
Orujov Boundary Value Problems  (2015) 2015:238 
DOI 10.1186/s13661-015-0480-8

R E S E A R C H Open Access

On the spectrum of the pencil of high
order differential operators with almost
periodic coefficients
Ashraf D Orujov*

*Correspondence:
eorucov@cumhuriyet.edu.tr
Department of Elementary
Education, Faculty of Education,
Cumhuriyet University, Sivas, Turkey

Abstract
In this paper, the spectrum and the resolvent of the operator Lλ which is generated
by the differential expression �λ(y) = y(m) +

∑m
γ=1(

∑γ
k=0 λ

kpγ k(x))y(m–γ ) has been
investigated in the space L2(R). Here the coefficients pγ k(x) =

∑∞
n=1 pγ kneiαnx ,

k = 0, 1, . . . ,γ – 1; pγ γ (x) = pγ γ , γ = 1, 2, . . . ,m, are constants, pmm �= 0 and p(ν)γ k(x),
ν = 0, 1, 2, . . . ,m – γ , are Bohr almost-periodic functions whose Fourier series are
absolutely convergent. The sequence of Fourier exponents of coefficients (these are
positive) has a unique limit point at +∞. It has been shown that if the polynomial
φ(z) = zm + p11zm–1 + p22zm–2 + · · · + pm–1,m–1z + pmm has the simple roots
ω1,ω2, . . . ,ωm (or one multiple root ω0), then the spectrum of operator Lλ is pure
continuous and consists of lines Re(λωk) = 0, k = 1, 2, . . . ,m (or of line Re(λω0) = 0).
Moreover, a countable set of spectral singularities on the continuous spectrum can
exist which coincides with numbers of the form λ = 0, λsjn = iαn(ωj –ωs)–1, n ∈N,
s, j = 1, 2, . . . ,m, j �= s. If φ(z) = (z –ω0)m, then the spectral singularity does not exist. The
resolvent L–1λ is an integral operator in L2(R) with the kernel of Karleman type for any
λ ∈ ρ(Lλ).
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1 Introduction
In this study, we investigate the spectrum and the resolvent of the maximal differential
operator Lλ which is generated by the linear differential expression

�λ(y) = y(m) +
m∑

γ =

pγ (x,λ)y(m–γ )

in the space L(R), where λ is a complex parameter,

pγ (x,λ) =
γ∑

k=

λkpγ k(x), pγ γ (x) = pγ γ ,

pγ k(x) =
∞∑

n=

pγ kneiαnx, γ = , , . . . , m, k = , , . . . ,γ – ,

()
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with pγ γ , pγ kn ∈C, pmm �=  and the condition

m∑

γ =

γ –∑

k=

∞∑

n=

αm–γ
n |pγ kn| < +∞ ()

is satisfied. Here (αn)∞n= is an increasing sequence of positive numbers with αn → +∞ and
the set {αn : n ∈ N} is an additive semigroup.

The operator Lλ is defined in the domain

D(Lλ) =
{

y(x)|y(x), y′(x), . . . , y(m–)(x) ∈ AC[a, b] for all a, b ∈R,

y(x),�λ(y) ∈ L(R)
}

.

If at least one of the functions pγ k(x), γ = , , . . . , m, k = , , . . . ,γ – , is not zero, then the
operator Lλ is non-self-adjoint for each λ ∈ C.

Let AP+ be a class of Bohr almost-periodic functions q(x) =
∑∞

n= qneiαnx, where ‖q‖ =
∑∞

n= |qn| < +∞. In the case αn = n, n ∈ N, we denote this class by Q+. It is clear that AP+

is a normed space and () means that p(ν)
γ k(x) ∈ AP+ for γ = , , . . . , m, k = , , . . . ,γ – ,

ν = , , . . . , m – γ .
Under the assumed conditions, coefficients pγ (x,λ) can be represented as

pγ (x,λ) = pγ γ λγ +
γ –∑

k=

λk
∞∑

n=

pγ kneiαnx = pγ γ λγ +
∞∑

n=

(
γ –∑

k=

λkpγ kn

)

eiαnx

= pγ γ λγ +
∞∑

n=

p̃γ n(λ)eiαnx, γ = , , . . . , m.

Here, p̃γ n(λ) is an algebraic polynomial whose degree does not exceed γ – . Moreover,
according to () the series

∑∞
n= |p̃γ n(λ)| is majorized in every compact set S ⊆ C, i.e. for

p̃γ n = supλ∈S |p̃γ n(λ)|, γ = , , . . . , m, n ∈N, the series
∑∞

n= p̃γ n converges.
Let ωk , k = , , . . . , m, denote the roots of the characteristic polynomial

φ(z) = zm + pzm– + pzm– + · · · + pm–,m–z + pmm

corresponding to the linear differential expression �λ(y), numbered as  ≤ argω ≤
argω ≤ · · · ≤ argωm < π and λsjn = iαn(ωj – ωs)– for n ∈N, j, s = , , . . . , m, j �= s.

Let � = {λsjn : s, j = , , . . . , m, j �= s, n ∈ N} and � = � ∪ {}. It is obvious that the roots
are different from zero according to the condition pmm �= . Below we shall assume that
these roots are different or all coincide and any three of these roots are not on the same
line in the complex plane. Under these conditions, for each constant s the numbers λsjn =
iαn(ωj – ωs)–, n ∈ N, j = , , . . . , m, j �= s, are located on the m –  rays from the origin.
Moreover, since λsjn = –λjsn, the set � is symmetric with respect to the origin.

The lines lk = {λ : λ ∈ C, Re(λωk) = }, k = , , . . . , m, divide the complex λ-plane into
m open sectors Sk , k = , , . . . , m. Let us assume that beginning from sector S whose
closure contains positive numbers, these sectors are numbered S, S, . . . , Sm (m ≤ m)
counterclockwise successively. It is clear that if there are different roots ωk , ωj such that
ωk/ωj ∈ R, then the lines lk and lj coincide. Therefore, the number of sectors Sk may be
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less than m. In the case φ(z) = (z – ω)m the line l = {λ : λ ∈ C, Reλω = } divides the
complex λ-plane into two half planes S+ = {λ : λ ∈C, Reλω > }, S– = {λ : λ ∈C, Reλω <
}. In the sequel we shall see that the resolvent set of the operator Lλ consists of the above
defined sectors.

The interest of the investigation of the spectral properties of the differential operators
with coefficients belonging to class AP+ has been increased after the study of []. In [] the
differential operator L(y) = –y′′ + q(x)y with periodic potential q(x) ∈ Q+ (case m = ) has
been investigated in the space L(R). In this study the spectral data {sn}n∈N has been deter-
mined and sufficient conditions have been obtained for solvability of the inverse problem
according to the spectral data. Afterward, in [] were found the necessary and sufficient
conditions for a set {sn}n∈N to be the spectral data of the operator L(y) = –y′′ + q(x)y with
periodic potential q(x) ∈ L(, π ). In [], the results of [] are generalized for almost-
periodic potential q(x) having only positive Fourier exponents. The spectral properties of
ordinary differential operators of high order with coefficients from AP+ have been inves-
tigated in [, ]. The spectrum and the resolvent of the bundle of n order and second
order differential operators with coefficients from AP+ and from Q+ have been examined
in [–] and in [], respectively. In all of these studies the examined operators in the space
L(R) have a pure continuous spectrum which consists of a half-line or a union of lines
passing from the origin. Moreover, there may be at most a countable number of spectral
singularities on the continuous spectrum of the examined operators.

In the present paper the spectrum and the resolvent of the class of a pencil of m or-
der differential operators, with coefficients from AP+, have been investigated under more
general conditions. It has been proved that the operator Lλ has a pure continuous spec-
trum. If the characteristic polynomial φ(z) has only simple roots ωk , k = , , . . . , m, the
continuous spectrum consists of the lines Re(λωk) = , k = , , . . . , m. Moreover, there
may be spectral singularities (in the sense of Naimark []) on the continuous spectrum
which coincide with numbers of the form λ = , λsjn = iαn(ωj – ωs)–, s, j = , , . . . , m, j �= s,
n ∈N. If the characteristic polynomial φ(z) has one multiple root ω then the continuous
spectrum consists of the line Re(λω) =  and a spectral singularity does not exist. The re-
solvent operator L–

λ is an integral operator in L(R) with the kernel of Karleman type for
any λ ∈ ρ(Lλ). Under weakened conditions, the obtained results of this paper generalize
all results of [, ] and some parts of results of [–].

2 Floquet solutions of the equation �λ(y) = 0
Here, we will show the existence of the Floquet solutions of the equation �λ(y) = , which
plays an important role in the investigation of the spectrum of the operator Lλ. If the
characteristic polynomial has more than one multiple root, then there may arise various
cases to obtain the fundamental system of solutions. Below, we consider the cases when
there exist simple roots or one multiple root.

Case I. The characteristic polynomial φ(z) has different simple roots ω,ω, . . . ,ωm.

Theorem  If (), () hold and ω is any root of φ(z) =  then for each λ ∈ C, λ �= iαn(ωj –
ω)–, j = , , . . . , m, ωj �= ω, n ∈N, the differential equation

y(m) +
m∑

γ =

pγ (x,λ)y(m–γ ) =  ()
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has the solution

f (x,λ) = eωλx

(

 +
∞∑

n=

Un(λ)eiαnx

)

, ()

where

Un(λ) = Un +
n∑

k=

m∑

j=
ωj �=ω

Ujkn

[iαk + (ω – ωj)λ]
, ∀n ∈ N,

with Un, Ujkn ∈ C and series

∞∑

n=

αγ
n
∣
∣Un(λ)

∣
∣, γ = , , . . . , m, ()

is majorized in each compact set S ⊆ C which does not contain the numbers λ = iαn(ωj –
ω)– for j = , , . . . , m, ωj �= ω, n ∈N.

Proof Let ω be any root of the characteristic polynomial φ(ω). If we assume the existence
of the solution of equation () represented as () with convergent series (), then we can
find the derivatives of f (x,λ) with respect to x as

f (γ )(x,λ) = eωλx

(

(ωλ)γ +
∞∑

n=

(iαn + ωλ)γ Un(λ)eiαnx

)

, γ = , , . . . , m. ()

If we substitute these derivatives in () and divide both sides by eωλx, then we get

(ωλ)m +
∞∑

n=

(iαn + ωλ)mUn(λ)eiαnx +
m∑

γ =

(ωλ)m–γ pγ γ λγ

+
m∑

γ =

pγ γ λγ

∞∑

n=

(iαn + ωλ)m–γ Un(λ)eiαnx

+
m∑

γ =

(ωλ)m–γ

∞∑

n=

p̃γ n(λ)eiαnx

+
m∑

γ =

∞∑

n=

p̃γ n(λ)eiαnx
∞∑

n=

(iαn + ωλ)m–γ Un(λ)eiαnx = 

or

λmφ(ω) +
∞∑

n=

[

(iαn + ωλ)m +
m∑

γ =

pγ γ λγ (iαn + ωλ)m–γ

]

Un(λ)eiαnx

+
∞∑

n=

m∑

γ =

(ωλ)m–γ p̃γ n(λ)eiαnx

+
m∑

γ =

∞∑

n=

( ∑

αr+αs=αn

p̃γ s(λ)(iαr + ωλ)m–γ Ur(λ)
)

eiαnx = .
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Taking into account the uniqueness theorem for almost-periodic functions we have
[

(iαn + ωλ)m +
m∑

γ =

pγ γ λγ (iαn + ωλ)m–γ

]

Un(λ) +
m∑

γ =

(ωλ)m–γ p̃γ n(λ)

+
m∑

γ =

∑

αr+αs=αn

p̃γ s(λ)(iαr + ωλ)m–γ Ur(λ) = , n ∈N.

Using the expansion

(iαn + ωλ)m +
m∑

γ =

pγ γ λγ (iαn + ωλ)m–γ

= λm

[(
iαn

λ
+ ω

)m

+
m∑

γ =

pγ γ

(
iαn

λ
+ ω

)m–γ
]

= λmφ

(
iαn

λ
+ ω

)

=
[
iαn + λ(ω – ω)

] · [iαn + λ(ω – ω)
] · . . . · [iαn + λ(ω – ωm)

]
,

we obtain

Un(λ) = –
∑m

γ =(λω)m–γ p̃γ n(λ) +
∑m

γ =
∑

αr+αs=αn (iαr + ωλ)m–γ p̃γ s(λ)Ur(λ)
[iαn + λ(ω – ω)] · [iαn + λ(ω – ω)] · . . . · [iαn + λ(ω – ωm)]

()

for λ ∈C, λ �= iαn(ωj – ω)–, j = , , . . . , m, ωj �= ω, n ∈N.
On the contrary, if {Un(λ)} satisfies the system of equations () and the series () con-

verges, then it can be shown that f (x,λ) determined by () is a solution of (). Therefore,
the solvability of () and the convergence of the series () are sufficient to prove the theo-
rem.

From (), {Un(λ)} is determined by the recurrent manner uniquely. It is possible to
see that Un(λ) is the rational function which can have simple poles λ = iαk(ωj – ω)–,
j = , , . . . , m, ωj �= ω, k = , , . . . , n, and therefore it can be uniquely written as

Un(λ) = Un +
n∑

k=

m∑

j=
ωj �=ω

Ujkn

[iαk + (ω – ωj)λ]
, ∀n ∈ N,

where Un, Ujkn ∈ C. Let S ⊆ C be a compact set which does not contain the points λ =
iαn(ωj – ω)– for j = , , . . . , m, ωj �= ω, n ∈ N. Let us show that the series () is majorized
in S for {Un(λ)} which is determined from ().

It is obvious that there exist c > , q >  such that

cα
m
n ≤ ∣

∣
[
iαn + (ω – ω)λ

] · [iαn + (ω – ω)λ
] · . . . · [iαn + (ω – ωm)λ

]∣
∣

and |ωλ| ≤ q for ∀n ∈N, ∀λ ∈ S. Then from (), we have

cα
m
n
∣
∣Un(λ)

∣
∣ ≤

m∑

γ =

|ωλ|m–γ
∣
∣p̃γ n(λ)

∣
∣ +

m∑

γ =

∑

αr+αs=αn

∣
∣Ur(λ)

∣
∣ · |iαr + ωλ|m–γ

∣
∣p̃γ s(λ)

∣
∣

≤
m∑

γ =

qm–γ p̃γ n +
m∑

γ =

∑

αr+αs=αn

∣
∣Ur(λ)

∣
∣
(|αr| + q

)m–γ p̃γ s
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≤ qm–
m∑

γ =

p̃γ n +
m∑

γ =

∑

αr+αs=αn

∣
∣Ur(λ)

∣
∣αm–γ

r

(

 +
q
α

)m–γ

p̃γ s

≤ qm–
m∑

γ =

p̃γ n +
(

 +
q
α

)m– ∑

αr+αs=αn

∣
∣Ur(λ)

∣
∣αm–

r ·
m∑

γ =

p̃γ s

for ∀λ ∈ S, ∀n ∈N and p̃γ n = supλ∈S |p̃γ n(λ)|, γ = , , . . . , m.
Let

An =
qm–

c

m∑

γ =

p̃γ n,

Bn =

c

(

 +
q
α

)m– m∑

γ =

p̃γ n.

Then from the last inequality we obtain

αm
n
∣
∣Un(λ)

∣
∣ ≤ An +

∑

αr+αs=αn

αm–
r

∣
∣Ur(λ)

∣
∣Bs, n ∈N.

If un = supλ∈S |Un(λ)|, then we have

αm
n un ≤ An +

∑

αr+αs=αn

αm–
r urBs, n ∈ N

or

t∑

n=

αm
n un ≤

t∑

n=

An +
t∑

n=

∑

αr+αs=αn

αm–
r urBs

≤ A +
t–∑

r=

αm–
r ur

t–∑

s=

Bs ≤ A + B
t–∑

n=

αm–
n un, n ∈N.

From () it is clear that A =
∑∞

n= An < +∞ and B =
∑∞

n= Bn < +∞.
Therefore, for all t ∈ N,

∑t
n= αm

n un ≤ A + B
∑t–

n= αm–
n un is satisfied. By using this in-

equality and αn → +∞, we can easily show the convergence of the series
∑+∞

n= αm
n un ac-

cording to the lemma in [] (see [], pp.-). In this case,
∑+∞

n= αm
n |Un(λ)| is a ma-

jorized series in S. According to the Weierstrass theorem, the series () is uniform conver-
gent in S. Since S ⊆C is an arbitrarily chosen compact set, the series () is convergent for
all λ �= iαn(ωj – ω)–, j = , , . . . , m, ωj �= ω, and n ∈N. Thus f (x,λ) is a solution of equation
(). The theorem is proved. �

It is clear that λjn = iαn(ωj – ω)– may be a singular point of f (x,λ) for any j = , , . . . , m,
ωj �= ω, n ∈N. Actually, according to Theorem , the functional series in the representation

[
iαn + (ω – ωj)

]
f (x,λ) = eωλx

(

 +
∞∑

r=

[
iαn + (ω – ωj)λ

]
Ur(λ)eiαrx

)

and the obtained series by m times term by term differentiation are absolutely and uni-
formly convergent with respect to λ in the closed disk with a small radius centered in
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point λjn. Therefore, the finite limits

lim
λ→λjn

[
iαn + (ω – ωj)λ

]∂ sf (x,λ)
∂xs = eωλjnx

∞∑

r=n
Ujnr(ωλjn + iαr)seiαrx, s = , , , . . . , m,

exist. Moreover, the series
∑∞

r=n|Ujnr|αm
r is convergent. If this limit is not zero, then it

means that the point λjn is a simple pole of the functions ∂sf (x,λ)
∂xs , s = , , . . . , m.

Corollary  For ∀x ∈ R, the functions ∂sf (x,λ)
∂xs , s = , , . . . , m, are meromorphic functions

with respect to λ and they can have only simple poles λjn = iαn(ωj – ω)–, j = , , . . . , m,
ωj �= ω, n ∈ N. Moreover, these functions are also continuous functions of the pair (x,λ) for
all (x,λ) ∈ R×C, λ �= iαn(ωj – ω)–, j = , , . . . , m, ωj �= ω, n ∈N.

Corollary  For ∀λ �= λsjn, s, j = , , . . . , m, j �= s, n ∈ N, equation () has the Floquet solu-
tions represented as

fs(x,λ) = eωsλx

(

 +
∞∑

n=

U (s)
n (λ)eiαnx

)

,

where

U (s)
n (λ) = U (s)

n +
n∑

k=

m∑

j=
j �=s

U (s)
jkn

iαk + (ωs – ωj)λ
.

The Wronskian of the functions f(x,λ), f(x,λ), . . . , fm(x,λ) for λ ∈C\� is found as

W [f, f, . . . , fm] = W (x,λ) = λ
m(m–)

 Wme–λpx–
∑∞

n=
pn
iαn eiαnx

. ()

Here Wm is the Vandermonde determinant of the numbers ω,ω, . . . ,ωm. The functions
f(x,λ), f(x,λ), . . . , fm(x,λ) form the fundamental system of solutions of equation () in the
interval (–∞, +∞) for ∀λ ∈C\�.

It is clear that the existence of the solutions f(x,λ), f(x,λ), . . . , fm(x,λ) follows from The-
orem  for ω = ωs, s = , , . . . , m. Since every q(x) ∈ AP+ can be extended to the upper
semi-plane as an analytic function of x and limIm x→+∞ q(x) = , by passing to the limit as
Im x → +∞ on both sides of the equation

W (x,λ)eλpx = W (,λ)e–
∫ x

 p(t) dt

we get equation (). From () it follows that if λ �= , then W (x,λ) �= . Thus the system of
functions is independent.

Note that the solutions of type fs(x,λ), s = , , . . . , m, are obtained in [–] under the
different conditions and in various forms of the representation.

According to Corollary , it is obvious that the function

fsjn(x) = lim
λ→λsjn

fs(x,λ)
[
iαn + (ωs – ωj)λ

]
= eωsλsjnx

∞∑

k=n

U (s)
jnkeiαk x



Orujov Boundary Value Problems  (2015) 2015:238 Page 8 of 19

is a solution of equation () for λ = λsjn, where the series
∑∞

k=n αm
k |U (s)

jnk| is convergent. As in
[], writing the equation which is satisfied by the coefficients U (s)

jnk (see [], p.), it is seen
easily that U (s)

jnk =  for every k ≥ n if U (s)
jnn = . Therefore, fsjn(x) ≡  if and only if U (s)

jnn = . In
this case, fs(x,λ) is regular at point λ = λsjn and fs(x,λsjn) is a solution of equation (). It can
be shown that the functions fsjn(x) and fj(x,λsjn) are linearly dependent. Moreover, fsjn(x) =
U (s)

jnnfj(x,λsjn) for any s = , , . . . , m, s �= j = , , . . . , m, n ∈ N, is valid which is important for
establishing the fundamental system of solutions of equation () for λ = λsjn.

Let s, j, n be fixed and fs(x,λ), fs (x,λ), fs (x,λ), . . . , fsμ (x,λ) be all functions which have a
pole at the point λ = λsjn. It is only possible when the equality λsjn = λsβ jβ nβ

, β = , , . . . ,μ,
is valid for some different indices n, n, . . . , nμ ∈N, and  ≤ j, j, . . . , jμ ≤ m. Then all other
functions fj(x,λ), fj (x,λ), fj (x,λ), . . . , fjμ (x,λ), fjμ+ (x,λ), . . . , fjν (x,λ), μ + ν +  = m, are regu-
lar at the point λ = λsjn.

If we define the functions fkjn(x) = limλ→λsjn fk(x,λ)[iαn + (ωs – ωj)λ], k = s, s, . . . , sμ,
then it is obvious that the functions

fsjn(x), fsjn(x), fsjn(x), . . . ,

fsμjn(x), fk(x,λsjn), k = j, j, j, . . . , jν ,
()

are solutions of equation () for λ = λsjn and the functions of this system are linear de-
pendent in (–∞, +∞), since their Wronskian is equal to zero. Moreover, any three of
the numbers Re(λsjnωk), k = , , . . . , m, can not be equal and there are some equal pairs
between them. These equal pairs are Re(λsjnωs) = Re(λsjnωj), Re(λsjnωsβ ) = Re(λsjnωjβ ),
β = , , . . . ,μ. Then taking into our account the behaviors as x → ±∞ of the functions
belonging to the system (), as it is shown in [] (see pp.-), we have the existence of
some constants bk , k = s, s, s, . . . , sμ such that

fsjn(x) = bsfj(x,λsjn), fsβ jn(x) = bsβ fjβ (x,λsjn), β = , , . . . ,μ.

From the equality fsjn(x) = bsfj(x,λsjn), according to the uniqueness theorem for almost-
periodic functions, it is seen that bs = U (s)

jnn. Using the equalities

fsjn(x) = bsfj(x,λsjn), fsβ jn(x) = bsβ fjβ (x,λsjn), β = , , . . . ,μ,

the system of linearly independent solutions of equation () corresponding to λ = λsjn can
be established.

Since the functions fk(x,λ), k = j, j, j, . . . , jμ, are regular at λ = λsjn, the functions

f̃sjn(x) = lim
λ→λsjn

(

fs(x,λ) –
bsfj(x,λ)

iαn + (ωs – ωj)λ

)

,

f̃sβ jn(x) = lim
λ→λsjn

(

fsβ (x,λ) –
bsβ fjβ (x,λ)

iαn + (ωs – ωj)λ

)

, β = , , . . . ,μ,

are also solutions of equation () corresponding to λ = λsjn. According to the expres-
sions of the functions fk(x,λ), k = s, s, s, . . . , sμ, j, j, j, . . . , jμ, we conclude that f̃kjn(x) =
eiωkλsjnx(ψkjn(x)+xφkjn(x)), where ψkjn(x) and φkjn(x) are Bohr almost-periodic functions for
k = s, s, s, . . . , sμ. From the explicit form of the functions f̃sjn(x), f̃sjn(x), f̃sjn(x), . . . , f̃sμjn(x),
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fk(x,λsjn), k = j, j, j, . . . , jν , it is seen that these functions are linearly independent on
(–∞, +∞). Therefore, these functions form a fundamental system of solutions of equa-
tion () for λ = λsjn.

Now let us construct the linearly independent solutions of equation () for λ = .
Note that, since the Wronskian of the solutions fs(x,λ), s = , , . . . , m, is equal to zero for

λ = , they are linearly dependent. Linearly independent solutions of equation () corre-
sponding to λ =  are established according to Theorem . It is clear that solutions of the
equation

y(m) +
m∑

γ =

pγ (x)y(m–γ ) = λmy ()

corresponding to λ =  are also solutions of equation () for λ = . By Theorem , equation
() has the solution

f̃ (x,λ) = eλx

(

 +
∞∑

n=

Ũn(λ)eiαnx

)

,

which is analytic with respect to λ in some small neighborhood of λ = . By putting f̃ (x,λ)
in () and by differentiating equation () with respect to λ, it is sure that functions
f̃s(x) = ∂s f̃ (x,λ)

∂λs |λ=, s = , , . . . , m–, are also solutions of () and () corresponding to λ = .
We can see easily that f̃(x) = α(x), f̃(x) = xα(x) + α(x), . . . , f̃m–(x) = xm–αm–,m–(x) +
xm–αm–,m–(x) + · · · + αm–,(x), where αsj(x), s = , , . . . , m – , j = , , . . . , s, are Bohr
almost-periodic functions and αss(x), s = , , . . . , m – , are nonzero. The linear indepen-
dence of f̃s(x), s = , , . . . , m – , in (–∞, +∞) is seen from their open form.

Case II. The characteristic polynomial has a unique multiple root ω, i.e. φ(z) = (z–ω)m.
In this case, to find the particular solutions of equation () we will use the following

theorem.

Theorem  If the characteristic polynomial has a unique multiple root ω, then for each
function g(x,λ) = eωλx ∑∞

n= gn(λ)eiαnx such that gn(λ), n ∈N, are polynomials whose degree
does not exceed n(m – ) and the series

∑∞
n= |gn(λ)| is majorized in any compact set S ⊆C,

the equation

y(m) +
m∑

γ =

pγ (x,λ)y(m–γ ) = g(x,λ) ()

has a solution

h(x,λ) = eωλx

(

 +
∞∑

n=

hn(λ)eiαnx

)

()

in (–∞, +∞) for every λ ∈ C. Here the coefficients hn(λ), n ∈ N, are polynomials whose
degrees do not exceed n(m – ), and the series

∑∞
n= |hn(λ)|αm

n is majorized in each compact
set S ⊆C.
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Proof If we substitute the function () in (), to find the coefficients sequence {hn(λ)} as
in the proof of Theorem , we obtain a system of equations,

[

(iαn + ωλ)m +
m∑

γ =

pγ γ λγ (iαn + ωλ)m–γ

]

hn(λ) +
m∑

γ =

(ωλ)m–γ p̃γ n(λ)

+
m∑

γ =

∑

αr+αs=αn

p̃γ s(λ)(iαr + ωλ)m–γ hr(λ) = gn(λ), n ∈ N,λ ∈C

or

(iαn)mhn(λ) +
m∑

γ =

(ωλ)m–γ p̃γ n(λ)

+
m∑

γ =

∑

αr+αs=αn

p̃γ s(λ)(iαr + ωλ)m–γ hr(λ) = gn(λ), n ∈ N,λ ∈C,

or

hn(λ) = –
∑m

γ =(λω)m–γ p̃γ n(λ) +
∑m

γ =
∑

αr+αs=αn (iαr + ωλ)m–γ p̃γ s(λ)hr(λ)–gn(λ)
(iαn)m ,

n ∈N,λ ∈C. ()

The coefficients hn(λ) are found uniquely from equation (). In fact, the degree of
the polynomial h(λ) = –

∑m
γ =(λω)m–γ p̃γ (λ)–g(λ)

(iα)m for n =  does not exceed m – . Subse-
quently, for n =  the degree of the polynomial h(λ) does not exceed (m – ) and, for
each n, hn(λ) is found as a polynomial whose degree does not exceed n(m – ). If for
the obtained coefficients hn(λ), n ∈ N, hn = supλ∈S |hn(λ)|, then convergence of the se-
ries

∑+∞
n= αm

n hn and so majorization of the series
∑+∞

n= αm
n |hn(λ)| in the set S ⊆ C eas-

ily can be shown as in the proof of Theorem . Therefore, for each λ ∈ S the function
h(x,λ) = eωλx( +

∑∞
n= hn(λ)eiαnx) is the solution of equation () in (–∞, +∞). The theo-

rem is proved. �

Corollary  If the characteristic polynomial φ(z) has a unique multiple root ω, then equa-
tion () has a solution f̂ (x,λ) = eωλxq(x,λ) in (–∞, +∞) for every λ ∈ C. Here q(x,λ) =
 +

∑∞
n= qn(λ)eiαnx is a Bohr almost-periodic function. The qn(λ), n ∈ N, are polynomi-

als whose degree does not exceed n(m – ), the series
∑+∞

n= αm
n |qn(λ)| is majorized in each

compact set S ⊆C. f̂ (x,λ), ∂ f̂ (x,λ)
∂x , . . . , ∂mf̂ (x,λ)

∂xm are continuous functions in R×C with respect
to the ordered pair (x,λ) and they are an entire function of λ.

To prove Corollary , it is enough to take g(x,λ) =  in Theorem  and to see m times
differentiability term by term of the series in the expression of the obtained solution f̂ (x,λ)
with respect to x. Here the obtained series are uniformly convergent in each bounded
set of the ordered pairs (x,λ), therefore functions f̂ (x,λ), ∂ f̂ (x,λ)

∂x , . . . , ∂mf̂ (x,λ)
∂xm are continuous

functions of the ordered pairs (x,λ) and they are entire functions of λ.

Theorem  If φ(z) = (z – ω)m, then equation () has Floquet solutions in the interval
(–∞, +∞) as

f̂(x,λ) = eωλxq(x,λ), f̂(x,λ) = eωλx[xq(x,λ) + q(x,λ)
]
, . . . ,
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f̂m(x,λ) = eωλx
[

xm–

(m – )!
q(x,λ) + · · · + xqm–(x,λ) + qm(x,λ)

]

,

where the functions q(x,λ), q(x,λ), . . . , qm(x,λ) are almost-periodic function:

qs(x,λ) =  +
∞∑

n=

qsn(λ)eiαnx, s = , , . . . , m

for ∀λ ∈ C. Here qsn(λ), s = , , . . . , m, n ∈ N, are polynomials whose degrees do not exceed
n(m – ) and the series

∑∞
n= αm

n |qsn(λ)| are majorized in each compact set S ⊆C.

Proof When φ(z) = (z –ω)m, equation () has a solution f̂(x,λ) = eωλxq(x,λ) according to
Corollary . In order to obtain other solutions which form a fundamental system of solu-
tions of equation () together with f̂(x,λ), let us use the properties of the linear differential
operator L : Cm(R) → C(R), which is defined as

L(y) = p(x)y(m) + p(x)y(m–) + p(x)y(m–) + · · · + pm–(x)y′ + pm(x)y, ()

where pj(x) ∈ C(R), j = , , . . . , m. Let us define the operators L(k)(y) =
∑m–k

γ = Ak
mpγ (x) ×

y(m–γ –k), L(k) : Cm(R) → C(R), k = , , . . . , m. Here, Ak
m = m(m – ) · . . . · (m – k + ), k =

, , . . . , m, and A
m = . For any system of functions y(x), y(x), . . . , ym(x) ∈ Cm(R) it is not

difficult to show that the identities

L(xy + y) = L(y) + L()(y) + xL(y),

L
(

x

!
y + xy + y

)

= L(y) + L()(y) +

!

L()(y) + x
[
L(y) + L()(y)

]
+

x

!
L(y),

. . . ,

L
(

xs–

(s – )!
y +

xs–

(s – )!
y + · · · +

x
!

ys– + ys

)

= L(ys) + L()(ys–) +

!

L()(ys–) + · · · +


(s – )!
L(s–)(y)

+ x
[

L(ys–) +

!

L()(ys–) + · · · +


(s – )!
L(s–)(y)

]

+ · · ·

+
xs–

(s – )!
[
L(y) + L()(y)

]
+

xs–

(s – )!
L(y), s = , , . . . , m,∀x ∈R,

hold. Therefore, when the equations

L(y) = ,

L(y) + L()(y) = ,

L(y) + L()(y) +

!

L()(y) = , ()

. . . ,

L(ym) + L()(ym–) +

!

L()(ym–) + · · · +


(m – )!
L(m–)(y) = ,
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are satisfied, the functions

ỹ = y, ỹj =
xj–

(j – )!
y +

xj–

(j – )!
y + · · · +

x
!

yj– + yj, j = , , . . . , m, ()

are solutions of the equation L(y) = .
Let us show the existence of functions ys = eωλxqs(x,λ), s = , , . . . , m, satisfying the sys-

tem of equations () for the operators L = Lλ, L(k) = L(k)
λ , k = , , . . . , m. If we set in these

equations L = Lλ and y = f̂(x,λ), the solution y = eωλxq(x,λ), which satisfies the equation

Lλ(y) + L()
λ (y) = ,

exists according to Theorem  for g(x,λ) = –L()
λ (y). It is not difficult to verify that the

conditions of Theorem  are satisfied. In the same manner, when the functions ys =
eωλxps(x,λ), s = , , . . . , k – , were found, the existence of the function yk = eωλxqk(x,λ)
which satisfies the equation

Lλ(yk) = –L()
λ (yk–) –


!

L()
λ (yk–) – · · · –


(k – )!

L(k–)
λ (y), k = , , . . . , m,

is obtained according to Theorem  by induction for g(x,λ) = –L()
λ (yk–) – 

! L
()
λ (yk–) –

· · · – 
(k–)! L

(k–)
λ (y). Consequently, according to (), () the functions

f̂(x,λ) = eωλxq(x,λ), f̂(x,λ) = eωλx[xq(x,λ) + q(x,λ)
]
,

. . . ,

f̂m(x,λ) = eωλx
[

xm–

(m – )!
q(x,λ) + · · · + xqm–(x,λ) + qm(x,λ)

]

are solutions of equation () in (–∞, +∞) for λ ∈C. The theorem is proved. �

Note that the solutions of type f̂s(x,λ), s = , , . . . , m, are obtained in [] under the dif-
ferent conditions and in various form of the representation.

Corollary  When φ(z) = (z – ω)m, for each λ ∈ C, x ∈ R Wronskian of functions
f̂(x,λ), f̂(x,λ), . . . , f̂m(x,λ) is found as

Ŵ (x,λ) = emωλx–
∑∞

n=
pn
iαn eiαnx �=  ()

and hence for each λ ∈ C, the functions f̂(x,λ), f̂(x,λ), . . . , f̂m(x,λ) form the fundamental
system of solutions of equation () in the interval (–∞, +∞).

3 The spectrum and resolvent of the operator Lλ

Here we investigate the structure of the spectrum of the operator Lλ and the resolvent
operator L–

λ .

Theorem  The operator Lλ does not have eigenvalues, i.e. σp(Lλ) = ∅.
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Proof Let us show that equation Lλy =  has only a trivial solution which belongs to L(R)
for ∀λ ∈ C. In the case of simple roots of characteristic polynomial for λ �= , λ �= λsjn,
s, j = , , . . . , m, j �= s, n ∈ N, it follows from the properties of the solutions fk(x,λ), k =
, , . . . , m. Really, the solution y(x,λ) = cf(x,λ) + cf(x,λ) + · · · + cmfm(x,λ) is in L(R) if
and only if c = c = · · · = cm = . If we take linearly independent solutions of () according
to λ =  or λ = λsjn, then a similar result is also valid. Hence σp(Lλ) = ∅. The theorem is
proved. �

Theorem  The residual spectrum of the operator Lλ is an empty set, i.e. σr(Lλ) = ∅.

Proof Since σp(Lλ) = ∅ and for every λ ∈ C the operator Lλ is one to one, λ ∈ σr(Lλ) if
and only if the range R(Lλ) is not dense in L(R). It means the equation L∗

λ(z) =  has a
nontrivial solution z(x,λ) ∈ L(R), in other words z(x,λ) satisfies the conjugate equation

(–)mz(m) +
m∑

γ =

(–)(m–γ )[pγ (x,λ)z
](m–γ ) = . ()

Since () can be written as

z(m) +
m∑

γ =

p∗
γ (x,λ)z(m–γ ) =  ()

which is in type of equation (), equation () does not have a nontrivial solution which
belongs to L(R). Therefore z(x,λ) ≡  and σp(L∗

λ) = ∅, which means R(Lλ) = L(R), or
σr(Lλ) = ∅. The theorem is proved. �

From Theorem  and Theorem  it follows that σ (Lλ) = σc(Lλ) and L–
λ is defined in a

dense set in L(R) for eachλ ∈C.
In order to find L–

λ and the resolvent set ρ(Lλ), let us investigate the existence of the
solution y(x,λ) ∈ L(R) of the equation

y(m) +
m∑

γ =

pγ (x,λ)y(m–γ ) = f (x) ()

when f (x) ∈ L(R).
Let us consider cases I and II separately.
In case I if we apply the Lagrange method by using the Floquet solutions fs(x,λ), s =

, , . . . , m, of equation () and linearly independent solutions (see [], pp.-)

zs(x,λ) = (–)m+s W [f, f, . . . , fs–, fs+, . . . , fm](x,λ)
W [f, f, . . . , fm](x,λ)

, s = , , . . . , m,

of () for λ ∈C\�, then we find the solution of () as

y(x,λ) =
∫ +∞

–∞
G(x, t,λ)f (t) dt,
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where the expression of G(x, t,λ) can be written explicitly via fs(x,λ), zs(x,λ), s = , , . . . , m.
Using the properties of the functions fs(x,λ) we can show that

W [f, f, . . . , fs–, fs+, . . . , fm](x,λ)

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

f(x,λ) · · · fs–(x,λ) fs+(x,λ) · · · fm(x,λ)
f ′
 (x,λ) · · · f ′

s–(x,λ) f ′
s+(x,λ) · · · f ′

m(x,λ)
f ′′
 (x,λ) · · · f ′′

s–(x,λ) f ′′
s+(x,λ) · · · f ′′

m(x,λ)
· · · · · · · · · · · · · · · · · ·

f (m–)
 (x,λ) · · · f (m–)

s– (x,λ) f (m–)
s+ (x,λ) · · · f (m–)

m (x,λ)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= e–(p+ωs)λx

(

A(s)(λ) +
∞∑

n=

A(s)
n (λ)eiαnx

)

,

where A(s)(λ), A(s)
n (λ) are complex valued functions of λ for which the series

∑∞
n=|A(s)

n (λ)|
is convergent and

(–)m+sA(s)(λ) = (–)m+s

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

 · · ·   · · · 
ωλ · · · ωs–λ ωs+λ · · · ωmλ

(ωλ) · · · (ωs–λ) (ωs+λ) · · · (ωmλ)

· · · · · · · · · · · · · · · · · ·
(ωλ)m– · · · (ωs–λ)m– (ωs+λ)m– · · · (ωmλ)m–

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (–)m+sλ
(m–)(m–)



∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

 · · ·   · · · 
ω · · · ωs– ωs+ · · · ωm

ω
 · · · ω

s– ω
s+ · · · ω

m

· · · · · · · · · · · · · · · · · ·
ωm–

 · · · ωm–
s– ωm–

s+ · · · ωm–
m

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= λ
(m–)(m–)

 Wms,

where Wms, s = , , . . . , m, are cofactors of elements of mth row of the Vandermonde de-
terminant Wm.

Thus we find that

zs(x,λ) = (–)m+s e–(p+ωs)λx(A(s)(λ) +
∑∞

n= A(s)
n (λ)eiαnx)

λ
m(m–)

 Wm

epλx+
∑∞

n=
pn
iαn eiαnx

= (–)m+s e–iωsλx(A(s)(λ) +
∑∞

n= A(s)
n (λ)eiαnx)

λ
m(m–)

 Wm

e
∑∞

n=
pn
iαn eiαnx

, s = , , . . . , m.

On the other hand, it can be seen that equation () which is equivalent to () is in the
type of equation () and, moreover, the characteristic polynomial corresponding to the
expression

�∗
λ(λ) = z(m) +

m∑

γ =

p∗
γ (x,λ)z(m–γ )

is in the form of φ∗(λ) = (–)mφ(–λ). Then, if ω,ω, . . . ,ωm are roots of φ(λ), then
–ω, –ω, . . . , –ωm will be roots of φ∗(λ). According to Theorem , for all λ ∈ C\� equa-
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tion () has solutions as

ϕs(x,λ) = e–ωsλx

(

 +
∞∑

n=

V (s)
n (λ)eiαnx

)

, s = , , . . . , m,

where

V (s)
n (λ) = V (s)

n +
n∑

k=

m∑

j=
j �=s

V (s)
jkn

iαk – (ωs – ωj)λ
, n ∈ N.

Taking into consideration that for every point λ �= λsjn, s, j = , , . . . , m, j �= s, each func-
tion zs(x,λ) is a linear combination of the functions ϕ(x,λ),ϕ(x,λ), . . . ,ϕm(x,λ) and by
virtue of the behavior of the function zs(x,λ) as x → ±∞, it is possible to show that for
some constants Cs(λ) the equality

zs(x,λ) = Cs(λ)ϕs(x,λ), s = , , . . . , m,

is satisfied.
This means that for every x ∈ R the equality

(–)m+s e–ωsλx(A(s)(λ) +
∑∞

n= A(s)
n (λ)eiαnx)

λ
m(m–)

 Wm

e
∑∞

n=
pn
iαn eiαnx

= Cs(λ)ϕs(x,λ), s = , , . . . , m,

holds and hence dividing this equality by e–ωsλx we obtain

(–)m+s (A(s)(λ) +
∑∞

n= A(s)
n (λ)eiαnx)

λ
m(m–)

 Wm

e
∑∞

n=
pn
iαn eiαnx

= Cs(λ)

(

 +
∞∑

n=

V (s)
n (λ)eiαnx

)

, s = , , . . . , m.

According to the uniqueness theorem of analytic functions, this equality is satisfied for
the analytic continuations of the functions on the semi-plane Im x ≥  with respect to x,
which are on both sides of the given equality.

Thus, taking the limit as Im x → +∞ we have

Cs(λ) = (–)m+s A(s)(λ)

λ
m(m–)

 Wm

=
λ

(m–)(m–)
 Wms

λ
m(m–)

 Wm

=
Wms

λm–Wm
, s = , , . . . , m.

Therefore, the equalities

zs(x,λ) =
Wms

λm–Wm
ϕs(x,λ), s = , , . . . , m,

are valid.



Orujov Boundary Value Problems  (2015) 2015:238 Page 16 of 19

For all j = , , . . . , m, k = , , . . . , m, and ∀λ ∈ Sk the value of Re(λωj) has a constant
sign. Hence, there are Mk ⊆ {, , . . . , m} and M′

k = {, , . . . , m}\Mk such that if j ∈ Mk ,
∀λ ∈ Sk then Re(λωj) < , if j ∈ M′

k then Re(λωj) > . Thus, for any k = , , . . . , m, ∀a ∈R,
and ∀λ ∈ Sk\�, if l ∈ Mk then fl(x,λ) ∈ L(a, +∞), fl(x,λ) /∈ L(–∞, a), and if l ∈ M′

k then
fl(x,λ) ∈ L(–∞, a), fl(x,λ) /∈ L(a, +∞). In the same manner, for ∀a ∈ R, ∀λ ∈ Sk\� and
l ∈ Mk then ϕl(x,λ) /∈ L(a, +∞), ϕl(x,λ) ∈ L(–∞, a), if l ∈ M′

k then ϕl(x,λ) /∈ L(–∞, a),
ϕl(x,λ) ∈ L(a, +∞). Taking into account all these properties, for k = , , . . . , m, ∀λ ∈
Sk\�, the kernel G(x, t,λ) can be written as

G(x, t,λ) =


λm–Wm

{∑
l∈Mk

Wmlfl(x,λ)ϕl(t,λ), t ≤ x,
–

∑
l∈M′

k
Wmlfl(x,λ)ϕl(t,λ), t > x.

()

From the expression of the functions fs(x,λ) and ϕs(x,λ) and from () it follows that for
every x, t ∈ R and λ ∈ Sk\�, k = , , . . . , m,

∣
∣G(x, t,λ)

∣
∣ ≤ C(λ)e–τ |x–t|, ()

where C(λ) > , τ = min{|Re(λωs)| : s = , , . . . , m}. From () we have

∫ +∞

–∞

∣
∣G(x, t,λ)

∣
∣ dt < +∞ and

∫ +∞

–∞

∣
∣G(x, t,λ)

∣
∣ dx < +∞.

Using () it can be proved by the standard method (see [], pp.-) that the operator

L–
λ f (x) =

∫ +∞

–∞
G(x, t,λ)f (t) dt

as L–
λ : L(R) → L(R) is bounded for λ ∈ S ∪ S ∪ · · · ∪ Sm (it is λ ∈ ρ(Lλ)). In the case

λ ∈ ⋃m
k= lk the operator L–

λ is a closed operator defined on a dense proper subset R(Lλ) of
L(R) and so L–

λ is an unbounded operator which means λ ∈ σc(Lλ). On the other hand,
since the functions fl(x,λ) and ϕl(t,λ) do not have the same poles the points λ = λsjn may be
simple poles of G(x, t,λ). If any λ = λsjn belong to any set Sk then these points can be only
eigenvalues of the operator Lλ. Since Lλ does not have eigenvalue, there is no singularity of
operator L–

λ at these points. Therefore λsjn ∈ ρ(Lλ) and G(x, t,λ) is regular at these points
too. So the lines Re(λωs) = , s = , , . . . , m, consist of a continuous spectrum of Lλ, i.e.
σc(Lλ) =

⋃m
k= lk . Then the resolvent set of operator Lλ is ρ(Lλ) = S ∪ S ∪ · · · ∪ Sm . An

analytic continuation of the kernel G(x, t,λ), with respect to λ, may have some poles at the
points λ ∈ �, which belong to σc(Lλ). These poles are called spectral singularities (in the
sense of [], p.) of the operator Lλ.

Similarly, in case II the kernel G(x, t,λ) can be written as

G(x, t,λ) =

{∑m
k= f̂k(x,λ)ϕ̂k(t,λ), t < x,

, t ≥ x

for λ ∈ S– or as

G(x, t,λ) =

{
, t < x,
–

∑m
k= f̂k(x,λ)ϕ̂k(t,λ), t ≥ x
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for λ ∈ S+, where f̂k(x,λ), k = , , . . . , m, are solutions of equation () and ϕ̂k(x,λ) are solu-
tions of () according to Theorem . In order to have y(x,λ) =

∫ +∞
–∞ G(x, t,λ)f (t) dt ∈ L(R),

for each λ ∈C, Re(ωλ) �=  and f (x) ∈ L(R) we use

m∑

k=

f̂k(x,λ)ϕ̂k(t,λ) =
H(x, t,λ)

W [f̂, f̂, . . . , f̂m](t)
.

Here

H(x, t,λ)

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

f̂(t,λ) f̂(t,λ) · · · f̂m(t,λ)
f̂ ′
 (t,λ) f̂ ′

(x,λ) · · · f̂ ′
m(t,λ)

· · · · · · · · · · · ·
f̂ (m–)
 (t,λ) f̂ (m–)

 (x,λ) · · · f̂ (m–)
m (t,λ)

f̂(x,λ) f̂(x,λ) · · · f̂m(x,λ)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

eωλtq(t,λ) eωλt[tq(t,λ) + q(t,λ)] · · · eωλt ∑m
j=

tm–j

(m–j)! qj(t,λ)
(eωλtq(t,λ))′ (eωλt[tq(t,λ) + q(t,λ)])′ · · · (eωλt ∑m

j=
tm–j

(m–j)! qj(t,λ))′

· · · · · · · · · · · ·
(eωλtq(t,λ))(m–) (eωλt[tq(t,λ) + q(t,λ)])(m–) · · · (eωλt ∑m

j=
tm–j

(m–j)! qj(t,λ))(m–)

eωλxq(x,λ) eωλx[xq(x,λ) + q(x,λ)] · · · eωλx ∑m
j=

xm–j

(m–j)! qj(x,λ)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

When we make elementary operations on rows and columns of this determinant, we
can transform this determinant as follows:

H(x, t,λ)

= eωλ[(m–)t+x]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

q(t,λ) tq(t,λ) + q(t,λ) · · · ∑m
j=

tm–j

(m–j)! qj(t,λ)
q′

(t,λ) [tq(t,λ) + q(t,λ)]′ · · · (
∑m

j=
tm–j

(m–j)! qj(t,λ))′

· · · · · · · · · · · ·
q(m–)

 (t,λ) [tq(t,λ) + q(t,λ)](m–) · · · (
∑m

j=
tm–j

(m–j)! qj(t,λ))(m–)

q(x,λ) xq(x,λ) + q(x,λ) · · · ∑m
j=

xm–j

(m–j)! qj(x,λ)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= eωλ[(m–)t+x]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

q(t,λ) q(t,λ) · · · qm(t,λ)
q′

(t,λ) q′
(t,λ) + q(t,λ) · · · q′

m(t,λ) + qm–(t,λ)
· · · · · · · · · · · ·

q(m–)
 (t,λ) q(m–)

 (t,λ) + (m – )q(t,λ) · · · ∑m–
j= Cj

m–q(m–j–)
m–j (t,λ)

q(x,λ) (x – t)q(x,λ) + q(x,λ) · · · ∑m
j=

(x–t)m–j

(m–j)! qj(x,λ)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= eωλ[(m–)t+x]
(

c(x, t,λ) + (x – t)c(x, t,λ) + · · · +
(x – t)m–

(m – )!
cm(x, t,λ)

)

. ()

Here, ci(x, t,λ), i = , , . . . , m, are continuous and bounded functions of (x, t) in R
 for each

constant λ. According to equations (), (), for τ = Re(ωλ) and some constant C′(λ) > ,
we obtain the inequality

∣
∣G(x, t,λ)

∣
∣ ≤ C′(λ)e–τ |x–t|( + |x – t|)m–, ∀x, t ∈ R,∀λ ∈C. ()
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From () we have

∫ +∞

–∞

∣
∣G(x, t,λ)

∣
∣ dt < +∞ and

∫ +∞

–∞

∣
∣G(x, t,λ)

∣
∣ dx < +∞.

By considering inequality () it can be proved by the standard method (see [], pp.-
) that the operator

L–
λ f (x) =

∫ +∞

–∞
G(x, t,λ)f (t) dt

as L–
λ : L(R) → L(R) is bounded for λ ∈ C, Re(λω) �=  (it is λ ∈ ρ(Lλ)). If Re(λω) = ,

then, as in case I, the operator L–
λ is a closed operator defined on a dense proper subset

R(Lλ) of L(R) and so L–
λ is an unbounded operator, which means λ ∈ σc(Lλ). From the

expression of G(x, t,λ) we see that G(x, t,λ) is a holomorphic function in S+ and S–. Ana-
lytic continuation of the function G(x, t,λ) with respect to λ out of sectors S+ and S– does
not have a singularity on the line Re(λω) = . Therefore, the line Re(λω) =  consists of
a continuous spectrum of Lλ, i.e. σc(Lλ) = l and does not have a spectral singularity of this
operator. Then the resolvent set of the operator Lλ is ρ(Lλ) = S+ ∪ S–. Thus, the following
theorem is true.

Theorem  The operator Lλ has a pure continuous spectrum σc(Lλ). If the characteristic
polynomial φ(z) has simple roots ωs, s = , , . . . , m, then it is made up of lines Re(λωs) = ,
s = , , . . . , m. The countable set of simple spectral singularities may exist at the points λ =
λsjn ∈ σc(Lλ) and the spectral singularity degree, which does not exceed m – , may exist at
the point λ = . If the characteristic polynomial φ(z) has a unique multiple root ω, then a
continuous spectrum consists of the line Re(λω) =  and spectral singularities of Lλ do not
exist. For any λ ∈ ρ(Lλ) the resolvent L–

λ is an integral operator with a kernel of Karleman
type.
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