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1 Introduction
Let H = H(�) ∩ H

(�) be a Hilbert space equipped with the inner product

(u, v)H =
∫

�

(�u�v + ∇u∇v) dx,

and the deduced norm

‖u‖
H =

∫
�

|�u| dx +
∫

�

|∇u| dx.

Let λk (k = , , . . .) denote the eigenvalues and ϕk (k = , , . . .) the corresponding eigen-
functions of the eigenvalue problem

⎧⎨
⎩

–�u = λu, in �,

u = , on ∂�,

where each eigenvalue λk is repeated as the multiplicity; recall that  < λ < λ ≤ λ ≤
· · · ≤ λk → ∞ and that ϕ(x) >  for x ∈ �. We can easily observe that �k = λk(λk – c),
k = , , . . . , are eigenvalues of the eigenvalue problem

⎧⎨
⎩

�u(x) + c�u = �u, in �,

u = �u = , on ∂�,

and the corresponding eigenfunctions are still ϕk(x).
The set of {ϕk(x)} is an orthogonal base on space H; thus one may denote an element u

of H as
∑∞

k= ukϕk ,
∑∞

k= u
k < ∞.
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Assume that c < λ; let us define a norm of u ∈ H as follows:

‖u‖ =
∫

�

|�u| dx – c
∫

�

|∇u| dx.

It is easy to show that the norm ‖ · ‖ is a equivalent norm on H and the following Poincaré
inequality holds:

‖u‖ ≥ �‖u‖L

for all u ∈ H.
Consider the following Navier boundary value problem:

⎧⎨
⎩

�u(x) + c�u = f (x, u), in �,

u = �u = , on ∂�,
(.)

where � is the biharmonic operator, � is a bounded smooth domain in R
N (N > ), and

c < λ.
Let f be a continuous function on � ×R. Suppose that there are measurable real func-

tions p(x) and q(x) on � such that

lim|t|→

f (x, t)
t

= p(x), ∀x ∈ �, (.)

lim|t|→∞
f (x, t)

t
= q(x), ∀x ∈ �. (.)

If the convergences in (.) and (.) are uniform in �, we say that f is uniformly asymp-
totically linear at zero and infinity. This case has been studied by many authors under
various assumptions on p(x) and q(x).

In [], An and Liu obtained the existence of one non-trivial solution of (.), if the fol-
lowing conditions are fulfilled:

(AL) f (x, t) ∈ C(� ×R); f (x, t) ≡ , ∀x ∈ �, t ≤ , f (x, t) ≥ , ∀x ∈ �, t > ;
(AL) f (x,t)

t is nondecreasing with respect to t ≥  for a.e. x ∈ �;
(AL) lim|t|→

f (x,t)
t = μ; lim|t|→∞ f (x,t)

t = ν uniformly for a.e. x ∈ �, where
μ < λ(λ – c) < ν < +∞, ν �= �k = λk(λk – c) are constants.

In [], under the above similar conditions, Qian and Li established the existence of three
non-trivial solutions of (.) by use of mountain pass theorem and regularity of critical
groups. Similarly, in [], we also obtained three non-trivial solutions by using mountain
pass theorem and Morse theory for problem (.) when the nonlinearity f is resonant
at infinity or the nonlinearity f is not resonant at infinity. Pu et al. [] proved the exis-
tence and multiplicity of solutions for the fourth Navier boundary value problems with
concave term, which is similar to problem (.) when nonlinearity f is uniformly asymp-
totically linear at infinity. In [], Wei established the existence of multiple solutions for
problem (.) by means of bifurcation theory. Particularly, Liu and Huang [] obtained
one sign-changing solution for problem (.) with uniformly asymptotically linear nonlin-
earity term.
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In the present paper, we study the problem in the case that f may be non-uniformly
asymptotically linear. These new aspects with p-Laplacian were first presented by Duc and
Huy in []. But they discussed asymmetric non-uniformly asymptotically linear situation
and their methods are not directly to use the non-uniformly asymptotically linear Navier
boundary value problems since u ∈ H does not imply that u± ∈ H, where u± = max{±u, }.
Our main results are as follows.

Theorem . Suppose:

(H) f (x, ) = , f (x, t)t ≥  for all x ∈ �, t ∈R.
(H) There exists r in the interval ( N

 ,∞) such that q(x) ∈ Lr(�) with ‖q‖Lr > .
(H) There exists a nonnegative measurable function W on � such that:

(i)

∣∣f (x, s)
∣∣ ≤ W (x)|s|, ∀x ∈ �,∀s ∈R.

(ii) There exists a constant KW such that

∫
�

W |u| dx ≤ KW ‖u‖, ∀u ∈ H.

(iii) For any sequence {um} converging weakly to u in H, there exists a measurable
function g on � and a subsequence {umk } of {um} having the following
properties: |umk | ≤ g for a.e. x ∈ �, for any k and

∫
�

Wg dx < ∞.

(H) γ (p) >  and γ (q) < , where

γ (p) = inf

{∫
�

(|�u| – c|∇u|)dx,
∫

�

p(x)u dx = 
}

,

and the definition of γ (q) is similar.

Then problem (.) has at least two non-trivial solutions u and u such that u > ,
u < , I(u) > , and I(u) > , where

F(x, t) =
∫ t


f (x, s) ds, ∀(x, s) ∈ � ×R (.)

and

I(u) =



∫
�

(|�u| – c|∇u|)dx –
∫

�

F(x, u) dx. (.)

Theorem . Suppose:

(H∗) f ∈ C(� ×R,R), f (x, ) = , f (x, t)t ≥  for all x ∈ �, t ∈R.
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(H∗) There exists a nonnegative measurable function W on � with W ∈ L∞(�) such that

∣∣fs(x, s)
∣∣ ≤ W (x)

for all x ∈ � and s ∈R.
(H∗) γ (p) > .

If �k < q(x) < �k+ for k ≥ , then problem (.) has at least three non-trivial solutions.

Here we introduce a non-quadratic condition.

(H) lim|t|→∞[tf (x, t) – F(x, t)] = –∞ for every x ∈ �.

Theorem . Suppose (H∗), (H∗), (H∗), and (H) hold. If q(x) ≡ �k for k ≥ , then
problem (.) has at least three non-trivial solutions.

2 Preliminary results
Let u be in H, F , and I be as in (.) and (.). Put

I+(u) =



∫
�

(|�u| – c|∇u|)dx –
∫

�

F+(x, u) dx,

where

f+(x, t) =

⎧⎨
⎩

f (x, t), t > ,

, t ≤ .

Combining with the knowledge of nonlinear functional analysis, we have the following
lemmas.

Lemma . Under conditions (H) and (H), the functionals I and I+ belong to C(H,R).
Moreover, for every u and v in H,

〈
DI(u), v

〉
=

∫
�

(�u�v – c∇u∇v) dx –
∫

�

f (x, u)v dx,

〈
DI+(u), v

〉
=

∫
�

(�u�v – c∇u∇v) dx –
∫

�

f
(
x, u+)

v dx.

Proof We only prove the lemma for I and the case of I+ is similar. From the knowledge
of nonlinear functional analysis, we easily imply that the map u �→ 

‖u‖ is continuously
Fréchet differentiable from H to H.

Let

G(u) =
∫

�

F(x, u) dx

for all u ∈ H. We prove that G ∈ C(H,R) by the following steps.
(i) Given u, v ∈ H and s ∈R \ {} with |s| ≤ . Using the mean-value theorem, by (H)(i),

one gets

∣∣∣∣F(x, u + sv) – F(x, u)
s

∣∣∣∣ ≤
∫ 



∣∣f (x, u + tsv)
∣∣|v|dt ≤ W (x)

(|u| + |v|)|v|. (.)
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Using Hölder’s inequality and by (H)(ii), we have

∫
�

W (x)|u‖v|dx ≤
(∫

�

W |u| dx
) 


(∫

�

W |v| dx
) 

 ≤ KW ‖u‖‖v‖. (.)

Since W |v| is integrable, combining (.), (.), by the Lebesgue dominated conver-
gence theorem, we see that G is directional-differentiable on H and

〈
DG(u), v

〉
=

∫
�

f (x, u)v dx.

Moreover, by the estimate (.), it follows that

∣∣〈DG(u), v
〉∣∣ ≤ KW ‖u‖‖v‖, ∀v ∈ H.

Hence, DG(u) is a continuous linear functional on H and G is Gâteaux-differentiable
on H.

(ii) We now prove that DG is continuous on H. Let {un} converging to u in H. Suppose
by contradiction that DG(un) does not converge to D(u). Then there exists ε > , a subse-
quence of {un} (it will be also denoted by {un}) and a sequence {vn} ∈ H with ‖vn‖ =  such
that

ε <
∣∣〈DG(un) – DG(u), vn

〉∣∣ =
∣∣∣∣
∫

�

(
f (x, un) – f (x, u)

)
vn dx

∣∣∣∣, ∀n ∈ N . (.)

By condition (H)(iii), there exist measurable functions g, g, v, and a strictly increasing
sequence {nk} of positive integer numbers such that Wg

i is integrable and

lim
k→∞

unk = u(x), lim
k→∞

vnk = v(x) a.e. x ∈ �,

∣∣vnk (x)
∣∣ ≤ g(x),

∣∣unk (x)
∣∣ ≤ g(x) a.e. x ∈ �.

It follows that

lim
k→∞

(
f (x, unk ) – f (x, u)

)
vnk =  a.e. x ∈ �

and by condition (H)(i),

∣∣f (x, unk (x)
)

– f
(
x, u(x)

)∣∣∣∣vnk (x)
∣∣ ≤ (∣∣f (x, unk (x)

)∣∣ +
∣∣f (x, u(x)

)∣∣)∣∣vnk (x)
∣∣

≤ W (x)|unk ||vnk | + W (x)
∣∣u(x)

∣∣∣∣vnk (x)
∣∣

≤ W (x)g(x)g(x) + W (x)
∣∣u(x)

∣∣g(x).

Let T = Wgg + W |u|g. By (H)(ii), W (x)|u| is integrable on � and T is therefore
integrable on �. Indeed, it follows from Hölder’s inequality that

∫
�

∣∣T(x)
∣∣dx ≤

(∫
�

W |g| dx
) 


(∫

�

W |g| dx
) 



+
(∫

�

W |u| dx
) 


(∫

�

W |g| dx
) 


.
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Using the Lebesgue dominated convergence theorem, we obtain

lim
k→∞

∣∣∣∣
∫

�

(
f (x, unk ) – f (x, u)vnk

)
dx

∣∣∣∣ = ,

which contradicts (.). �

Lemma . Under conditions (H)-(H), the functional I+ satisfies the (PS) condition.

Proof Let {un} ⊂ H be a sequence such that |I ′
+(un)| ≤ c, 〈I ′

+(un),φ〉 →  as n → ∞. Note
that

〈
I ′

+(un),φ
〉

=
∫

�

(�un�φ – c∇un∇φ) dx –
∫

�

f+(x, un)φ dx = o
(‖φ‖) (.)

for all φ ∈ H.
. We prove that {‖un‖} is bounded. Suppose by contradiction that there is a subsequence

of {un} (also denoted by {un}) such that ‖un‖ → ∞. Put wn = un
‖un‖ for every n ∈N. We have

‖wn‖ =  for every n. Without loss of generality, we assume that wn ⇀ w in H, then wn → w
in L(�). Hence, wn → w a.e. in �. Dividing both sides of (.) by ‖un‖, we get

∫
�

(�wn�φ – c∇wn∇φ) dx –
∫

�

f+(x, un)
‖un‖ φ dx = o

( ‖φ‖
‖un‖

)
, ∀φ ∈ H. (.)

Note that if un(x) =  then wn(x) =  and

‖un‖–(f
(
x, u+

n
)
un

)
=  =

f (x, u+
n)

|u+
n| w

n.

Taking φ = wn in (.), we have

∫
�

(|�wn| – c∇wn∇wn
)

dx –
∫

�

f+(x, un)
‖un‖ wn dx = o

(‖wn‖
‖un‖

)
. (.)

Using (H)(i), we obtain
∣∣∣∣ f (x, u+

n)
|u+

n| w
n dx

∣∣∣∣ ≤
∫

�

W (x)w
n dx.

By (H)(iii), using the Lebesgue dominated convergence theorem, we have

lim
n→∞

∫
�

W (x)w
n dx = ,

and thus

lim
n→∞

∫
�

f (x, u+
n)

|u+
n| w

n dx = . (.)

Letting n → ∞ in (.), we get

 = lim
n→∞‖wn‖ = ,

which is impossible. Therefore, we conclude that w �≡ .
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Set D = {x : w(x) �= }. We have un(x) → ∞ for all x ∈ D. Then condition (.) implies
that

lim
n→∞

f (x, u+
n)

u+
n

= q(x)

for all x ∈ D. Similar to (.), we get

lim
n→∞

∫
�

f (x, u+
n)

|u+
n| w+

nφ dx =
∫

�

q(x)w+φ dx. (.)

Since wn ⇀ w, combining (.) and letting n → ∞ in (.), we have

∫
�

(�w�φ – c∇w∇φ) dx =
∫

�

q(x)w+φ dx. (.)

Then we have
⎧⎨
⎩

�w + c�w = q(x)w+, x ∈ �,

w|∂� = �w|∂� = .

Meanwhile, let –�w = u, by the comparison maximum principle w > . This contradicts
our assumption (H). So {un} is bounded in H.

. We prove that {un} has a strong convergent subsequence. Since H is a Hilbert space,
we only need to prove that ‖un‖ → ‖u‖. We may assume that un ⇀ u. Using (H) and the
Lebesgue dominated theorem, we obtain

lim
n→∞

∫
�

f (x, un)un dx =
∫

�

f (x, u)u dx. (.)

Combining (.) and (.), we have

lim
n→∞‖un‖ = ‖u‖. �

Remark . Under conditions (H∗), (H∗), and (H∗), this lemma still holds.

Lemma . Under conditions (.), (H), (H), and (H), there exist positive numbers ρ

and η such that I+(u) ≥ η for all u ∈ H with ‖u‖ = ρ .

Proof We adapt a new method from [] to prove this conclusion. Suppose by contradiction
that for every n ∈N, there exists un in H such that ‖un‖ = n– and

I+(un) =



∫
�

(|�un| – c|∇un|
)

dx –
∫

�

F
(
x, u+

n
)

dx <


n . (.)

Let wn = nun; then ‖wn‖ =  and we can suppose that {wn} weakly converges to w in H.
Dividing both sides of (.) by 

n , one has



‖wn‖ –

∫
�

nF
(
x, u+

n
)

dx <

n

. (.)
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Now, we claim that

lim
n→∞‖wn‖ = ‖w‖.

From (H)(i), we have
∫

�

∣∣F(
x, n–wn

)
– F

(
x, n–w

)∣∣dx

≤
∫

�

∫ 



∣∣f (x, n–w + t
(
n–wn – n–w

))(
n–wn – n–w

)∣∣dt dx

≤
∫

�

W (x)n–(|w||wn – w| + |wn – w|)dx.

Therefore, by the Lebesgue dominated convergence theorem and (ii), (iii) of (H),

lim
n→∞

∫
�

n∣∣F(
x, n–wn

)
– F

(
x, n–w

)∣∣dx = . (.)

So, our claim holds. Combining this claim and wn weakly converging to w, we get

‖wn – w‖ →  (.)

as n → ∞.
On the other hand, arguing as in the proof of (.), we have

lim
n→∞ nF

(
x, n–w+

n
)

dx ≤ 


∫
�

p(x)w dx. (.)

Using (.), (.) and letting n → ∞ in (.), we obtain




(
‖w‖ –

∫
�

p(x)w dx
)

≤ . (.)

According to assumption (H), this leads to a contradiction. �

Remark . Under conditions (.), (H∗), (H∗), and (H∗), this lemma still holds.

Lemma . Under conditions (H)-(H), the functional I+ satisfies

lim
t→∞

I+(tφ(q))
t < ,

where φ(q) is the first eigenfunction of the eigenvalue problem
⎧⎨
⎩

�u(x) + c�u = �q(x)u, in �,

u = �u = , on ∂�.

Proof Let u = φ(q). Using principal eigenvalue theorem, we have u >  a.e. in �. By the
Lebesgue dominated convergence theorem and (H), we obtain

lim
t→∞

∫
�

F(x, tu)
t dx = lim

t→∞

∫
�

F(x, tu) – F(x, )
t dx = lim

t→∞

∫
�

∫ 



f (x, stu)tu
t ds dx

=
∫

�

∫ 


lim

t→∞
f (x, stu)

stu
su ds dx =




∫
�

q(x)u dx. (.)
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Combining (.) and (H), we have

lim
t→∞

I+(tu)
t =



‖u‖ –




∫
�

q(x)u dx ≤ –c‖u‖ < . �

Remark . Under conditions (.), (H∗), (H∗), and (H∗), this lemma still holds.

Lemma . Let H = V ⊕ W , where V = Eλ ⊕ Eλ ⊕ · · · ⊕ Eλk . If f satisfies (H∗), (H∗)
and (H∗) and λk ≤ q(x) < λk+, then:

(i) the functional I is coercive on W , that is,

I(u) → +∞ as ‖u‖ → +∞, u ∈ W

and bounded from below on W ,
(ii) the functional I is anti-coercive on V .

Proof (i) Suppose by contradiction that there exist M >  and {un} in H such that ‖un‖ →
∞ and

I(un) =


‖un‖ –

∫
�

F(x, un) dx ≤ M. (.)

Let wn = un
‖un‖ ; then ‖wn‖ = . Now, we may assume that wn ⇀ w in W and wn → w a.e.

x ∈ �. It is obvious that w �= .
Dividing both sides of (.) by ‖un‖, we have




–
∫

�

F(x, un)
‖un‖ ≤ M

‖un‖ . (.)

By (.) and (H∗), using the Lebesgue dominated theorem and letting n → ∞ in (.),
we get

 –
∫

�

q(x)w dx < . (.)

Since wn ⇀ w, from (.)

‖w‖ ≤
∫

�

q(x)w dx,

which leads to a contradiction.
(ii) Case . When λk < q(x) < λk+, similar to the proof of (i), it is easy to verify that the

conclusion holds.
Case . When l = λk , write G(x, t) = F(x, t) – 

λkt, g(x, t) = f (x, t) – λkt. Then for every
x ∈ �, (H), and (.) imply that

lim|t|→∞
[
g(x, t)t – G(x, t)

]
= –∞ (.)

and

lim|t|→∞
G(x, t)

t = . (.)
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It follows from (.) that for every M > , there exists a constant T >  (T depends on x)
such that

g(x, t)t – G(x, t) ≤ –M, ∀t ∈R, |t| ≥ T . (.)

For τ > , we have

d
dτ

G(x, τ )
τ  =

g(x, τ )τ – G(x, τ )
τ  . (.)

Integrating (.) over [t, s] ⊂ [T , +∞), we deduce that

G(x, s)
s –

G(x, t)
t ≤ M



(

s –


t

)
. (.)

Letting s → +∞ and using (.), we see that G(x, t) ≥ M
 , for t ∈ R, t ≥ T . A similar

argument shows that G(x, t) ≥ M
 , for t ∈R, t ≤ –T . Hence, for every x ∈ �, we have

lim|t|→∞ G(x, t) → +∞. (.)

By (.), we get

I(v) =



∫
�

|�v| dx –
∫

�

F(x, v) dx

=



∫
�

|�v| dx –


λk

∫
�

v dx –
∫

�

G(x, v) dx

≤ –δ
∥∥v–∥∥ –

∫
�

G(x, v) dx → –∞

for v ∈ V with ‖v‖ → +∞, where v– ∈ Eλ ⊕ Eλ ⊕ · · · ⊕ Eλk– . �

Lemma . Under conditions (.), (H∗), and (H∗), I satisfies the (PS) condition for λk <
q(x) < λk+.

Proof Let {un} ⊂ H be a sequence such that |I ′(un)| ≤ c, 〈I ′(un),φ〉 →  as n → ∞. Note
that

〈
I ′(un),φ

〉
=

∫
�

(�un�φ – c∇un∇φ) dx –
∫

�

f (x, un)φ dx = o
(‖φ‖) (.)

for all φ ∈ H.
We prove that {‖un‖} is bounded. Suppose by contradiction that there is a subsequence

of {un} (also denoted by {un}) such that ‖un‖ → ∞. Put wn = un
‖un‖ for every n ∈ N. We

have ‖wn‖ =  for every n. Without loss of generality, we assume that wn ⇀ w in H, then
wn → w in L(�). Hence, wn → w a.e. in �. Dividing both sides of (.) by ‖un‖, we get

∫
�

(�wn�φ – c∇wn∇φ) dx –
∫

�

f (x, un)
‖un‖ φ dx = o

( ‖φ‖
‖un‖

)
, ∀φ ∈ H. (.)
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Note that if un(x) =  then wn(x) =  and

‖un‖–[f (x, un)un
]

=  =
f (x, un)

|un| w
n.

Taking φ = wn in (.), we have

∫
�

(|�wn| – c∇wn∇wn
)

dx –
∫

�

f (x, un)
‖un‖ wn dx = o

(‖wn‖
‖un‖

)
. (.)

Using (H∗), we obtain
∣∣∣∣ f (x, un)

un
w

n dx
∣∣∣∣ ≤

∫
�

W (x)w
n dx.

From the Lebesgue dominated convergence theorem, we have

lim
n→∞

∫
�

W (x)w
n dx = ,

and thus

lim
n→∞

∫
�

f (x, un)
un

w
n dx = . (.)

Letting n → ∞ in (.), we get

 = lim
n→∞‖wn‖ = ,

which is impossible. Therefore, we conclude that w �≡ .
Set D = {x : w(x) �= }. We have un(x) → ∞ for all x ∈ D. Then condition (.) implies

that

lim
n→∞

f (x, un)
un

= q(x)

for all x ∈ D. Similar to (.), we get

lim
n→∞

∫
�

f (x, un)
un

wnφ dx =
∫

�

q(x)wφ dx. (.)

Since wn ⇀ w, combining (.) and letting n → ∞ in (.), we have
∫

�

(�w�φ – c∇w∇φ) dx =
∫

�

q(x)wφ dx. (.)

Then we have
⎧⎨
⎩

�w + c�w = q(x)w, x ∈ �,

w|∂� = �w|∂� = .

This combined with our assumptions implies that w =  and it leads to a contradiction. So
{un} is bounded in H. �
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Lemma . Under conditions (.), (H∗), (H∗), and (H), the functional I satisfies the
(C) condition which is stated in [] for q(x) = �k .

Proof Suppose un ∈ H satisfies

I(un) → c ∈R,
(
 + ‖un‖

)∥∥I ′(un)
∥∥ →  as n → ∞. (.)

According to the proof of Lemma ., it suffices to prove that un is bounded in H. Similar
to the proof of Lemma ., we have

∫
�

(�w�φ dx – c∇w∇φ) dx –
∫

�

lwφ dx = , ∀φ ∈ H. (.)

Therefore w �=  is an eigenfunction of λk , then |un(x)| → ∞ for a.e. x ∈ �. It follows from
(H) that

lim
n→+∞

[
f
(
x, un(x)

)
un(x) – F

(
x, un(x)

)]
= –∞

holds for every x ∈ �, which implies that

∫
�

(
f (x, un)un – F(x, un)

)
dx → –∞ as n → ∞. (.)

On the other hand, (.) implies that

I(un) –
〈
I ′(un), un

〉 → c as n → ∞.

Thus
∫

�

(
f (x, un)un – F(x, un)

)
dx → c as n → ∞,

which contradicts (.). Hence un is bounded. �

It is well known that critical groups and Morse theory are the main tools in solving
elliptic partial differential equations. Let us recall some results which will be used later.
We refer the reader to [] for more information on Morse theory.

Let H be a Hilbert space and I ∈ C(H,R) be a functional satisfying the (PS) condition
or the (C) condition, and Hq(X, Y ) be the qth singular relative homology group with inte-
ger coefficients. Let u be an isolated critical point of I with I(u) = c, c ∈ R, and U be a
neighborhood of u. The group

Cq(I, u) := Hq
(
Ic ∩ U , Ic ∩ U \ {u}

)
, q ∈ Z,

is said to be the qth critical group of I at u, where Ic = {u ∈ H : I(u) ≤ c}.
Let K := {u ∈ H : I ′(u) = } be the set of critical points of I and a < inf I(K), the critical

groups of I at infinity are formally defined by (see [])

Cq(I,∞) := Hq
(
H, Ia), q ∈ Z.
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The following result comes from [, ] and will be used to prove the result in this article.

Proposition . [] Assume that H = H+∞ ⊕ H–∞, I is bounded from below on H+∞ and
I(u) → –∞ as ‖u‖ → ∞ with u ∈ H–∞. Then

Ck(I,∞) � , if k = dim H–
∞ < ∞. (.)

3 Proof of the main result
Proof of Theorem . By Lemma ., Lemma ., Lemma ., and the mountain pass the-
orem, the functional I+ has a critical point u satisfying I+(u) ≥ β . Since I+() = , u �= 
and by the maximum principle, we get u > . Hence u is a positive solution of the prob-
lem (.). Similarly, we can obtain another negative critical point u of I . �

Proof of Theorem . By Remarks . and . and the mountain pass theorem, the func-
tional I+ has a critical point u satisfying I+(u) ≥ β . Since I+() = , u �= , and by the
maximum principle, we get u > . Hence u is a positive solution of the problem (.) and
satisfies

C(I+, u) �= , u > . (.)

From conditions (H∗) and (H∗), we easily verify that I is C on H. Thus, by using the
results in [], we obtain

Cq(I, u) = Cq(IC
(�), u) = Cq(I+|C

(�), u) = Cq(I+, u) = δqZ. (.)

Similarly, we can obtain another negative critical point u of I satisfying

Cq(I, u) = δq,Z. (.)

Since γ (p) > , the zero function is a local minimizer of I , then

Cq(I, ) = δq,Z. (.)

On the other hand, by Lemma ., Lemma ., and Proposition ., we have

Ck(I,∞) � . (.)

Hence I has a critical point u satisfying

Ck(I, u) � . (.)

Since k ≥ , it follows from (.)-(.) that u, u, and u are three different non-trivial
solutions of the problem (.). �

Proof of Theorem . By Lemma ., Lemma ., and Proposition ., we can prove the
conclusion (.). The other proof is similar to that of Theorem .. �
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