish the existence of positive solutions of problem (.), let us list the following
assumptions, which will hold throughout this paper:

(H) F ∈ C([, ] × [, +∞) × (–∞, ], [, +∞));
(H) g, h ∈ L[, ] are nonnegative, μ ∈ [, a), ν ∈ [, ), where

μ =
∫ 


g(s) ds, ν =

∫ 


h(s) ds.

We shall reduce elasticity problem (.) to a system without the bending term. To this
goal, first, by means of the transformation

φp
(
y′′(t)

)
= –x(t).

It follows from (.) that Lemma . holds.

Lemma . (See []) Assume that (H) holds. Then for any x ∈ C[, ], the boundary
value problem

⎧
⎪⎨

⎪⎩

–y′′(t) = φq(x(t)),  < t < ,
ay() – by′() =

∫ 
 g(s)y(s) ds,

ay() + by′() =
∫ 

 g(s)y(s) ds,
(.)
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has a unique solution y given by

y(t) =
∫ 


H(t, s)φq

(
x(s)

)
ds, (.)

where

H(t, s) = G(t, s) +


a – μ

∫ 


G(s, v)g(v) dv, (.)

G(t, s) =

d

{
(b + as)(b + a( – t)),  ≤ s ≤ t ≤ ,
(b + at)(b + a( – s)),  ≤ t ≤ s ≤ ,

(.)

d = a(a + b).

Taking into account (.) and (.), problem (.) reduces to the following problem:

{
x′′(t) = –F(t,

∫ 
 H(t, s)φq(x(s)) ds, –φq(x(t))),  < t < ,

x() = x() =
∫ 

 h(s)x(s) ds.
(.)

Lemma . (See []) Assume that (H)-(H) hold. Then the boundary value problem
(.) has a unique solution x given by

x(t) =
∫ 


H(t, s)F

(

s,
∫ 


H(s, τ )φq

(
x(τ )

)
dτ , –φq

(
x(s)

)
)

ds, (.)

where

H(t, s) = G(t, s) +


 – ν

∫ 


G(s, v)h(v) dv, (.)

G(t, s) =

{
s( – t),  ≤ s ≤ t ≤ ,
t( – s),  ≤ t ≤ s ≤ .

(.)

If problem (.) has a solution x∗, then by (.), problem (.) has a solution given by

y∗(t) =
∫ 


H(t, s)φq

(
x∗(s)

)
ds.

So the existence of a solution of problem (.) follows from the existence of a solution of
problem (.).

Lemma . (See []) Let (H) hold. Then we have the following results:

G(t, s) > , H(t, s) > , ∀t, s ∈ [, ], (.)

b

d
≤ G(t, s) ≤ G(s, s) ≤ (a + b)

d
, ∀t, s ∈ [, ], (.)

ρ ≤ H(t, s) ≤ H(s, s) ≤ ρ, ∀t, s ∈ [, ], (.)
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where

ρ =
bγ

a + b
, ρ =

γ(a + b)

a + b
, γ =


a – μ

.

Lemma . (See []) Let (H) hold. Then we obtain the following results:

G(t, s) ≥ , H(t, s) ≥ , ∀t, s ∈ [, ], (.)

G(t, s) > , H(t, s) > , ∀t, s ∈ (, ), (.)

G(t, t)G(s, s) ≤ G(t, s) ≤ G(s, s) ≤ 


, ∀t, s ∈ [, ], (.)

ρG(s, s) ≤ H(t, s) ≤ γG(s, s) ≤ 


γ, ∀t, s ∈ [, ], (.)

where

ρ =
∫ 

 G(τ , τ )h(τ ) dτ

 – ν
, γ =


 – ν

.

It is clear from (.) that ‖y∗‖ ≤ ρφq(‖x∗‖), moreover, if x∗ is positive, so is y∗.
Let J = [, ], E = C[, ]. It is well known that E is a real Banach space with the norm

‖ · ‖ defined by ‖x‖ = maxt∈J |x(t)|.
Define an operator T : E → E as follows:

(Tx)(t) =
∫ 


H(t, s)F

(

s,
∫ 


H(s, τ )φq

(
x(τ )

)
dτ , –φq

(
x(s)

)
)

ds. (.)

Let K be a cone in E which is defined as

K =
{

x ∈ E : x(t) ≥ , and x(t) ≥ δ‖x‖ for t ∈ J
}

, (.)

where

δ =
ρ

γ
.

Lemma . Let (H)-(H) hold. Then we have T(K) ⊂ K , and T : K → K is completely
continuous.

Proof In view of condition (.), we see that

‖Tx‖ = max
t∈J

∫ 


H(t, s)F

(

s,
∫ 


H(s, τ )φq

(
x(τ )

)
dτ , –φq

(
x(s)

)
)

ds

≤
∫ 


γG(s, s)F

(

s,
∫ 


H(s, τ )φq

(
x(τ )

)
dτ , –φq

(
x(s)

)
)

ds.

Moreover, it follows from (.) that
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(Tx)(t) =
∫ 


H(t, s)F

(

s,
∫ 


H(s, τ )φq

(
x(τ )

)
dτ , –φq

(
x(s)

)
)

ds

≥
∫ 


ρG(s, s)F

(

s,
∫ 


H(s, τ )φq

(
x(τ )

)
dτ , –φq

(
x(s)

)
)

ds

≥ δ‖Tx‖.

This proves that T(K) ⊂ K .
Next by standard methods and the Ascoli-Arzela theorem one can prove that T : K → K

is completely continuous. So this is omitted. �

In the rest of this section, we state several fixed point theorems which we needed later.

Lemma . (See [–]) Let P be a cone of real Banach space E, and 
 and 
 be two
bounded open sets in E such that  ∈ 
 and 
̄ ⊂ 
. Let operator A : P ∩ (
̄ \ 
) → P
be completely continuous. Suppose that one of the two conditions

(i) ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂
 and ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂
,
(ii) ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂
 and ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂


is satisfied. Then A has at least one fixed point in P ∩ (
̄ \ 
).

Remark . To make clear what 
̄, ∂
, ∂
, and 
\
̄ mean, we give typical examples
of 
 and 
, e.g.,


 =
{

x ∈ C[a, b] : ‖x‖∞ < r
}

, 
 =
{

x ∈ C[a, b] : ‖x‖∞ < R
}

with  < r < R, where ‖x‖∞ = supt∈J |x(t)|.

Given a nonnegative continuous functional ψ on a cone P of a real Banach space, we
define, for each r > , the set

P(ψ , r) =
{

u ∈ P : ψ(u) < r
}

.

Lemma . (See []) Let P be a cone in a real Banach space. Let α and γ be increasing
nonnegative continuous functional on P, and let θ be a nonnegative continuous functional
on P with θ () =  such that, for some c >  and H > ,

γ (x) ≤ θ (x) ≤ α(x) and ‖x‖ ≤ Hγ (x)

for all x ∈ P(γ , c). Suppose there exists a completely continuous operator A : P(γ , c) → P
and  < r < r < c such that

θ (λx) ≤ λθ (x) for  ≤ λ ≤  and x ∈ ∂P(θ , r),

and
(i) γ (Ax) > c for all x ∈ ∂P(γ , c);

(ii) θ (Ax) < r for all x ∈ ∂P(θ , r);
(iii) P(α, r) �= ∅ and α(Ax) > r for x ∈ ∂P(α, r).
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Then A has at least two positive solutions x and x belonging to P(γ , c) satisfying

r < α(x), with θ (x) < r, and r < θ (x) with γ (x) < c.

Let  < r < r be given and let β be a nonnegative continuous concave functional on the
cone K . Define the convex sets Kr , K(β , r, r) by

Kr =
{

x ∈ K : ‖x‖ < r
}

,

K(β , r, r) =
{

x ∈ K : r ≤ β(x),‖x‖ ≤ r
}

.

Finally we state the Leggett-Williams fixed point theorem [].

Lemma . (See []) Let K be a cone in a real Banach space E, A : K̄c → K̄c be completely
continuous and β be a nonnegative continuous concave functional on K with β(x) ≤ ‖x‖
for all x ∈ Kr . Suppose there exist  < d < r < r ≤ c such that

(i) {x ∈ K(β , r, r) : β(x) > r} �= ∅ and β(Ax) > r for x ∈ K(β , r, r);
(ii) ‖Ax‖ < d for ‖x‖ ≤ d;

(iii) β(Ax) > r for x ∈ K(β , r, c) with ‖Ax‖ > r.
Then A has at least three positive solutions x, x, x satisfying

‖x‖ < d, r < β(x), ‖x‖ > d and β(x) < r.

3 Single or twin solutions of problem (1.5)
In this section, we apply Lemma . to establish the existence of positive solutions for
problem (.). We begin by introducing the following conditions on F(t, u, v):

(H) There exist two positive constants r, R with (ρ + )φq(r) < (ρ + )φq(δR) such that

F(t, u, v) ≤ 
η

r, ∀t ∈ J , |u| + |v| ≤ (ρ + )φq(r), (.)

F(t, u, v) ≥ 
ρβδ

R, ∀t ∈ J , |u| + |v| ≥ (ρ + )φq(δR), (.)

where

η =



γ, σ = ρδ
q–, β =

∫ 


s( – s) ds =




.

Theorem . Assume that (H)-(H) hold. Then we have the following conclusions:
(i) Problem (.) has (at least) one positive solution x ∈ K such that

δr ≤ x(t) ≤ 
δ

R, t ∈ J . (.)

(ii) Problem (.) has (at least) one positive solution y such that

⎧
⎪⎨

⎪⎩

y(t) =
∫ 

 H(t, s)φq(x(s)) ds, t ∈ J ;
‖y‖ ≤ ρφq(‖x‖);
y(t) ≥ σφq(‖x‖), t ∈ J .

(.)
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We further have

σφq(r) ≤ y(t) ≤ ρφq

(

δ

R
)

, t ∈ J . (.)

Proof Let T be the cone preserving, completely continuous operator that was defined by
(.).

Let x ∈ K with ‖x‖ = r. Then  ≤ φq(x(t)) ≤ φq(r), t ∈ J , and

 ≤
∫ 


H(s, τ )φq

(
x(τ )

)
dτ ≤ ρφq(r).

And hence for x ∈ K with ‖x‖ = r, we have

∣
∣
∣
∣

∫ 


H(s, τ )φq

(
x(τ )

)
dτ

∣
∣
∣
∣ +

∣
∣–φq

(
x(t)

)∣
∣ ≤ (ρ + )φq(r).

Then it follows from (.) that

‖Tx‖ = max
t∈J

∫ 


H(t, s)F

(

s,
∫ 


H(s, τ )φq

(
x(τ )

)
dτ , –φq

(
x(s)

)
)

ds

≤ η

η

r = r. (.)

Now if we let 
 = {x ∈ K : ‖x‖ < r}, then (.) shows that

‖Tx‖ ≤ ‖x‖, x ∈ ∂
. (.)

Further, let

R =

δ

R, (.)

and


 =
{

x ∈ K : ‖x‖ < R
}

.

Then x ∈ K and ‖x‖ = R implies

x(t) ≥ δx(s), t, s ∈ J ,

that is,

x(t) ≥ δR = R, t ∈ J .

Hence, φq(x(t)) ≥ φq(R) for all t ∈ J , and

∫ 


H(s, τ )φq

(
x(τ )

)
dτ ≥ ρ

∫ 


φq

(
x(τ )

)
dτ ≥ ρφq

(
δ‖x‖).
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So

∣
∣
∣
∣

∫ 


H(s, τ )φq

(
x(τ )

)
dτ

∣
∣
∣
∣ +

∣
∣–φq

(
x(t)

)∣
∣ ≥ (ρ + )φq(δR).

Using condition (.), it follows from x ∈ K and ‖x‖ = R that

‖Tx‖ = max
t∈J

∫ 


H(t, s)F

(

s,
∫ 


H(s, τ )φq

(
x(τ )

)
dτ , –φq

(
x(s)

)
)

ds

≥ ρβ


ρβδ
R =

R
δ

= R,

that is, x ∈ ∂
 implies

‖Tx‖ ≥ ‖x‖. (.)

It follows from Lemma . that problem (.) has (at least) one positive solution x ∈

̄ \ 
 satisfying (.).

It is observed from (.) that problem (.) has (at least) one positive solution y such that

y =
∫ 


H(t, s)φq

(
x(s)

)
ds, t ∈ J and ‖y‖ ≤ ρφq

(‖x‖).

Moreover, since x ∈ K , we get for t ∈ J ,

y(t) =
∫ 


H(t, s)φq

(
x(s)

)
ds

≥ ρ

∫ 


φq

(
x(s)

)
ds

≥ ρφq
(
δ‖x‖)

= σφq
(‖x‖).

Then we get (.).
Further, it follows from (.) and (.) that (.) holds. �

In Theorem . we assume the following condition on F(t, u, v):

(H) There exist two positive constants r, R with (ρ + )φq(r) < R such that:

F(t, u, v) ≥ 
ρφp(ρ + )βδ

φp
(|u| + |v|), ∀t ∈ J , |u| + |v| ≤ (ρ + )φq(r), (.)

F(t, u, v) ≤ 
ηφp(ρ + )

φp
(|u| + |v|), ∀t ∈ J , |u| + |v| ≥ R, (.)

and we write

M = max
∀t∈J ,|u|+|v|≤R

F(t, u, v). (.)
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Theorem . Assume that (H)-(H) and (H) hold. Then we have the following conclu-
sions:

(i) Problem (.) has (at least) one positive solution x ∈ K such that

δr ≤ x(t) ≤ max

{

ηM,φp

(
R

φq(δ)(ρ + )

)}

, t ∈ J . (.)

(ii) Problem (.) has (at least) one positive solution y such that (.) holds. We further
have

σδφq(r) ≤ y(t) ≤ max

{

ρφq(ηM),
ρR

φq(δ)(ρ + )

}

, t ∈ J . (.)

Proof Let x ∈ K with ‖x‖ = r. Then  ≤ φq(x(t)) ≤ φq(r), t ∈ J , and

 ≤
∫ 


H(s, τ )φq

(
x(τ )

)
dτ ≤ ρφq(r).

And hence for x ∈ K with ‖x‖ = r, we have

 ≤
∣
∣
∣
∣

∫ 


H(s, τ )φq

(
x(τ )

)
dτ

∣
∣
∣
∣ +

∣
∣–φq

(
x(t)

)∣
∣ ≤ (ρ + )φq(δr),

and it follows from condition (.) that

‖Tx‖ = max
t∈J

∫ 


H(t, s)F

(

s,
∫ 


H(s, τ )φq

(
x(τ )

)
dτ , –φq

(
x(s)

)
)

ds

≥ ρβ


ρβδφp(ρ + )
φp

[
(ρ + )φq(δr)

]
= r, (.)

that is, x ∈ ∂
 implies that

‖Tx‖ ≥ ‖x‖. (.)

From (.) and (.), we have

F(t, u, v) ≤ M +


ηφp(ρ + )
φp

(|u| + |v|), (t, u, v) ∈ J × [,∞) × (–∞, ]. (.)

Further, let

R > max

{

ηM,φp

(
R

φq(δ)(ρ + )

)}

(.)

and


 =
{

x ∈ K : ‖x‖ < R
}

.

Noticing that for x ∈ ∂
 we have

R < (ρ + )φq(δR) ≤
∣
∣
∣
∣

∫ 


H(s, τ )φq

(
x(τ )

)
dτ

∣
∣
∣
∣ +

∣
∣–φq

(
x(t)

)∣
∣.
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Thus, for x ∈ ∂
, it follows from (.) that

‖Tx‖ = max
t∈J

∫ 


H(t, s)F

(

s,
∫ 


H(s, τ )φq

(
x(τ )

)
dτ , –φq

(
x(s)

)
)

ds

≤ η

∫ 



(

M +


ηφp(ρ + )
φp

(
(ρ + )φq(R)

)
)

ds

= ηM +



R

< R,

that is, x ∈ ∂
 implies

‖Tx‖ < ‖x‖. (.)

It now follows from Lemma . that problem (.) has (at least) one positive solution
x ∈ 
̄ \ 
 satisfying (.).

It follows from (.) that problem (.) has (at least) one positive solution y. Similar to
the proof of (.), one can show that y satisfies (.). �

Theorem . Assume that (H)-(H), (.) of (H) and (.) of (H) hold. In addition, let
f satisfies the following condition:

(H) Let l, ζi (i = , ) and L satisfy

 < l < δζ < ζ < δζ < ζ < L < ∞.

If

max
∀t∈J ,φq(δζi)≤|u|+|v|≤(ρ+)φq(ζi)

F(t, u, v) <

η
ζi, i = , ,

then we have the following conclusions:
(i) Problem (.) has (at least) two positive solutions x, x ∈ K such that

δl ≤ x(t) ≤ ζ < δζ ≤ x(t) ≤ L, t ∈ J . (.)

(ii) Problem (.) has (at least) two positive solutions y, y such that, for i = , ,

⎧
⎪⎨

⎪⎩

yi(t) =
∫ 

 H(t, s)φq(xi(s)) ds, t ∈ J ;
‖yi‖ ≤ ρφq(‖xi‖);
yi(t) ≥ σφq(‖xi‖), t ∈ J .

(.)

We further have

{
y(t) > σφq(l), t ∈ J ;
‖y‖ ≤ ρφq(L).

(.)
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Proof If (.) of (H) holds, similar to the proof of (.), we can prove that

‖Tx‖ ≥ ‖x‖, x ∈ K ,‖x‖ = l. (.)

If (.) of (H) holds, similar to the proof of (.), we have

‖Tx‖ ≥ ‖x‖, x ∈ K ,‖x‖ = L. (.)

Finally, we show that

‖Tx‖ < ‖x‖, x ∈ K ,‖x‖ = ζi, i = , . (.)

In fact, for x ∈ K with ‖x‖ = ζi (i = , ) then we have

x(t) ≤ ‖x‖ = ζi, i = , ,

and

ρφq(δζi) ≤
∫ 


H(s, τ )φq

(
x(τ )

)
dτ ≤ ρφq(ζi), i = , .

Therefore,

φq(δζi) < (ρ + )φq(δζi) ≤
∣
∣
∣
∣

∫ 


H(s, τ )φq

(
x(τ )

)
dτ

∣
∣
∣
∣ +

∣
∣–φq

(
x(s)

)∣
∣ ≤ (ρ + )φq(ζi),

i = , ,

and hence it follows from (H) that

‖Tx‖ = max
t∈J

∫ 


H(t, s)F

(

s,
∫ 


H(s, τ )φq

(
x(τ )

)
dτ , –φq

(
x(s)

)
)

ds

< η

η
ζi = ζi, i = , ,

which shows that (.) holds.
Applying Lemma . to (.), (.) and (.) shows that problem (.) has (at least)

two positive solutions x, x with x ∈ Kl,ζ = {x ∈ K , l ≤ ‖x‖ ≤ ζ}, x ∈ Kζ,L = {x ∈ K , ζ ≤
‖x‖ ≤ L}. Hence, since for xi ∈ K we have xi(t) ≥ δ‖xi‖, t ∈ J , i = , , it follows that (.)
holds.

Similar to the proof of (.) and (.), one can show that (.) and (.) hold. �

In Theorem . we assume the following condition on F(t, u, v):

(H) There exist two constants r, R with  < r < δR such that

F(t, u, v) ≤ 
η

r, ∀(t, u, v) ∈ J × [
ρφq(δr),ρφq(r)

] × [
–φq(r), –φq(δr)

]
;

F(t, u, v) ≥ 
ρβ

R, ∀(t, u, v) ∈ J × [
ρφq(δR),ρφq(R)

] × [
–φq(R), –φq(δR)

]
.



Zhou and Zhang Boundary Value Problems  (2015) 2015:205 Page 13 of 23

Theorem . Assume that (H)-(H) and (H) hold. Then we have the following conclu-
sions:

(i) Problem (.) has (at least) one positive solution x ∈ K such that

δr ≤ x(t) ≤ R, t ∈ J . (.)

(ii) Problem (.) has (at least) one positive solution y such that (.) holds. We further
have

σφq(r) ≤ y(t) ≤ ρφq(R), t ∈ J . (.)

Proof For x ∈ K with ‖x‖ = r, we have x(s) ∈ [δr, r], and

∫ 


H(s, τ )φq

(
x(τ )

)
dτ ∈ [

ρφq(δr),ρφq(r)
]
,

–φq
(
x(s)

) ∈ [
–φq(r), –φq(δr)

]
, ∀s ∈ J .

Then, for t ∈ J , we have

(Tx)(t) =
∫ 


H(t, s)F

(

s,
∫ 


H(s, τ )φq

(
x(τ )

)
dτ , –φq

(
x(s)

)
)

ds

≤
∫ 


γG(s, s) ds · 

η
r

= r,

i.e. x ∈ ∂
 implies

‖Tx‖ ≤ ‖x‖. (.)

On the other hand, for x ∈ K with ‖x‖ = R, we have x ∈ [δR, R], and φq(x) ∈ [–φq(R),
–φq(δR)],

∫ 
 H(s, τ )φq(x(τ )) dτ ∈ [ρφq(δR),ρφq(R)], ∀s ∈ J . Then, for t ∈ J , we have

(Tx)(t) =
∫ 


H(t, s)F

(

s,
∫ 


H(s, τ )φq

(
x(τ )

)
dτ , –φq

(
x(s)

)
)

ds

≥
∫ 


ρG(s, s) ds · 

ρ
R

= R,

i.e. x ∈ ∂
 implies

‖Tx‖ ≥ ‖x‖. (.)

Applying Lemma . to (.) and (.) shows that T has a fixed point x ∈ K ∩ (
̄\
)
with (.). It is observed from (.) that problem (.) has one solution y such that

y(t) =
∫ 


H(t, s)φq

(
x(s)

)
ds, and y(t) ∈ [

σφq(r),ρφq(R)
]
, t ∈ J . �
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We remark that the condition (H) in Theorem . can be replaced by the following
condition:

(H) There exist two constants r, R with  < r < δR such that

F(t, u, v) ≥ 
ρβ

r, ∀(t, u, v) ∈ J × [
ρφq(δr),ρφq(r)

] × [
–φq(r),φq(δr)

]
;

F(t, u, v) ≤ 
η

R, ∀(t, u, v) ∈ J × [
ρφq(δR),ρφq(R)

] × [
–φq(R),φq(δR)

]
.

Corollary . If the condition (H) in Theorem . is replaced by (H), respectively, then
the conclusions of Theorem . also hold.

4 Further results on twin solutions
In the previous section, we have obtained some results on the existence of at least two
positive solutions for problem (.). In this section, we will further discuss the existence
of two positive solutions for problem (.) in the more general case.

For x ∈ K , we define the nonnegative increasing continuous functionals θ , θ and θ by

θ (x) = min
t∈J

x(t),

θ(x) = max
t∈[, 

 ]
x(t),

and

θ(x) = max
t∈J

x(t).

It is easy to see that, for each x ∈ K ,

θ (x) ≤ θ(x) ≤ θ(x). (.)

In addition, for each x ∈ K , θ (x) = x() ≥ δ‖x‖, which implies that

‖x‖ ≤ 
δ
θ (x) for all x ∈ K . (.)

Finally, we also note that

θ(λx) = λθ(x) for  ≤ λ ≤  and x ∈ ∂K(θ, r),

where r > .
For notational convenience, we denote

N = ρβ , N = η.

We now present the results in this section.
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Theorem . Suppose that there exist constants  < a < b < c such that

 < a <
N
N

b <
δN
N

c.

Assume F satisfies the following conditions:

(C) F(t, u, v) > c
N for (t, u, v) ∈ J × [ρφq(c),ρφq( c

δ
)] × [–φq( c

δ
), –φq(c)];

(C) F(t, u, v) < b
N

for (t, u, v) ∈ J × [,ρφq( b
δ
)] × [–φq( b

δ
), ];

(C) F(t, u, v) > a
N for(t, u, v) ∈ J × [ρφq(δa),ρφq(a)] × [–φq(a), –φq(δa)].

Then we have the following conclusions:
(i) Problem (.) has at least two positive solutions x and x such that

a < θ(x), with θ(x) < b, and b < θ(x) with θ (x) < c. (.)

(ii) Problem (.) has (at least) two positive solutions y and y such that for i = , 

⎧
⎪⎨

⎪⎩

yi(t) =
∫ 

 H(t, s)φq(xi(s)) ds, t ∈ J ;
‖yi‖ ≤ ρφq(‖xi‖);
yi(t) ≥ σφq(‖xi‖), t ∈ J .

(.)

We further have

{
‖y‖ > σφq(a);
y(t) < ρφq(‖x‖), t ∈ J .

(.)

Proof By the definition of operator T and its properties, it suffices to show that the con-
ditions of Lemma . hold with respect to T .

We first show that if x ∈ ∂K(θ , c), then θ (Tx) > c.
In fact, if x ∈ ∂K(θ , c), then θ (x) = mint∈J x(t) = x() = c. Since x ∈ K , one can get x(t) ≥ c

for t ∈ J . Noticing (.), we have

c ≤ x(t) ≤ 
δ

c, t ∈ J ,

which shows that

ρφq(c) ≤
∫ 


H(t, s)φq

(
x(s)

)
ds ≤ ρφq

(

δ

c
)

, –φq

(

δ

c
)

≤ –φq
(
x(s)

) ≤ –φq(c).

As a consequence of (C)

F(t, u, v) >
c
N

for t ∈ J .

Also, Tx ∈ K , and hence we get

θ (Tx) = min
t∈J

(Tx)(t) = (Tx)()

= min
t∈J

∫ 


H(t, s)F

(

s,
∫ 


H(s, τ )φq

(
x(τ )

)
, –φq

(
x(s)

)
)

ds
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> ρβ
c
N

= c.

Next, we verify that θ(Tx) < b for x ∈ ∂K(θ, b).
So, let us choose x ∈ ∂K(θ, b), then

θ(x) = max
t∈[, 

 ]
x(t) = b.

This implies that  ≤ x(t) ≤ b for t ∈ [, 
 ], and, since x ∈ K , we also have

x(t) ≤ ‖x‖ ≤ 
δ
θ (x) ≤ 

δ
θ(x) =


δ

b,

which implies that

 ≤ x(t) ≤ 
δ

b, t ∈ J ,

and then

 ≤
∫ 


H(t, s)φq(s) ds ≤ ρφq

(

δ

b
)

, –φq

(

δ

b
)

≤ –φq
(
x(s)

) ≤ .

It follows from (C) that

F(t, u, v) <
b

N
for (t, u, v) ∈ J ×

[

,ρφq

(
b
δ

)]

×
[

–φq

(
b
δ

)

, 
]

.

Noticing Tx ∈ K , we obtain

(Tx)(t) =
∫ 


H(t, s)F

(

s,
∫ 


H(s, τ )φq

(
x(τ )

)
, –φq

(
x(s)

)
)

ds

< η
b

N

= b.

Finally, we prove that K(θ, a) �= ∅ and θ(Tx) > a for all x ∈ ∂K(θ, a).
In fact, the constant a

 ∈ K(θ, a). Moreover, for x ∈ ∂K(θ, a), we have

θ(x) = max
t∈J

x(t) = a,

which implies that

δa ≤ x(t) ≤ a, t ∈ J ,

and then

ρφq

(

δ

a
)

≤
∫ 


H(t, s)φq(s) ds ≤ ρφq(a), –φq(a) ≤ –φq

(
x(s)

) ≤ –φq

(

δ

a
)

.
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Using assumption (C), we have

F(t, u, v) >
a
N

for (t, u, v) ∈ J × [
ρφq(δa),ρφq(a)

] × [
–φq(a), –φq(δa)

]
.

As before Tx ∈ K , and so

θ(Tx) = max
t∈J

(Tx)(t)

= max
t∈J

∫ 


H(t, s)F

(

s,
∫ 


H(s, τ )φq

(
x(τ )

)
, –φq

(
x(s)

)
)

ds

> ρη
a
N

= a.

Thus, by Lemma ., there exist at least two fixed points of T which are positive solutions
x and x, belonging to K(θ , c), of problem (.) such that

a < θ(x), with θ(x) < b, and b < θ(x) with θ (x) < c.

Noticing the definition of θ and θ, one can show that (.) and (.) hold. �

5 Triple positive solutions
In this section, we shall study the existence of three positive solutions of problem (.). Let
σ , N and N be defined in Theorem . and Theorem ., respectively.

Theorem . Assume that (H)-(H) hold. Suppose that there exist positive constants ω,
ω, ω with

 < ω < φp

(
ρ

ρ

)

δω < ω <
ω

δ
≤ ω

such that the following hold:

(A) F(t, u, v) ≤ 
N

ω for (t, u, v) ∈ J × [,ρφq(ω)] × [–φq(ω), ];
(A) F(t, u, v) > 

N ω for (t, u, v) ∈ J × [ρφq(ω),ρφq( 
δ
ω)] × [–φq( 

δ
ω), –φq(ω)];

(A) F(t, u, v) < 
N

ω for (t, u, v) ∈ J × [,ρφq(ω)] × [–φq(ω), ].

Then we have the following conclusions:
(i) Problem (.) has (at least) three positive solutions x, x, x ∈ K such that

⎧
⎪⎨

⎪⎩

‖x‖ < ω;
x(t) > ω, t ∈ J ;
‖x‖ > ω and mint∈J x(t) < ω.

(.)

(ii) Problem (.) has (at least) three positive solutions y, y, y such that, for i = , , ,

⎧
⎪⎨

⎪⎩

yi(t) =
∫ 

 H(t, s)φq(xi(s)) ds, t ∈ J ;
‖yi‖ ≤ ρφq(‖xi‖);
yi(t) ≥ ρφq(δ‖xi‖), t ∈ J .

(.)
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We further have

⎧
⎪⎨

⎪⎩

‖y‖ < ρφq(ω);
y(t) > ρφq(ω), t ∈ J ;
‖y‖ > σφq(ω).

(.)

Proof Let x ∈ K̄ω , so  ≤ φq(x(s)) ≤ φq(ω), s ∈ J , and  ≤ ∫ 
 H(s, τ )φq(x(τ )) dτ ≤

ρφq(ω). By (A), we see that

‖Tx‖ = max
t∈J

∫ 


H(t, s)F

(

s,
∫ 


H(s, τ )φq

(
x(τ )

)
dτ , –φq

(
x(s)

)
)

ds

≤ η · 
N

ω = ω.

This proves that T : K̄(ω) → K̄(ω).
For convenience, we denote ω = ω

δ
. Let ψ : K → [, +∞) be defined by

ψ(x) = min
t∈J

x(t).

Clearly, ψ is a nonnegative continuous concave functional on K and ψ(x) ≤ ‖x‖ for all
x ∈ K .

Now we need to show that condition (i) of Lemma . is satisfied. It is obvious that

x(t) =



(ω + ω) ∈ {
x ∈ K(ψ ,ω,ω) : ψ(x) > ω

}
.

Then

{
x ∈ K(ψ ,ω,ω) : ψ(x) > ω

} �= ∅.

Next, let x ∈ K(ψ ,ω,ω). Then for s ∈ J , we have ω ≤ x(s) ≤ ω, and

∫ 


H(s, τ )φq

(
x(τ )

)
dτ ∈ [

ρφq(ω),ρφq(ω)
]
.

Using condition (A), it follows that

ψ(Tx) = min
t∈J

∫ 


H(t, s)F

(

s,
∫ 


H(s, τ )φq

(
x(τ )

)
dτ , –φq

(
x(s)

)
)

ds

≥ ρ

∫ 


G(s, s)F

(

s,
∫ 


H(s, τ )φq

(
x(τ )

)
dτ , –φq

(
x(s)

)
)

ds

> ρβ · 
N

ω

= ω.

Therefore, we have shown that ψ(Tx) > ω for all x ∈ K(ψ ,ω,ω).
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Next, we shall show that condition (ii) of Lemma . holds. Take x ∈ K̄(ω) with ‖x‖ < ω.
Then for s ∈ J , we have x(s) ∈ [,ω] and

∫ 


H(s, τ )φq

(
x(τ )

)
dτ ∈ [

,ρφq(ω)
]
.

By condition (A), we have

‖Tx‖ = max
t∈J

∫ 


H(t, s)F

(

s,
∫ 


H(s, τ )φq

(
x(τ )

)
dτ , –φq

(
x(s)

)
)

ds < η · 
N

ω = ω.

Hence, we have proved that ‖Tx‖ < ω for all x ∈ K̄(ω).
Finally, we need to prove that condition (iii) of Lemma . is satisfied. Let x ∈

K(ψ ,ω,ω) with ‖Tx‖ > ω. Then it follows from (.) that

ψ(Tx) = min
t∈J

∫ 


H(t, s)F

(

s,
∫ 


H(s, τ )φq

(
x(τ )

)
dτ , –φq

(
x(s)

)
)

ds

≥ δ‖Tx‖
> δω = ω.

So, we have proved that ψ(Tx) > ω for all x ∈ K(ψ ,ω,ω) with ‖Tx‖ > ω.
It now follows from Lemma . that problem (.) has (at least) three positive solutions

x, x, x ∈ K̄(ω) satisfying (.).
It is observed from (.) that problem (.) has (at least) three positive solutions y, y,

y such that, for i = , , ,

yi(t) =
∫ 


H(t, s)φq

(
xi(s)

)
ds, t ∈ J and ‖yi‖ ≤ ρφq

(‖xi‖
)
.

Moreover, since xi ∈ K , we get for t ∈ J ,

yi(t) =
∫ 


H(t, s)φq

(
xi(s)

)
ds

≥ ρ

∫ 


φq

(
xi(s)

)
ds

≥ σφq
(‖xi‖

)
.

Then we get (.).
Further, since x(t) > ω for t ∈ J , we have, for t ∈ J ,

y(t) =
∫ 


H(t, s)φq

(
x(s)

)
ds

≥ ρ

∫ 


φq

(
x(s)

)
ds

≥ ρφq(ω).

Hence, we get (.). �
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Remark . Leggett-Williams’ fixed point theorem is a valid tool to show the existence
of multiple positive solutions for various boundary value problems where the nonlinear
terms F is of the form F(t, y); see for example [–]. If F is of the form F(t, y, y′′), then it is
very difficult to obtain the existence result of three positive solutions; see [, ] to name
a few. In [], using the five functionals fixed point theorem (which is a generalization of
the Leggett-Williams’ fixed point theorem), Avery et al. showed the existence of at least
three positive solutions in the case that F is the form of F(y, –y′′).

6 Example
To illustrate how our main results can be used in practice, we present an example.

Let a = , b = 
 and g(t) = h(t) = 

 . Consider the following fourth order p-Laplacian
elasticity problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(φp(y′′(t)))′′ = F(t, y(t), y′′(t)),  < t < ,
ay() – by′() =

∫ 
 g(s)y(s) ds,

ay() + by′() =
∫ 

 g(s)y(s) ds,
φp(y′′()) = φp(y′′()) =

∫ 
 h(s)φp(y′′(s)) ds,

(.)

and the nonlinear term F given by

F(t, u, v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩


 (t + ) 

N
ω =: a(t), t ∈ J , (u, v) ∈ D,


 ( ω

N
+ ω

N ) =: a, t ∈ J , (u, v) ∈ D ∪ D ∪ D,
a(t) · ρφq(ω)–u

ρφq(ω)–ρφq(ω) + a · u–ρφq(ω)
ρφq(ω)–ρφq(ω) =: a(t, u), t ∈ J , (u, v) ∈ D,

a(t) · φq(ω)+v
φq(ω)–φq(ω) + a · φq(ω)+v

φq(ω)–φq(ω) =: a(t, v), t ∈ J , (u, v) ∈ D,
a(t, u, v), t ∈ J , (u, v) ∈ D,

where

a(t, u, v) :=
a


·
[

φq(ω) + v
φq(ω) – φq(ω)

+
u – ρφq(ω)

ρφq(ω) – ρφq(ω)

]

+
a(t, u)


· φq(ω) + v
φq(ω) – φq(ω)

+
a(t, v)


· ρφq(ω) – u
ρφq(ω) – ρφq(ω)

,

and the sets Di (i = , , . . . , ) are defined by

D =
{

(u, v) : (u, v) ∈ [
,ρφq(ω)

] × [
–φq(ω), 

]}
,

D =
{

(u, v) : (u, v) ∈ [
ρφq(ω), +∞) × (

–∞, –φq(ω)
]}

,

D =
{

(u, v) : (u, v) ∈ [
,ρφq(ω)

] × (
–∞, –φq(ω)

]}
,

D =
{

(u, v) : (u, v) ∈ [
ρφq(ω), +∞) × [

–φq(ω), 
]}

,

D =
{

(u, v) : (u, v) ∈ [
ρφq(ω),ρφq(ω)

] × [
–φq(ω), 

]}
,

D =
{

(u, v) : (u, v) ∈ [
,ρφq(ω)

] × [
–φq(ω), –φq(ω)

]}
,

D =
{

(u, v) : (u, v) ∈ [
ρφq(ω),ρφq(ω)

] × [
–φq(ω), –φq(ω)

]}
,

and N = ρβ , N = η. For details, see Figure .
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Figure 1 The relationship of Di ,
i = 1, 2, 3, 4, 5, 6, 7.

By calculation we obtain

μ =
∫ 


g(s) ds =




, ν =
∫ 


h(s) ds =




,

γ =


a – μ
= , γ =


 – ν

= ,

ρ =
∫ 

 G(s, s)h(s) ds
 – ν

=



, η =



γ =



,

ρ =
bγ

a + b
=




, ρ =
(a + b)γ

a + b
=




.

Therefore, it follows from the definitions F , g and, h that (H)-(H) hold.
Choosing ω = φp( δρ

ρ
)ω, ω = N

N ω, then ωi (i = , , ) satisfy

 < ω < φp

(
ρ

ρ

)

ω < ω <
ω

δ
≤ ω.

Then, for t ∈ J , (u, v) ∈ D, we have

F(t, u, v) = a(t) ≤ ω

N
<

ω

N
<

ω

N
. (.)

For t ∈ J , (u, v) ∈ D ∪ D ∪ D, we have

F(t, u, v) = a =



(
ω

N
+

ω

N

)

=



(
ω

N
+

ω

N

)

>
ω

N
,

F(t, u, v) = a =



(
ω

N
+

ω

N

)

=



(
ω

N
+

ω

N

)

=


N
ω <


N

ω.
(.)

For t ∈ J , (u, v) ∈ D, we have

F(t, u, v) = a(u) ≤ a(t) + a <
ω

N
+




· ω

N
=




· ω

N
<

ω

N
. (.)
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For t ∈ J , (u, v) ∈ D, we have

F(t, u, v) = a(v) ≤ a(t) + a <
ω

N
. (.)

For t ∈ J , (u, v) ∈ D, we have

F(t, u, v) = a(u, v) ≤ a(t) + a <
ω

N
+  · 


ω

N
=




ω

N
<

ω

N
. (.)

We shall check the conditions of Theorem .. First, condition (A) is obviously satisfied
by (.). Next, from (.)-(.), it follows that

F(t, u, v) <
ω

N
, t ∈ J , (u, v) ∈ [

,ρφq(ω)
] × [

–φq(ω), 
]
.

Hence, condition (A) holds. Finally, by (.), we see that

F(t, u, v) = a >
ω

N
,

t ∈ J , (u, v) ∈
[

ρφq(δω),ρφq

(

δ
ω

)]

×
[

–φq

(

δ
ω

)

, –φq(ω)
]

⊂ D.

Condition (A) is satisfied.
It follows from Theorem . that problem (.) has (at least) three positive solutions y,

y, y such that

⎧
⎪⎨

⎪⎩

‖y‖ < ρφq(ω);
y(t) > ρφq(ω), t ∈ J ;
‖y‖ > σφq(ω). �
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