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Abstract
Given a nonempty set Y ⊆ Rn and a function f : [a,b]× Rn × Rn × Y → R, we are
interested in the problem of finding u ∈W2,p([a,b],Rn) such that

{
f (t,u(t),u′(t),u′′(t)) = 0 for a.e. t ∈ [a,b],

u(a) = u(b) = 0Rn .

We prove an existence result where, for any fixed (t, y) ∈ [a,b]× Y , the function
f (t, ·, ·, y) can be discontinuous even at all points (x, z) ∈ Rn × Rn. The function
f (t, x, z, ·) is only assumed to be continuous and locally nonconstant.
We also show how the same approach can be applied to the implicit integral

equation f (t,
∫ b
a g(t, z)u(z)dz,u(t)) = 0. We prove an existence result (with f (t, x, y)

discontinuous in x and continuous and locally nonconstant in y) which extends and
improves in several directions some recent results in the field.

Keywords: implicit differential equations; two-point problem; discontinuity;
discontinuous selections; implicit integral equations

1 Introduction
Let [a, b] be a compact interval, and let p ∈ [, +∞] and n ∈ N. As usual, we denote by
W ,p([a, b], Rn) the set of all u ∈ C([a, b], Rn) such that u′ is absolutely continuous in [a, b]
and u′′ ∈ Lp([a, b], Rn). Given a nonempty set Y ⊆ Rn and a function f : [a, b] × Rn × Rn ×
Y → R, we are interested in the problem of finding u ∈ W ,p([a, b], Rn) such that

⎧⎨
⎩f (t, u(t), u′(t), u′′(t)) =  for a.e. t ∈ [a, b],

u(a) = u(b) = Rn .
()

To the best of our knowledge, there are not many existence results in the literature
as regards problem (). Some of them [–] deal with the special case where n =  and
f (t, x, z, y) = y – g(t, x, z, y), where g satisfies some growth conditions with respect to (x, z),
and very strong conditions (such as Lipschitzianity) are imposed on y. In general, there is
little known about the existence of solutions for boundary value problems associated to
the equation

f
(
t, u(t), u′(t), . . . , u(k)(t)

)
=  ()
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(even when f is continuous), unless it is possible to solve the equation with respect to the
highest derivative. In this case, a variety of existence results based on the Leray-Schauder
theory is available. As regards boundary value problems, a global continuous solvability
in u(k) is needed, which is rarely available (we refer to [, ] and to the references therein
for more details).

One approach, used in [, ], consists to reduce () (or, more generally, ()) to a differ-
ential inclusion of the form

u(k)(t) ∈ �
(
t, u(t), . . . , u(k–)(t)

)
,

with a ‘well-behaved’ multifunction �, and then to apply existence results for differen-
tial inclusions or selection arguments. Even in this case (see [, ]), the continuity of f is
assumed.

Our aim in this paper is to prove an existence result for problem (), in the general vector
case, where we assume only that the function f (t, x, z, y), with respect to y, is continuous
and locally nonconstant. Moreover, our assumptions do not imply any continuity with
respect to (x, z). In particular, a function f satisfying our assumptions can be discontinuous
at each point (x, z) ∈ Rn × Rn, for all fixed (t, y) ∈ [a, b] × Y .

Our approach is based on a selection theorem (Theorem . below) for multifunctions
defined on subsets of product spaces. Such result, which refines a former version originally
proved in [], ensures the existence of a selection (for a given multifunction), whose set
of discontinuities has a peculiar geometric property. That is, it is contained in the union
of the set where the given multifunction fails to be lower semicontinuous, together with a
finite family of sets, each of them with at least one projection of zero measure.

The selection theorem will be proved in Section , together with other preliminary re-
sults. In Section , our main result will be stated and proved, together with examples of
application. Finally, in Section , we show how the same approach can be usefully em-
ployed to study an implicit integral equation of the form

f
(

t,
∫ b

a
g(t, z)u(z) dz, u(t)

)
= .

We obtain an existence result where, as above, the function f (t, z, y) is only assumed, with
respect to y, to be continuous and locally nonconstant. As before, our assumptions allow f
(with respect to the second variable) to be discontinuous at all points x ∈ Rn. As showed in
Section , our result extends and also improves in several directions some recent results.

2 Notations and preliminary results
In the following, given n ∈ N, we denote by An the family of all subsets U ⊆ Rn such that,
for every i = , . . . , n, the supremum and the infimum of the projection of conv(U) on the
ith axis are both positive or both negative (‘conv’ standing for ‘closed convex hull’).

Given any Lebesgue measurable set V ⊆ Rn, we indicate by L(V ) the family of all
Lebesgue measurable subsets of V , and by mn the n-dimensional Lebesgue measure
in Rn. For all i ∈ {, . . . , n}, we shall denote by Pn,i : Rn → R the projection over the ith
axis. We also denote by Fn the family of all subsets F ⊆ Rn such that there exist sets
F, F, . . . , Fn ⊆ Rn, with m(Pn,i(Fi)) =  for all i = , . . . , n, such that F =

⋃n
i= Fi. Of course,

any set F ∈Fn belongs to L(Rn) and mn(F) = .
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The space Rn will be considered with its Euclidean norm ‖ · ‖n. If p ∈ [, +∞], the space
Lp([a, b], Rn) will be considered with the usual norm

‖u‖Lp([a,b],Rn) :=
(∫ b

a

∥∥u(t)
∥∥p

n dt
) 

p
if p < +∞,

‖u‖L∞([a,b],Rn) := esssup
t∈[a,b]

∥∥u(t)
∥∥

n if p = +∞.

As usual, we put Lp([a, b]) := Lp([a, b], R).
Let X be a topological space. We shall denote by B(X) the Borel family of X. In the

following, if T is a Polish space (that is, a separable complete metric space) endowed with
a positive regular Borel measure μ, we shall denote by Tμ the completion of the σ -algebra
B(T) with respect to the measure μ.

For the basic definitions and facts about multifunctions, we refer to []. Here, we only
recall (see also []) that if (S,D) is a measurable space and X is a topological space, then a
multifunction F : S → X is said to be D-measurable (resp., D-weakly measurable) if for
any closed (resp., open) set A ⊆ X the set

F–(A) :=
{

s ∈ S : F(s) ∩ A 	= ∅}
is measurable. Finally, if x ∈ Rn and r > , we put

Bn(x, r) :=
{

v ∈ Rn : ‖v – x‖n ≤ r
}

.

Our first goal in this section is to prove the following selection result, which is essential
for our purposes (for definitions and basic properties as regards Souslin sets and spaces,
the reader is referred to []).

Theorem . Let T and X, X, . . . , Xk be Polish spaces, with k ∈ N, and let X :=
∏k

j= Xj

(endowed with the product topology). Let μ, ψ, . . . ,ψk be positive regular Borel measures
over T , X, X, . . . , Xk , respectively, with μ finite and ψ, . . . ,ψk σ -finite.

Let S be a separable metric space, W ⊆ X a Souslin set, and let F : T × W → S be a
multifunction with nonempty complete values. Let E ⊆ W be a given set. Finally, for all
i ∈ {, . . . , k}, let P∗,i : X → Xi be the projection over Xi. Assume that:

(i) the multifunction F is Tμ ⊗B(W )-weakly measurable;
(ii) for a.e. t ∈ T , one has

{
x := (x, . . . , xk) ∈ W : F(t, ·) is not lower semicontinuous at x

} ⊆ E. ()

Then, there exist sets Q, . . . , Qk , with

Qi ∈ B(Xi) and ψi(Qi) =  for all i = , . . . , k,

and a function φ : T × W → S such that:
(a) φ(t, x) ∈ F(t, x) for all (t, x) ∈ T × W ;
(b) for all x := (x, x, . . . , xk) ∈ W \ [(

⋃k
i= P–

∗,i(Qi)) ∪ E], the function φ(·, x) is
Tμ-measurable over T ;
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(c) for a.e. t ∈ T , one has

{
x := (x, x, . . . , xk) ∈ W : φ(t, ·) is discontinuous at x

}

⊆ E ∪
[

W ∩
( k⋃

i=

P–
∗,i(Qi)

)]
.

As noted in Section , Theorem . is a refinement of Theorem . of []. Although
the proof is quite similar to the one of [], for the reader’s convenience we shall give it
explicitly. First of all, we prove the two following lemmas.

Lemma . Let T , X be two Polish spaces, and let μ be a finite positive regular Borel
measure on T . Let W ⊆ X be a Souslin set, f : T ×W → R a given function, E ⊆ W another
set. Assume that:

(i) f is Tμ ⊗B(W )-measurable;
(ii) infT×W f > –∞;

(iii) for all t ∈ T , one has

{
x ∈ W : f (t, ·) is not lower semicontinuous at x

} ⊆ E.

Then, for each ε >  there exists a compact set K ⊆ T such that μ(T \ K) ≤ ε and the
function f |K×W is lower semicontinuous at each point (t, x) ∈ K × (W \ E).

Proof Without loss of generality we can assume that f ≥  in T ×W . Let d be the distance
in X. Fix n ∈ N, and let fn : T × X → [, +∞[ be defined by putting, for all (t, x) ∈ T × X,

fn(t, x) := inf
y∈W

[
nd(x, y) + f (t, y)

]
.

Let us observe the following facts.
(a) For all x ∈ X , the function fn(·, x) is Tμ-measurable over T . To see this, fix x ∈ X .

Our assumptions imply that the function

(t, y) ∈ T × W → nd(x, y) + f (t, y)

is Tμ ⊗B(W )-measurable. Since W (endowed with the relative topology) is a
Souslin space, by Lemma III. of [] our claim follows.

(b) For each fixed t ∈ T , the function fn(t, ·) is n-Lipschitzian over X (the proof is
straightforward).

(c) We have

fn(t, x) ≤ f (t, x) for all n ∈ N and (t, x) ∈ T × W . ()

Now, let ψ : T × W → [, +∞[ be defined by putting

ψ(t, x) := sup
n∈N

fn(t, x).
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In particular, by () we have

ψ(t, x) ≤ f (t, x) for all (t, x) ∈ T × W . ()

We claim that

ψ(t, x) = f (t, x) for all (t, x) ∈ T × (W \ E). ()

To see this, fix (t, x) ∈ T × (W \ E) and assume that ψ(t, x) < f (t, x). Let δ := f (t, x) – ψ(t,
x) > . Then, for each n ∈ N there exists yn ∈ W such that

nd(x, yn) + f (t, yn) < f (t, x) –
δ


,

hence

nd(x, yn) < f (t, x) –
δ


– f (t, yn) ≤ f (t, x) –

δ


.

This implies that {yn} → x in X (hence, in particular, in W ). By assumption (iii), we get

f (t, x) ≤ lim inf
n→∞ f (t, yn) ≤ lim inf

n→∞

(
f (t, x) –

δ


– nd(x, yn)

)
≤ f (t, x) –

δ


,

a contradiction. Thus, () is proved.
Now, in order to prove the conclusion, fix ε > . By Theorem  of [], for each n ∈ N

there exists a compact set Kn ⊆ T such that μ(T \ Kn) < (ε/n) and the function fn|Kn×X is
continuous. Let K :=

⋂
n∈N Kn. Of course, K is compact and μ(T \ K) < ε. Moreover, for

all n ∈ N the function fn|K×W is continuous.
Consequently, the function ψ |K×W is l.s.c. Let us prove that f |K×W is l.s.c. at each point

(t, x) ∈ K × (W \ E). To this aim, fix (t∗, x∗) ∈ K × (W \ E) and γ > . Let U be a neighbor-
hood of (x∗, y∗) in K × W such that

ψ(t, x) > ψ
(
t∗, x∗) – γ , ∀(t, x) ∈ U

(such U exists since ψ |K×W is lower semicontinuous). For all (t, x) ∈ U , by () and () we
get

f (t, x) ≥ ψ(t, x) > ψ
(
t∗, x∗) – γ = f

(
t∗, x∗) – γ ,

hence f |K×W is l.s.c. at (t∗, x∗), as desired. This concludes the proof. �

Lemma . Let T , X, μ, W and E be as in Lemma .. Let S be a separable metric space,
F : T × W → S a multifunction with nonempty values. Assume that:

(i) F is Tμ ⊗B(W )-weakly measurable;
(ii) for all t ∈ T , one has

{
x ∈ W : F(t, ·) is not lower semicontinuous at x

} ⊆ E.
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Then, for each ε >  there exists a compact set K ⊆ T such that μ(T \ K) ≤ ε and the
multifunction F|K×W is lower semicontinuous at each point (t, x) ∈ K × (W \ E).

Proof Let dS be an equivalent distance over S such that dS ≤ , and let {sn} be a dense
sequence in S. Fix ε > . For each n ∈ N, let hn : T × W → [, +∞[ be defined by putting,
for each (t, x) ∈ T × W ,

hn(t, x) = –dS
(
sn, F(t, x)

)
.

By assumption (i) and Theorem . of [], the function hn is Tμ⊗B(W )-measurable. More-
over, by assumption (ii) and Lemma  of [], for all t ∈ T we have

{
x ∈ W : hn(t, ·) is not lower semicontinuous at x

} ⊆ E.

By Lemma ., there exists a compact set Kn ⊆ T such that μ(T \ Kn) < ε/n and hn|Kn×W

is lower semicontinuous at each point (t, x) ∈ Kn × (W \ E). Let K :=
⋂

n∈N Kn. Of course,
μ(T \K) ≤ ε and, for all n ∈ N, the function hn|K×W is lower semicontinuous at each point
(t, x) ∈ K × (W \ E). Again by Lemma  of [], this implies that the multifunction F|K×W

is lower semicontinuous at each point (t, x) ∈ K × (W \ E). This completes the proof. �

The following results are proved in []. We state them for easy reading (in the following,
the space NN of all infinite sequences of integers is considered with the product topology;
we recall that NN is Polish and zero-dimensional).

Lemma . (Lemma . of []) Let p ∈ N, with p ≥ , and let Y, Y, . . . , Yp be Polish spaces,
endowed with σ -finite positive regular Borel measures μ,μ, . . . ,μp, respectively.

Then, there exist sets Q, Q, . . . , Qp, with

Qi ∈ B(Yi) and μi(Qi) =  for all i = , . . . , p,

and two functions π : NN → Y × Y × · · · × Yp and σ : Y × Y × · · · × Yp → NN, such
that:

(a) the function π is continuous and open;
(b) the function σ is continuous at each point

x := (x, x, . . . , xp) ∈ (Y \ Q) × (Y \ Q) × · · · × (Yp \ Qp);

(c) one has

π
(
σ (x)

)
= x for all x ∈ Y × Y × · · · × Yp.

Lemma . (Lemma . of []) Let p ∈ N, with p ≥ , and let Y, Y, . . . , Yp be Polish spaces,
endowed with σ -finite positive regular Borel measures μ,μ, . . . ,μp, respectively. Let the
sets Q, Q, . . . , Qp and the functions π and σ be as in the conclusion of Lemma ..

Let B ⊆ Y × · · · × Yp a nonempty set, V ⊆ B another given set, E a metric space and
F : B → E a multifunction with nonempty complete values. Assume that F is lower semi-
continuous at each point x = (x, . . . , xp) ∈ B \ V .

Then, there exists a function g : B → E such that:
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(a) g(x, . . . , xp) ∈ F(x, . . . , xp) for all (x, . . . , xp) ∈ B;
(b) g is continuous at each point

(x, . . . , xp) ∈ [[
(Y \ Q) × (Y \ Q) × · · · × (Yp \ Qp)

] ∩ B
] \ V .

Proof of Theorem . It is matter of routine to check that, without loss of generality, we
can assume that () holds for all t ∈ T .

Fix n ∈ N. By Lemma . (applied to the multifunction F : T × W → S , with ε = /n),
there exists a compact set K̂n ⊆ T such that

μ(T \ K̂n) ≤ 
n

and the multifunction F|K̂n×W is lower semicontinuous at each point (t, x) ∈ K̂n × (W \ E).
Let us put

K := K̂, Kn := K̂n

∖ n–⋃
j=

K̂j, n ≥ .

The sets {Kn} are pairwise disjoint, the equality
⋃

n∈N K̂n =
⋃

n∈N Kn holds, and for all n ∈ N
the multifunction F|Kn×W is lower semicontinuous at each point (t, x) ∈ Kn × (W \ E). Let

Y := T
∖ ⋃

n∈N

Kn.

Hence Y ∈ B(T), and for all j ∈ N one has

μ(Y ) = μ

(
T

∖ ⋃
n∈N

Kn

)
= μ

(
T

∖ ⋃
n∈N

K̂n

)
= μ

(⋂
n∈N

(T \ K̂n)
)

≤ μ(T \ K̂j) ≤ 
j

,

hence μ(Y ) = . Now, let us apply Lemma . above to the k +  spaces T , X, . . . , Xk . We
see that there exist sets

Q ∈ B(T), Q ∈ B(X), . . . , Qk ∈ B(Xk)

and functions π and σ satisfying the conclusion of Lemma .. For each n ∈ N, let us apply
Lemma ., with

B = Kn × W , V := Kn × E.

We see that there exists a function gn : Kn × W → S such that

gn(t, x) ∈ F(t, x), ∀(t, x) ∈ Kn × W

and gn : Kn × W → S is continuous at each point

(t, x) ∈ ([
(T \ Q) × (X \ Q) × · · · × (Xk \ Qk)

] ∩ [Kn × W ]
) \ [Kn × E]

=
[
(Kn \ Q) × ((

(X \ Q) × · · · × (Xk \ Qk)
) ∩ W

)] \ (Kn × E)
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= (Kn \ Q) × ([(
(X \ Q) × · · · × (Xk \ Qk)

) ∩ W
] \ E

)
= (Kn \ Q) × ([

(X \ Q) × · · · × (Xk \ Qk)
] ∩ (W \ E)

)
.

For each t ∈ Y and x ∈ W , choose any h(t, x) ∈ F(t, x). Let φ : T × W → S be defined by

φ(t, x) =

⎧⎨
⎩gn(t, x) if t ∈ Kn,

h(t, x) if t ∈ Y .
()

It is immediate to check that φ(t, x) ∈ F(t, x) for all (t, x) ∈ T × W .
Now, fix t∗ ∈ T \ (Q ∪ Y ) (observe that Q ∪ Y ∈ B(T) and has null measure) and let

n ∈ N such that t∗ ∈ Kn. Hence, for all x ∈ W , we have φ(t∗, x) = gn(t∗, x), that is, φ(t∗, ·) =
gn(t∗, ·). Consequently, we get

{
x ∈ W : φ

(
t∗, ·) is discontinuous at x

} ⊆ E ∪
(

W
∖ [ k∏

i=

(Xi \ Qi)

])

= E ∪
[

W ∩
( k⋃

i=

P–
∗,i(Qi)

)]
.

Finally, if we fix

x := (x, x, . . . , xk) ∈ W
∖ [( k⋃

i=

P–
∗,i(Qi)

)
∪ E

]

=
[(

(X \ Q) × · · · × (Xk \ Qk)
) ∩ W

] \ E,

by () we see that for all n ∈ N the function φ(·, x)|Kn\Q is B(Kn \ Q)-measurable (since
gn(·, x)|Kn\Q is continuous), and φ(·, x)|Kn∩Q is Tμ-measurable (since μ(Q) =  and Tμ is
complete). It follows that for all n ∈ N the function φ(·, x)|Kn is Tμ-measurable. Hence, the
function φ(·, x) is Tμ-measurable over T (since μ(Y ) = ). The proof is complete. �

Finally, we prove the following proposition.

Proposition . Let ψ : [a, b] × Rn → Rk be a given function, E ⊆ Rn be a Lebesgue mea-
surable set, with mn(E) = , and let D be a countable dense subset of Rn, with D ∩ E = ∅.
Assume that:

(i) for all t ∈ [a, b], the function ψ(t, ·) is bounded;
(ii) for all x ∈ D, the function ψ(·, x) is L([a, b])-measurable.

Let G : [a, b]×Rn → Rk be the multifunction defined by setting, for each (t, x) ∈ [a, b]×Rn,

G(t, x) =
⋂
m∈N

conv

( ⋃
y∈D

‖y–x‖n≤ 
m

{
ψ(t, y)

})
.

Then one has:
(a) G has nonempty closed convex values;
(b) for all x ∈ Rn, the multifunction G(·, x) is L([a, b])-measurable;
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(c) for all t ∈ [a, b], the multifunction G(t, ·) has closed graph;
(d) if t ∈ [a, b], and ψ(t, ·)|Rn\E is continuous at x ∈ Rn \ E, then one has

G(t, x) =
{
ψ(t, x)

}
.

Proof Conclusions (a), (b), and (c) can be proved by arguing exactly as in the proof of
Proposition  of []. To prove conclusion (d), fix t ∈ [a, b], and let x ∈ Rn \ E such that
ψ(t, ·)|Rn\E is continuous at x. Fix ε > . By continuity, there exists δ >  such that

∥∥ψ(t, y) – ψ(t, x)
∥∥

k ≤ ε, ∀y ∈ Rn \ E, with ‖y – x‖n < δ.

Hence, if m ∈ N, with 
m < δ, taking into account that E ∩ D 	= ∅, we get

conv

( ⋃
y∈D

‖y–x‖n≤ 
m

{
ψ(t, y)

}) ⊆ Bk
(
ψ(t, x), ε

)
.

Consequently, we get G(t, x) ⊆ Bk(ψ(t, x), ε). Since ε >  was arbitrary and G(t, x) 	= ∅, we
get the conclusion. �

3 The main result
The following is our main result.

Theorem . Let [a, b] be a compact interval, and let Y ∈ An be a closed, connected and
locally connected subset of Rn. Let f : [a, b] × Rn × Rn × Y → R be a given function, 
 ⊆
Y × Y a countable set, dense in Y × Y , D′ and D′′ two dense subset of Y . Assume that there
exist n sets

V, V, . . . , Vn ∈ B(R),

with m(Vi) =  for all i = , . . . , n, such that, if one puts

� :=
n∏
i=

[R \ Vi],

f ∗ : [a, b] × � × Y → R, f ∗ := f |[a,b]×�×Y ,

one has:
(i) for all (y, y) ∈ 
, one has

{
(t, x, z) ∈ [a, b] × � : f ∗(t, x, z, y) <  < f ∗(t, x, z, y)

} ∈L
(
[a, b]

) ⊗B(�);

(ii) for a.e. t ∈ [a, b], and for all y ∈ D′, the function f ∗(t, ·, ·, y) is l.s.c. over �;
(iii) for a.e. t ∈ [a, b], and for all y ∈ D′′, the function f ∗(t, ·, ·, y) is u.s.c. over �;
(iv) for a.e. t ∈ [a, b], and for all (x, z) ∈ �, the function f (t, x, z, ·) is continuous over Y ,

 ∈ intR
(
f (t, x, z, Y )

)
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and

intY
({

y ∈ Y : f (t, x, z, y) = 
})

= ∅;

(v) there exist p ∈ [, +∞] and a positive function β ∈ Lp([a, b]) such that, for a.e.
t ∈ [a, b], and for all (x, z) ∈ �, one has

{
y ∈ Y : f (t, x, z, y) = 

} ⊆ Bn
(
Rn ,β(t)

)
.

Then, there exists u ∈ W ,p([a, b], Rn) such that

⎧⎨
⎩f (t, u(t), u′(t), u′′(t)) =  for a.e. t ∈ [a, b],

u(a) = u(b) = Rn ,

and

(
u(t), u′(t)

) ∈ � for a.e. t ∈ [a, b].

Proof From now on, we assume that assumptions (ii)-(v) are satisfied for all t ∈ [a, b] (it is
routine matter to check that it is not restrictive to do this). First of all, we assume p < +∞.
Fix t ∈ [a, b]. Let

Vt : � → Y , Et : � → Y , Qt : � → Y

be the multifunctions defined by setting, for all (x, z) ∈ �,

Vt(x, z) :=
{

y ∈ Y : f ∗(t, x, z, y) = 
}

,

Et(x, z) :=
{

y ∈ Y : y is a local extremum for f ∗(t, x, z, ·)},

Qt(x, z) := Vt(x, z) \ Et(x, z).

By assumptions (ii), (iii), (iv), and Theorem . of [], the multifunction Qt : � → Y

is lower semicontinuous in � with nonempty closed values (in Y , hence in Rn since Y is
closed). Now, let

Q : [a, b] × � → Y , Q(t, x, z) := Qt(x, z).

By what precedes, the multifunction Q has nonempty closed values and, for each fixed
t ∈ [a, b], the multifunction Q(t, ·, ·) is lower semicontinuous in �.

Now we prove that the multifunction Q is L([a, b]) ×B(�)-measurable. To this aim, let
A ⊆ Y be a nonempty open connected set, such that Q–(A) 	= ∅. We claim that

Q–(A) =
⋃

(y,y)∈(A×A)∩


{
(t, x, z) ∈ [a, b] × � : f (t, x, z, y) <  < f (t, x, z, y)

}
. ()

To this aim, fix any (t, x, z) ∈ Q–(A). Therefore, (t, x, z) ∈ [a, b] × � and there exists
y ∈ A ∩ Q(t, x, z). That is, y ∈ A, f (t, x, z, y) =  and y is not a local extremum for
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the function f (t, x, z, ·). This implies that there exist two points y′, y′′ ∈ A such that

f
(
t, x, z, y′) <  and f

(
t, x, z, y′′) > .

By the continuity of the function f (t, x, z, ·), there exist two open sets B, B ⊆ Y such
that y′ ∈ B, y′′ ∈ B, and

f (t, x, z, y) <  for all y ∈ B,

f (t, x, z, y) >  for all y ∈ B.

Put A := B ∩ A, A := B ∩ A. Of course, both A and A are open in Y and nonempty
(since they contain y′ and y′′, respectively).

Let (y, y) ∈ (A × A) ∩ 
 (this last set is nonempty since 
 is dense in Y × Y ). We see
that

(t, x, z) ∈ {
(t, x, z) ∈ [a, b] × � : f (t, x, z, y) <  < f (t, x, z, y)

}
,

hence (t, x, z) belongs to the right-hand side of (). Conversely, let (t∗, x∗, z∗) belong to
the right-hand side of (). Thus, there exists (y, y) ∈ (A × A) ∩ 
 such that

f
(
t∗, x∗, z∗, y

)
<  < f

(
t∗, x∗, z∗, y

)
. ()

Since A is connected and f (t∗, x∗, z∗, ·) is continuous in Y , there exists y ∈ A such that
f (t∗, x∗, z∗, y) = . We now distinguish two cases.

() If y is not a local extremum for the function f (t∗, x∗, z∗, ·), then we get
y ∈ Q(t∗, x∗, z∗) ∩ A, hence (t∗, x∗, z∗) ∈ Q–(A), as desired.

() If y is a local extremum for the function f (t∗, x∗, z∗, ·) (not absolute by assumption
(iv)), then y is also a local extremum for the function f (t∗, x∗, z∗, ·)|A (not absolute
by ()). Moreover, since A is open in Y , by assumption (v) we get

intA
({

y ∈ A : f
(
t∗, x∗, z∗, y

)
= 

})
= ∅.

Consequently, by Lemma . of [], there exists a point y∗ ∈ A such that
f (t∗, x∗, z∗, y∗) =  and y∗ is not a local extremum for the function f (t∗, x∗, z∗, ·)|A.
This easily implies that y∗ is not a local extremum for the function f (t∗, x∗, z∗, ·)
(considered over the whole set Y ). Therefore, we have y∗ ∈ Q(t∗, x∗, z∗) ∩ A, hence
(t∗, x∗, z∗) ∈ Q–(A), as desired.

Thus, the equality () is proved, and therefore, by assumption (i), the set Q–(A) is
L([a, b]) ⊗B(�)-measurable.

Our assumptions on Y imply that it has a countable base of connected open sets. There-
fore, it follows that the multifunction Q is L([a, b]) ×B(�)-weakly measurable. By Theo-
rem . of [], the multifunction Q is also L([a, b]) ⊗B(�)-measurable.

By Corollary .. of [], the set � is a Souslin set since it belongs to B(Rn). By The-
orem . (where the spaces [a, b] and R are considered with the usual one-dimensional
Lebesgue measure m over their Borel families), there exist Q, . . . , Qn ∈ B(R), with
m(Q) =  for all i = , . . . , n, a set K ∈ L([a, b]), with m(K) = , and a function
φ : [a, b] × � → Rn , such that:
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(a) φ(t, x, z) ∈ Q(t, x, z) for all (t, x, z) ∈ [a, b] × � (hence, in particular, the function φ

takes its values in Y );
(b) for all (x, z) ∈ � \ [

⋃n
i= P–

n,i(Qi)], the function φ(·, x, z) is L([a, b])-measurable;
(c) for all t ∈ [a, b] \ K, one has

{
(x, z) ∈ � : φ(t, ·, ·) is discontinuous at (x, z)

} ⊆ � ∩
[ n⋃

i=

P–
n,i(Qi)

]
.

Now, let ψ : [a, b] × Rn × Rn → Rn be defined by

ψ(t, x, z) =

⎧⎨
⎩φ(t, x, z) if (x, z) ∈ �,

Rn if (x, z) /∈ �.

Observe that Rn \ � =
⋃n

i= P–
n,i(Vi), and also

�
∖ [ n⋃

i=

P–
n,i(Qi)

]
= Rn

∖ [ n⋃
i=

P–
n,i(Vi ∪ Qi)

]
=

n∏
i=

[
R \ (Vi ∪ Qi)

]
.

Let D be a countable subset of � \ [
⋃n

i= P–
n,i(Qi)], dense in Rn. Of course, such a set D

exists since

mn

( n⋃
i=

P–
n,i(Vi ∪ Qi)

)
= .

Now we want to apply Proposition . to the function ψ , choosing E = Rn \ �. To this
aim, observe that:

() for all t ∈ [a, b], and all (x, z) ∈ Rn × Rn, we have ψ(t, x, z) ∈ Bn(Rn ,β(t)) (this
follows by the construction of φ and Q and by assumption (v)), hence for all
t ∈ [a, b] the function ψ(t, ·, ·) is bounded;

() for all (x, z) ∈ D, the function ψ(·, x, z) = φ(·, x, z) is L([a, b])-measurable.
Consequently, if G : [a, b] × Rn × Rn → Rn is the multifunction defined by setting, for

all (t, x, z) ∈ [a, b] × Rn × Rn,

G(t, x, z) =
⋂
m∈N

conv

( ⋃
(v,w)∈D

‖(v,w)–(x,z)‖n≤ 
m

{
ψ(t, v, w)

})

=
⋂
m∈N

conv

( ⋃
(v,w)∈D

‖(v,w)–(x,z)‖n≤ 
m

{
φ(t, v, w)

})
,

by Proposition . we see that:

(a)′ G has nonempty closed convex values;
(b)′ for all (x, z) ∈ Rn × Rn, the multifunction G(·, x, z) is L([a, b])-measurable;
(c)′ for all t ∈ [a, b], the multifunction G(t, ·, ·) has closed graph;
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(d)′ if t ∈ [a, b], and the function ψ(t, ·, ·)|� = φ(t, ·, ·) is continuous at (x, z) ∈ �, then one
has

G(t, x, z) =
{
ψ(t, x, z)

}
=

{
φ(t, x, z)

}
.

Moreover, observe that by the above construction we see that

G(t, x, z) ⊆ Bn
(
Rn ,β(t)

) ∩ conv(Y ) for all (t, x, z) ∈ [a, b] × Rn × Rn. ()

Consequently, by Theorem  of [], there exist u ∈ W ,p([a, b], Rn) and a set K ∈L([a, b]),
with m(K) = , such that

⎧⎨
⎩u′′(t) ∈ G(t, u(t), u′(t)) for all t ∈ [a, b] \ K,

u(a) = u(b) = Rn .
()

In particular, by () we get

u′′(t) ∈ conv(Y ) for all t ∈ [a, b] \ K. ()

Now, fix i ∈ {, . . . , n}. Of course, () implies that

u′′
i (t) ∈ [

inf Pn,i
(
conv(Y )

)
, sup Pn,i

(
conv(Y )

)]
for all t ∈ [a, b] \ K

(of course, we are denoting by ui(t) the ith component of u(t)). In particular, taking into
account that Y ∈An, this implies that u′′

i (t) has constant sign for all t ∈ [a, b] \ K. Assume
that

u′′
i (t) >  for all t ∈ [a, b] \ K.

Since u′
i(t) is absolutely continuous, we have

u′
i(t) = u′

i(a) +
∫ t

a
u′′

i (s) ds for all t ∈ [a, b],

hence u′
i(t) is strictly increasing in [a, b]. Consequently, by Theorem  of [], the function

(
u′

i
)– : u′

i
(
[a, b]

) → [a, b]

is absolutely continuous. Moreover, since ui(a) = ui(b) = , there exists ci ∈ ]a, b[ such that

u′
i(t) <  for all t ∈ [a, ci[

and

u′
i(t) >  for all t ∈ ]ci, b].
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Again by Theorem  of [], the functions

(ui|[a,ci])
– : ui

(
[a, ci]

) → [a, ci]

and

(ui|[ci ,b])– : ui
(
[ci, b]

) → [ci, b]

are absolutely continuous. Consequently, by Theorem . of [], for each Lebesgue
measurable U ⊆ R, with m(U) = , the sets

(
u′

i
)–(U) :=

{
t ∈ [a, b] : u′

i(t) ∈ U
}

and

(ui)–(U) :=
{

t ∈ [a, b] : ui(t) ∈ U
}

=
{

t ∈ [a, ci] : ui(t) ∈ U
} ∪ {

t ∈ [ci, b] : ui(t) ∈ U
}

have null Lebesgue measure.
If, conversely, one has

u′′
i (t) <  for all t ∈ [a, b] \ K,

by an analogous argument we can get the same conclusion.
Now, for each i = , . . . , n, let us put

Si := u–
i (Vi ∪ Qi), Wi :=

(
u′

i
)–(Vn+i ∪ Qn+i),

and

S := K ∪ K ∪
[ n⋃

i=

(Si ∪ Wi)

]
.

For what precedes, we have m(S) = . Now, fix t ∈ [a, b] \ S. Since t /∈ ⋃n
i=(Si ∪ Wi), for

all i = , . . . , n we get

ui(t) /∈ Vi ∪ Qi, u′
i(t) /∈ Vn+i ∪ Qn+i,

hence

(
u(t), u′(t)

) ∈
n∏
i=

[
R \ (Vi ∪ Qi)

]
= �

∖ [ n⋃
i=

P–
n,i(Qi)

]
.

Since t /∈ K, this implies that the function φ(t, ·, ·) : � → Rn is continuous at (u(t), u′(t)).
Hence, by the property (d)′ and the above construction, taking into account that t /∈ K

and (), we get

u′′(t) ∈ G
(
t, u(t), u′(t)

)
=

{
φ
(
t, u(t), u′(t)

)} ⊆ Q
(
t, u(t), u′(t)

) ⊆ Vt
(
u(t), u′(t)

)
.
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Therefore, we get u′′(t) ∈ Y and

f
(
t, u(t), u′(t), u′′(t)

)
= .

Thus, our conclusion is proved in the case p < +∞.
Now, assume p = +∞. Fix any q ∈ [, +∞[. Since β ∈ Lq([a, b]), by the first part of the

proof there exist a function u ∈ W ,q([a, b], Rn) and a set U ∈ L([a, b]), with m(U) = ,
such that

⎧⎨
⎩f (t, u(t), u′(t), u′′(t)) =  for all t ∈ [a, b] \ U ,

u(a) = u(b) = Rn ,

and

(
u(t), u′(t)

) ∈ � for all t ∈ [a, b] \ U .

By (v) we get

{
y ∈ Y : f

(
t, u(t), u′(t), y

)
= 

} ⊆ Bn
(
Rn ,β(t)

)
for all t ∈ [a, b] \ U ,

hence

∥∥u′′(t)
∥∥

n ≤ β(t) for all t ∈ [a, b] \ U .

This implies u′′ ∈ L∞([a, b], Rn), hence u ∈ W ,∞([a, b], Rn). The proof is now complete.
�

Remark Theorem . can be put in the following equivalent form.

Corollary . Let [a, b], Y , f , 
, D′ and D′′ be as in the statement of Theorem .. Assume
that there exists a set F ∈Fn such that, if one puts � := Rn \ F and f ∗ := f |[a,b]×�×Y , then
assumptions (i)-(v) of Theorem . are satisfied.

Then the same conclusion of Theorem . holds.

Proof Let F, F, . . . , Fn ⊆ Rn, with m(Pn,i(Fi)) =  for all i = , . . . , n, be such that F =⋃n
i= Fi. For each i = , . . . , n, let Vi ∈ B(R) be such that Pn,i(Fi) ⊆ Vi and m(Vi) = . If

one puts �′ :=
∏n

i=(R \ Vi), then �′ ⊆ �, hence all the assumptions of Theorem . are
satisfied. The conclusion follows at once. �

Now we give a simple example of application of Theorem ..

Example  Let n = , Y = [, +∞[, p ∈ [, +∞], and let α ∈ Lp([, ]), with α(t) >  for all
t ∈ [, ]. Let

E :=
{

(x, z) ∈ R : x ∈ Q or z ∈ Q
}

= (Q × R) ∪ (R × Q),
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and let f : [, ] × R × R × Y → R be defined by putting

f (t, x, z, y) =

⎧⎨
⎩y – α(t) –  if (x, z) ∈ E,

 cos(y + π
 – ) + y( + | cos x|) – | cos(x + z)| – α(t) –  if (x, z) /∈ E.

It is immediate to check that for each fixed (t, y) ∈ [, ] × Y one has

f (t, x, z, y) ≥ y – α(t) –  for all (x, z) ∈ R \ E.

Consequently, for each fixed (t, y) ∈ [, ] × Y , the function f (t, ·, ·, y) is discontinuous at
all points (x, z) ∈ R.

Now, let us observe that such a function f satisfies the assumptions of Theorem .. To
this aim, choose V = V = Q, D′ = D′′ = Y , and let 
 be any countable dense subset of
Y × Y . In this case, we have

� = (R \ Q) × (R \ Q),

hence in particular we get � = R \ E and

f ∗(t, x, z, y) =  cos

(
y +

π


– 

)
+ y

(
 + | cos x|) –

∣∣cos(x + z)
∣∣ – α(t) – 

for all (t, x, z, y) ∈ [, ] × � × Y . At this point, observe what follows.
(a) For all fixed y ∈ Y , the function f ∗(·, ·, ·, y) is L([, ]) ⊗B(�)-measurable. Therefore,

assumption (i) of Theorem . is satisfied.
(b) For all (t, y) ∈ [, ] × Y , the function f ∗(t, ·, ·, y) is continuous over �.
(c) Let t ∈ [, ] and (x, z) ∈ � be fixed. We see that f (t, x, z, ·) = f ∗(t, x, z, ·) is continuous

in Y , and also

f (t, x, z, ) ≤ –α(t) < .

Since

lim
y→+∞ f (t, x, z, y) = +∞,

we get  ∈ intR(f (t, x, z, Y )). Moreover, if we put s(·) := f (t, x, z, ·), we get

s′(y) = – sin

(
y +

π


– 

)
+  + | cos x|, ∀y ∈ Y .

Consequently, the set {y ∈ Y : s′(y) = } is countable, hence s′ is never identically equal to
 in any interval I ⊆ Y . This implies that there exists no interval I ⊆ Y such that s(·) is
constant on I . Therefore, assumption (iv) of Theorem . is also satisfied. We also remark
that if x 	= kπ (with k ∈ Z), then s′ takes both positive and negative values, hence f (t, x, z, ·)
is not monotone.
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(d) Let t ∈ [, ] and (x, z) ∈ � be fixed, and let y ∈ Y be such that f (t, x, z, y) = . By the
definition of Y and f we get

 ≤ y ≤ 

(
 + α(t)

)
.

Since the function

β(t) =


(
 + α(t)

)
belongs to Lp([, ]), assumption (v) of Theorem . is also satisfied.

Therefore, all the assumptions of Theorem . are fulfilled. Consequently, there exists
u ∈ W ,p([, ]) such that

⎧⎨
⎩f (t, u(t), u′(t), u′′(t)) =  for a.e. t ∈ [, ],

u() = u() = 
()

and also

(
u(t), u′(t)

) ∈ (R \ Q) × (R \ Q) for a.e. t ∈ [, ].

Finally, we observe that problem () does not admit the trivial solution u(t) ≡ .

The following result is an immediate consequence of Theorem ..

Theorem . Let [a, b] be a compact interval, and let Y ∈ An be a closed, connected and
locally connected subset of Rn. Let ψ : [a, b] × Y → R and g : [a, b] × Rn × Rn → R be two
given functions, D ⊆ Y a countable set, dense in Y . Assume that for all y ∈ D, the function
ψ(·, y) is L([a, b])-measurable, and for a.e. t ∈ [a, b], the function ψ(t, ·) is continuous in Y .
Moreover, assume that there exist n sets

V, V, . . . , Vn ∈ B(R),

with m(Vi) =  for all i = , . . . , n, such that, if one puts

� :=
n∏
i=

[R \ Vi],

one has:
(i) for all t ∈ [a, b], the function g(t, ·, ·)|� is continuous over �;

(ii) for all (x, z) ∈ �, the function g(·, x, z) is L([a, b])-measurable;
(iii) for a.e. t ∈ [a, b], one has g(t,�) ⊆ intR(ψ(t, Y ));
(iv) for a.e. t ∈ [a, b] and for all v ∈ intR(ψ(t, Y )), one has intY ({y ∈ Y : ψ(t, y) = v}) = ∅;
(v) there exist p ∈ [, +∞] and a positive function β ∈ Lp([a, b]) such that, for a.e.

t ∈ [a, b], and for all (x, z) ∈ �, one has

{
y ∈ Y : ψ(t, y) = g(t, x, z)

} ⊆ Bn
(
Rn ,β(t)

)
.
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Then, there exists u ∈ W ,p([a, b], Rn) such that
⎧⎨
⎩ψ(t, u′′(t)) = g(t, u(t), u′(t)) for a.e. t ∈ [a, b],

u(a) = u(b) = Rn ,

and

(
u(t), u′(t)

) ∈ � for a.e. t ∈ [a, b].

Proof Let us apply Theorem ., with f (t, x, z, y) = ψ(t, y) – g(t, x, z), D′ = D′′ = Y and

 = D × D. Observe that by assumptions (i) and (ii) and by the lemma at p. of [], the
function g|[a,b]×� is L([a, b]) × B(�)-measurable. Consequently, assumption (i) of The-
orem . is satisfied. It is a matter of routine to check that all the other assumptions of
Theorem . are satisfied. Therefore, the conclusion follows at once. �

Arguing exactly as for Theorem ., it can be easily seen that Theorem . can be put in
the following equivalent form.

Corollary . Let [a, b], Y , ψ , g and D be as in the statement of Theorem .. Assume that
there exists a set F ∈ Fn such that, if one puts � := Rn \ F , then assumptions (i)-(v) of
Theorem . are satisfied.

Then, the same conclusion of Theorem . holds.

Remark Theorem . (or, equivalently, Corollary .) should be compared with Theo-
rem . of [] (valid for the case where ψ does not depend on t and the set Y is bounded),
where the function g is assumed to be continuous in all variables. We now give an example
of an application of Theorem . in the vector case n = .

Example  Let n = . We now denote vectors of R by

x = (x, x), z = (z, z), y = (y, y).

Let p ∈ [, +∞] and α ∈ Lp([, ]) be fixed, with α(t) ≥  for all t ∈ [, ]. Let

E :=
{

(x, z) ∈ R : at least one of x, x, z, z is rational
}

,

and let h : [, ] × R → R and g : [, ] × R × R → R be defined by

h(t, y, y) = sin
[
t(y – )

]
+ y + y,

g(t, x, x, z, z) =

⎧⎨
⎩α(t) + cos(t x x z z) if (x, z) /∈ E,

α(t) –  if (x, z) ∈ E.

Of course, for all t ∈ [, ] the function g(t, ·, ·) is discontinuous at all points (x, z) ∈ R.
However, Theorem . can be easily applied, by choosing

V = V = V = V = Q, Y := [, +∞[×[, +∞[, ψ := h|[,]×Y ,

and taking as D any countable dense subset of Y .
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In particular, we observe that in this case we have � = R \ E and

g(t, x, x, z, z) = α(t) + cos(t x x z z) for all (x, z) ∈ �.

Consequently, assumptions (i) and (ii) of Theorem . are satisfied. If we fix t ∈ [, ], then
ψ(t, , ) =  and ψ(t, ·, ·) is upperly unbounded, hence

g(t,�) ⊆ [, +∞[⊆ ], +∞[⊆ ψ(t, Y ).

Hence, assumption (iii) of Theorem . is also satisfied. We now prove that assumption
(iv) is also satisfied (although this fact is quite intuitive, we provide a direct proof ).

To this aim, fix t ∈ [, ] and v∗ ∈ int(ψ(t, Y )). Let y∗ := (y∗
 , y∗

) ∈ Y be such that
ψ(t, y∗

 , y∗
) = v∗, and let 
 be any open set in Y such that (y∗

 , y∗
) ∈ 
. This implies that

there exists δ >  such that

(]
y∗

 – δ, y∗
 + δ

[ × ]
y∗

 – δ, y∗
 + δ

[) ∩ Y ⊆ 
.

If we choose any y ∈ ]y∗
, y∗

 + δ[, we get (y∗
 , y) ∈ 
 and

ψ
(
t, y∗

 , y
)

> ψ
(
t, y∗

 , y∗

)

= v∗.

Hence, the set {y ∈ Y : ψ(t, y, y) = v∗} has empty interior in Y , as desired.
Finally, let t ∈ [, ] and (x, z) ∈ �. Take y ∈ Y such that ψ(t, y) = g(t, x, z). By the defini-

tions of Y , ψ and g we get

‖y‖ ≤ α(t) + ,

hence assumption (v) of Theorem . is also satisfied. Consequently, there exists u ∈
W ,p([, ], R) such that

⎧⎨
⎩h(t, u′′(t)) = g(t, u(t), u′(t)) for a.e. t ∈ [, ],

u(a) = u(b) = R ,
()

and also

u(t) ∈ (R \ Q) × (R \ Q), u′(t) ∈ (R \ Q) × (R \ Q), u′′(t) ∈ [, +∞[×[, +∞[

for a.e. t ∈ [, ]. We also observe that problem () does not admit the trivial solution
u(t) ≡ R .

4 Implicit integral equations
As announced in Section , our aim in this section it to apply the same approach as before
to the study of implicit integral equations. From now on, let n ∈ N be fixed. In what follows,
for simpler notation, we shall put Pi := Pn,i. The following theorem is the main result of
this section.
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Theorem . Let [a, b] be a compact interval, and let Y ∈ An be a closed, connected and
locally connected subset of Rn. Let f : [a, b] × Rn × Y → R and g : [a, b] × [a, b] → [, +∞[
be two given functions, 
 ⊆ Y × Y a countable set, dense in Y × Y , D′ and D′′ two dense
subset of Y . Moreover, let p ∈ ], +∞], φ ∈ Lj([a, b]), with j >  and j ≥ p′ (the conjugate
exponent of p), φ ∈ Lp′ ([a, b]). Assume that there exists a set F ∈Fn such that:

(i) for all (y, y) ∈ 
, one has

{
(t, x) ∈ [a, b] × (

Rn \ F
)

: f (t, x, y) <  < f (t, x, y)
} ∈L

(
[a, b]

) ⊗B
(
Rn \ F

)
;

(ii) for a.e. t ∈ [a, b], and for all y ∈ D′, the function f (t, ·, y)|Rn\F is l.s.c.;
(iii) for a.e. t ∈ [a, b], and for all y ∈ D′′, the function f (t, ·, y)|Rn\F is u.s.c.;
(iv) for a.e. t ∈ [a, b], and for all x ∈ Rn \ F , the function f (t, x, ·) is continuous over Y ,

 ∈ intR
(
f (t, x, Y )

)

and

intY
({

y ∈ Y : f (t, x, y) = 
})

= ∅;

(v) there exists a positive function β ∈ Lp([a, b]) such that, for a.e. t ∈ [a, b], and for all
x ∈ Rn \ F , one has

{
y ∈ Y : f (t, x, y) = 

} ⊆ Bn
(
Rn ,β(t)

)
.

Moreover, assume that:
(vi) for all t ∈ [a, b], the function g(t, ·) is measurable;

(vii) for a.e. z ∈ [a, b], the function g(·, z) is continuous in [a, b], differentiable in ]a, b[
and

g(t, z) ≤ φ(z),  <
∂g
∂t

(t, z) ≤ φ(z) for all t ∈ ]a, b[.

Then, there exists u ∈ Lp([a, b], Rn) such that

f
(

t,
∫ b

a
g(t, z)u(z) dz, u(t)

)
=  for a.e. t ∈ [a, b],

∥∥u(t)
∥∥

n ≤ β(t) and
∫ b

a
g(t, z)u(z) dz ∈ Rn \ F for a.e. t ∈ [a, b].

Proof Without loss of generality we can assume that assumptions (ii)-(v) are satisfied for
all t ∈ [a, b]. Moreover, taking into account that p > , it is not restrictive to assume j < +∞.

Let F, F, . . . , Fn ⊆ Rn, with m(Pi(Fi)) =  for all i = , . . . , n, be such that F =
⋃n

i= Fi. For
all i = , . . . , n, let Bi ∈ B(R) such that Pi(Fi) ⊆ Bi and m(Bi) = . Let C :=

⋃n
i= P–

i (Bi), and

� := Rn \ C =
n∏

i=

(R \ Bi) ∈ B
(
Rn).
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Clearly, we have F ⊆ C and thus � ⊆ Rn \ F . Let

V : [a, b] × � → Y , E : [a, b] × � → Y , Q : [a, b] × � → Y

be the multifunctions defined by setting, for all (t, x) ∈ [a, b] × �,

V (t, x) :=
{

y ∈ Y : f (t, x, y) = 
}

,

E(t, x) :=
{

y ∈ Y : y is a local extremum for f (t, x, ·)},

Q(t, x) := V (t.x) \ E(t, x).

By assumptions (ii), (iii), (iv), and Theorem .. of [], it is immediately seen that Q has
nonempty closed values (in Y , hence in Rn) and for all t ∈ [a, b] the multifunction Q(t, ·)
is lower semicontinuous in �.

Arguing exactly as in the proof of Theorem ., it can be checked that the multifunction
Q is L([a, b]) × B(�)-measurable. By Theorem . (applied with T = [a, b], Xi = R for all
i = , . . . , n, where all the spaces are considered with the usual one-dimensional Lebesgue
measure m over their Borel families), there exist Q, . . . , Qn ∈ B(R), with m(Qi) =  for all
i = , . . . , n, a set K ∈ L([a, b]), with m(K) = , and a function φ : [a, b] × � → Rn , such
that:

(a) φ(t, x) ∈ Q(t, x) for all (t, x) ∈ [a, b] × � (hence the function φ takes its values in Y );
(b) for all x ∈ � \ [

⋃n
i= P–

i (Qi)], the function φ(·, x) is L([a, b])-measurable;
(c) for all t ∈ [a, b] \ K, one has

{
x ∈ � : φ(t, ·) is discontinuous at x

} ⊆ � ∩
[ n⋃

i=

P–
i (Qi)

]
.

Let ψ : [a, b] × Rn → Rn be defined by

ψ(t, x) =

⎧⎨
⎩φ(t, x) if x ∈ �,

Rn if x /∈ �.

Observe that

�
∖ [ n⋃

i=

P–
i (Qi)

]
= Rn

∖ [ n⋃
i=

P–
i (Bi ∪ Qi)

]
=

n∏
i=

[
R \ (Bi ∪ Qi)

]
,

and let D be any countable subset of � \ [
⋃n

i= P–
i (Qi)], dense in Rn. Of course, such a set

D exists since

mn

( n⋃
i=

P–
i (Bi ∪ Qi)

)
= .

Let G : [a, b] × Rn → Rn be the multifunction defined by setting, for all (t, x) ∈ [a, b] × Rn,

G(t, x) :=
⋂
m∈N

conv

( ⋃
v∈D

‖v–x‖n≤ 
m

{
ψ(t, v)

})
=

⋂
m∈N

conv

( ⋃
v∈D

‖v–x‖n≤ 
m

{
φ(t, v)

})
.
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Applying Proposition ., with E = Rn \ �, and taking into account (b) and assumption
(v), we see that:

(a)′ G has nonempty closed convex values;
(b)′ for all x ∈ Rn, the multifunction G(·, x) is L([a, b])-measurable;
(c)′ for all t ∈ [a, b], the multifunction G(t, ·) has closed graph;
(d)′ if t ∈ [a, b], and the function ψ(t, ·)|� = φ(t, ·) is continuous at x ∈ �, then one has

G(t, x) =
{
ψ(t, x)

}
=

{
φ(t, x)

}
.

Moreover, observe that by the above construction and by assumption (v) we see that

G(t, x) ⊆ Bn
(
Rn ,β(t)

) ∩ conv(Y ) for all (t, x) ∈ [a, b] × Rn. ()

Now we apply Theorem  of [], choosing T = [a, b], X = Y = Rn, s = p, q = j′, V = Lp(I, Rn),
�(u) = u, r = ‖β‖Lp([a,b],Rn), ϕ ≡ +∞, F = G and

�(u)(t) =
∫ b

a
g(t, z)u(z) dz.

To this aim, we can argue as in []. In particular, observe that:
(a) �(Lp(I, Rn)) ⊆ C(I, Rn). This follows easily from our assumptions (vi) and (vii) and

the classical Lebesgue dominated convergence theorem.
(b) If v ∈ Lp(I, Rn) and {vk} is a sequence in Lp(I, Rn), weakly convergent to v in

Lj′ (I, Rn), then the sequence {�(vk)} converges to �(v) strongly in L(I, Rn). This
follows by Theorem  at p. of [], since g is jth power summable in
[a, b] × [a, b] (note that g is measurable on [a, b] × [a, b] by the classical
Scorza-Dragoni theorem; see [] or also []).

(c) By (), the function

σ : t ∈ [a, b] → sup
x∈Rn

inf
v∈G(t,x)

‖v‖n

belongs to Lp([a, b]) and ‖σ‖Lp([a,b]) ≤ ‖β‖Lp([a,b],Rn) (as regards the measurability of
σ , we refer to []).

Therefore, all the assumptions of Theorem  of [] are satisfied. Consequently, there
exist a function û ∈ Lp([a, b], Rn) and a set K ∈L([a, b]), with m(K) = , such that

û(t) ∈ G
(
t,�(û)(t)

)
= G

(
t,

∫ b

a
g(t, z)û(z) dz

)
for all t ∈ [a, b] \ K. ()

Fix i ∈ {, . . . , n}, and let δi : [a, b] → R be the function

δi(t) := Pi
(
�(û)(t)

)
=

∫ b

a
g(t, z)ûi(z) dz

(as before, ûi(t) denotes the ith component of û(t)). By () and (), since Y ∈ An, the
function ûi has constant sign in [a, b] \ K. Assume that

ûi(t) >  for all t ∈ [a, b] \ K ()
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(if, conversely, one has ûi(t) <  for all t ∈ [a, b] \ K, the argument is analogous). By ()
and assumptions (vi) and (vii) we see that δi is strictly increasing. Moreover, by Lemma .
at p. of [], we get

δ′
i(t) =

∫ b

a

∂g
∂t

(t, z)ûi(z) dz >  for all t ∈ ]a, b[.

Consequently, by Theorem  of [], the function

δ–
i : δi

(
[a, b]

) → [a, b]

is absolutely continuous.
Now, put

S :=
n⋃

i=

[
δ–

i
(
(Bi ∪ Qi) ∩ δi

(
[a, b]

))] ∪ K ∪ K.

Since all functions δ–
i are absolutely continuous, by Theorem . of [] the set S has

null Lebesgue measure. Fix any t ∈ [a, b] \ S. Since t /∈ K, by () we get

û(t) ∈ G
(
t,�(û)(t)

)
.

Moreover, by the definition of S, we easily get

�(û)(t) ∈ �
∖ n⋃

i=

P–
i (Qi),

hence (taking into account (c) and that t /∈ K) the function φ(t, ·) is continuous at �(û)(t).
By (d)′, this implies that

G
(
t,�(û)(t)

)
=

{
φ
(
t,�(û)(t)

)}
.

Thus, we get

û(t) ∈ G
(
t,�(û)(t)

)
=

{
φ
(
t,�(û)(t)

)} ⊆ Q
(
t,�(û)(t)

)
,

hence

f
(
t,�(û)(t), û(t)

)
= f

(
t,

∫ b

a
g(t, z)û(z) dz, û(t)

)
= .

In particular, the above construction shows that

∫ b

a
g(t, z)û(z) dz = �(û)(t) ∈ � ⊆ Rn \ F for all t ∈ [a, b] \ S.

Finally, by () and () we immediately get

∥∥û(t)
∥∥

n ≤ β(t) for all t ∈ [a, b] \ K.

This completes the proof. �
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Arguing exactly as in the proof of Theorem ., we obtain the following special case of
Theorem ..

Theorem . Let [a, b] be a compact interval, and let Y ∈ An be a closed, connected and
locally connected subset of Rn. Let ψ : [a, b] × Y → R, f : [a, b] × Rn → R and g : [a, b] ×
[a, b] → [, +∞[ be three given functions, D ⊆ Y a countable set, dense in Y . Assume that
for all y ∈ D, the function ψ(·, y) is L([a, b])-measurable, and for a.e. t ∈ [a, b] the function
ψ(t, ·) is continuous in Y . Moreover, let p ∈ ], +∞], φ ∈ Lj([a, b]), with j >  and j ≥ p′,
φ ∈ Lp′ ([a, b]). Assume that there exists a set F ∈Fn such that:

(i) for all t ∈ [a, b], the function f (t, ·)|Rn\F is continuous;
(ii) for all x ∈ Rn \ F , the function g(·, x) is L([a, b])-measurable;

(iii) for a.e. t ∈ [a, b], one has f (t, Rn \ F) ⊆ intR(ψ(t, Y ));
(iv) for a.e. t ∈ [a, b] and for all v ∈ intR(ψ(t, Y )), one has intY ({y ∈ Y : ψ(t, y) = v}) = ∅;
(v) there exists a positive function β ∈ Lp([a, b]) such that, for a.e. t ∈ [a, b], and for all

x ∈ Rn \ F , one has

{
y ∈ Y : ψ(t, y) = f (t, x)

} ⊆ Bn
(
Rn ,β(t)

)
.

Moreover, assume that assumptions (vi) and (vii) of Theorem . are satisfied.
Then there exists u ∈ Lp([a, b], Rn) such that

ψ
(
t, u(t)

)
= f

(
t,

∫ b

a
g(t, z)u(z) dz

)
for a.e. t ∈ [a, b], ()

∥∥u(t)
∥∥

n ≤ β(t) and
∫ b

a
g(t, z)u(z) dz ∈ Rn \ F for a.e. t ∈ [a, b].

Remark As already done in Section , it is not difficult to construct examples of appli-
cation of Theorem ., where for all t ∈ [a, b] the function f (t, ·) is discontinuous at all
points x ∈ Rn. We observe that () has been intensively studied in the last years. A com-
mon assumption in the literature (see, for instance, [–], to which we also refer for
motivations for studying ()) is the continuity of the function f with respect to the sec-
ond variable. Very recently, some existence results have been obtained for some special
cases of (), which do not assume the continuity of f with respect to the second variable
(see [, , –]). It is not difficult to check that some of them [, , , ] can be
obtained as special cases of Theorem ., which, in turn, improves them in several direc-
tions. In particular, with respect to the main results of [, , ] (dealing with the case
n =  or ψ not depending on t explicitly), Theorem . does not assume that the disconti-
nuity set F ∈ Fn is closed. Moreover, with respect to the main result of [] (valid for the
case n = ), Theorem . does not assume that for all t ∈ [a, b] the sets

{
y ∈ Y : y is a local minimum for ψ(t, ·)},{
y ∈ Y : y is a local maximum for ψ(t, ·)}

are closed.
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