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Abstract
This paper deals with the blow-up for a class of nonlinear viscoelastic wave equation.
Under certain conditions on the data, we construct a lower bound for the blow-up
time when blow-up occurs.
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1 Introduction
In this paper, we study the blow-up solution for the following nonlinear viscoelastic wave
equation:

⎧
⎪⎪⎨

⎪⎪⎩

utt – �u +
∫ t

 g(t – s)�u(s) ds + |ut|q–ut = |u|p–u, (x, t) ∈ � × (, T),

u(x, t) = , (x, t) ∈ ∂� × (, T),

u(x, ) = u(x), ut(x, ) = u(x), x ∈ �,

(.)

where � is a bounded domain in R
n with a smooth boundary ∂�, g is a positive function

satisfying some conditions to be specified later, and

 < p, q ≤
{

∞, if n = , ,
n–
n– , if n ≥ .

(.)

The blow-up properties of the solution to (.) has been studied by many authors (see [–
]). For instance, Messaoudi [] studied (.) and proved a blow-up result for solutions
with negative initial energy if p > q ≥  and a global result for  ≤ p ≤ q. This result has
been later improved by the same author in [] to accommodate certain solutions with
positive initial energy. In [], Song and Zhong considered (.) for strong damping –�ut

and proved a blow-up result for solutions with positive initial energy by using the ideas of
the ‘potential well’ theory introduced by Payne and Sattinger []. Wang [] has investigated
a sufficient conditions of the initial data with arbitrarily positive initial energy such that
the corresponding solution of (.) with q =  blows up in finite time. For related results,
we refer the reader to [–].

When blow-up occurs, the blow-up time T∗ cannot usually be computed exactly. It is
therefore of great importance in practice to determine lower and upper bounds for T∗.
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The aim of this note is to derive a lower bound for T∗ when blow-up occurs. We point
out that it is, in general, very hard to obtain a lower bound estimate for viscoelastic wave
equation problems, for the method to estimate the derivative of the control functional in
parabolic cases is no longer effective and the memory part makes it difficult to estimate
the energy. Our method is based on a first-order differential inequality technique for a
suitably defined auxiliary function and makes use of some Sobolev-type inequality.

Before stating our main result, let us recall some results on the local existence, unique-
ness, and blow-up of the solution

Theorem . (see []) Let (u(x), u(x)) ∈ H
(�) × L(�) and p, q satisfy condition (.).

Let g ∈ C[,∞) be a non-negative and non-increasing function satisfying

 –
∫ ∞


g(s) ds = l > . (.)

Then problem (.) has a unique local solution

u ∈ C
(
[, Tm); H

(�)
)
, ut ∈ C

(
[, Tm); L(�)

) ∩ Lq(� × (, Tm)
)

for some Tm > .

Remark . Condition (.) is necessary to guarantee the hyperbolicity and well-
posedness of system (.).

Let λ be the best constant of the Sobolev embedding H
(�) ↪→ Lp(�) and β = λ/l 

 . We
set

α = β
– p

p– , E =
(




–

p

)

α.

Define the energy functional E(t) associated to our system (.),

E(t) =


∥
∥ut(t)

∥
∥

 +



(

 –
∫ t


g(s) ds

)
∥
∥∇u(t)

∥
∥

 +



(g ◦ ∇u)(t) –

p
‖u‖p

p,

where

g ◦ w(t) =
∫ t


g(t – s)

∥
∥w(s) – w(t)

∥
∥

 ds.

Moreover, we assume that g satisfies
∫ ∞


g(s) ds <

p – p
p – p + 

. (.)

Then we have the following blow-up result.

Theorem . (see []) Assume that p, q satisfy condition (.) and g satisfies (.) and
(.). If p > q and the initial data (u, u) satisfies

E() > E, ‖∇u‖ > α,

then any solution of (.) blows up in finite time.
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2 The main result
In this section, we switch to discuss the lower bound of the blow-up time for the blow-up
solution of (.). Before we state and prove our main result, we need the following lemma.

Lemma . Suppose that (.), (.), and (.) hold. Let u be a solution of (.). Then energy
functional E(t) is non-increasing, that is, E′(t) ≤ .

Proof By multiplying (.) by ut and integrating over �, we obtain

d
dt

(


‖ut‖

 +


‖∇u‖

 –

p
‖u‖p

p

)

–
∫ t


g(t – s)

∫

�

∇u(s) · ∇ut(t) dx ds

= –
∫ t



∥
∥ut(s)

∥
∥q

q (.)

for any regular solution. This result remains valid for weak solutions by a simple density
argument. For the last term on the left side of (.), we have

∫ t


g(t – s)

∫

�

∇ut(t) · ∇u(s) dx ds

=
∫ t


g(t – s)

∫

�

∇ut(t)
(∇u(s) – ∇u(t)

)
dx ds +

∫ t


g(t – s)

∫

�

∇ut(t) · ∇u(t) dx ds

= –



∫ t


g(t – s)

d
dt

∫

�

∣
∣∇u(s) – ∇u(t)

∣
∣ dx ds +




∫ t


g(s)

d
dt

∫

�

∣
∣∇u(t)

∣
∣ dx ds

=



d
dt

(∫ t


g(s) ds

∥
∥∇u(t)

∥
∥

 – (g ◦ ∇u)(t)
)

+


(
g ′ ◦ ∇u

)
(t) –




g(t)
∥
∥∇u(t)

∥
∥

. (.)

Inserting (.) into (.), we get

E′(t) = –
∫ t



∥
∥ut(s)

∥
∥q

q +


(
g ′ ◦ ∇u

)
(t) –




g(t)
∥
∥∇u(t)

∥
∥

 ≤ ,

where we also use g being non-negative and non-increasing function. �

Theorem . Assume that the conditions in Theorem . hold. Let u(x, t) be the solution
of problem (.), which blows up at a finite time T∗. Then

T∗ ≥
∫ ∞

F()


Cyk + y + C

dy,

where the constants C, C, and the exponent k will be defined in (.), and F() =
∫

�
|u|p dx.

Proof Define F(t) =
∫

�
|u(t)|p dx. Then

F ′(t) = p
∫

�

|u|p–uut dx ≤ p


(∫

�

|u|p– dx +
∫

�

|ut| dx
)

. (.)

To estimate the first term on the right side of inequality (.), we consider the following
two cases.
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Case .  < p ≤ n
n– . Let γ = p – , μ = n(p – ), ∗ = n

n– . Applying Hölder’s inequality
and the embedding inequality, we have

∫

�

|u|γ dx =
∫

�

|u|γ θ |u|γ (–θ ) dx ≤
(∫

�

|u|μ dx
) γ θ

μ
(∫

�

|u|∗
dx

) γ (–θ )
∗

,

where θ satisfies

γ θ

μ
+

γ ( – θ )
∗ = .

A straightforward computation shows

θ =
 – γ

∗
γ

μ
– γ

∗
=

μ(∗ – γ )
γ (∗ – μ)

,

γ θ

μ
=

∗ – γ

∗ – μ
=


n

,
γ – θγ

∗ =  –

n

,

and then we have

‖u‖γ
γ ≤ ‖u‖γ θ

μ ‖u‖γ (–θ )
∗ = ‖u‖

μ
n

μ ‖u‖
∗

≤ C
∗
(
 + |�| (p–μ)

np
)‖u‖

μ
n

p ‖∇u‖


≤ C
∗
(
 + |�| (p–μ)

np
)(‖u‖

μ
n ·s

p + ‖∇u‖t

)

≤ C
(‖u‖p

p + ‖∇u‖

)k , (.)

where we have used the Hölder inequality,

‖u‖
μ
n

μ ≤ |�| (p–μ)
np ‖u‖

μ
n

p ≤ (
 + |�| (p–μ)

np
)‖u‖

μ
n

p ,

and

‖u‖∗ ≤ C∗‖∇u‖,

here C∗ is the best constant of the Sobolev embedding H
(�) ↪→ L∗ (�); 

s + 
t = , letting

t = μ

pn s, from which we can deduce k = p–
p , C = C∗( + |�| (p–μ)

np ).
Case . n

n– < p ≤ (n–)
n– . Following the lines of the proof of inequality (.), we have

‖u‖γ
γ ≤ |�|– γ

∗ ‖u‖γ

∗ ≤ Cγ
∗
(
 + |�|– γ

∗ )‖∇u‖γ


≤ Cγ
∗
(
 + |�|– γ

∗ )(‖∇u‖γ
 + ‖u‖p(p–)

p
)

≤ C
(‖u‖p

p + ‖∇u‖

)k , (.)

with k = p – , C = Cγ
∗ ( + |�|– γ

∗ ).
From Lemma ., we have

E(t) ≤ E() =


‖u‖

 +


‖∇u‖

 –

p
‖u‖p

p = E, t ∈ [
, T∗). (.)
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Recalling the definition of E(t), (.), and (.), we have

∥
∥ut(t)

∥
∥

 +


(p – )

∥
∥∇u(t)

∥
∥

 + g ◦ u(t)

≤ ∥
∥ut(t)

∥
∥

 +
(

 –
∫ t


g(s) ds

)
∥
∥∇u(t)

∥
∥

 + g ◦ u(t)

=

p
∥
∥u(t)

∥
∥p

p + E(t) ≤ 
p

F(t) + E. (.)

Combining (.)-(.), we get

F ′(t) ≤ p


(

Ci
(‖u‖p

p + ‖∇u‖

)ki +


p

F(t) + E

)

≤ p


(

Ci

(

F(t) + C

(

p

F(t) + E

))ki

+

p

F(t) + E

)

≤ p


(

Ci

((

 +
C

p

)

F(t) + CE

)ki

+

p

F(t) + E

)

≤ pCi


ki–

((

 +
C

p

)ki

F(t)ki + (CE)ki

)

+ F(t) + pE

= CF(t)ki + F(t) + C, (.)

where

C =


 –
∫ ∞

 g(s) ds
,

C =
pCiki



(

 +
C

p

)ki

, (.)

C = pE +
pCi


(CE)ki , i = , .

Applying Theorem ., we have

lim
t→T∗

∫

�

|u|p dx = +∞. (.)

According to (.) and (.), we obtain

∫ ∞

F()


Cyk + y + C

dy ≤ T∗. �
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