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Abstract
In this paper, by constructing new comparison functions, we mainly study the
boundary behavior of solutions to boundary blow-up elliptic problems for more
general nonlinearities f (which may be rapidly varying at infinity) �∞u = b(x)f (u),
x ∈ �, u|∂� = +∞, where � is a bounded domain with smooth boundary in R

N , and
b ∈ C(�̄) which is positive in � and may be vanishing on the boundary and rapidly
varying near the boundary.
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1 Introduction and the main results
In this paper, we consider the exact asymptotic behavior of solutions to the following
boundary blow-up elliptic problem:

�∞u = b(x)f (u), u > , x ∈ �, u|∂� = ∞, (.)

where the operator �∞ is the ∞-Laplacian, a highly degenerate elliptic operator given by

�∞u :=
〈
DuDu, Du

〉
=

N∑

i,j=

DiuDijuDju,

� is a bounded domain with smooth boundary in R
N (N ≥ ), b satisfies

(b) b ∈ C(�̄) is positive in �,

and f satisfies

(f) f ∈ C([,∞)), f () = , f is increasing on (,∞);
(f)

∫ ∞


dν

(f (ν))



< ∞;

(f) there exists Cf >  such that lims→+∞ f ′(s)
∫ ∞

s
dν

f (ν) = Cf .

The ∞-Laplacian has been the subject of extensive investigation since the fundamental
work of Aronsson [] in which he established that the equation �∞u =  is the Euler-
Lagrange equation for smooth absolute minimizers. As a result of the high degeneracy
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of the ∞-Laplacian, the associated Dirichlet problems may not have classical solutions.
Therefore solutions are understood in the viscosity sense, a concept introduced by Cran-
dall and Lions [], Crandall et al. [], and Crandall et al. [], and to be defined in Sec-
tion . Later, Jensen [] proved the existence and uniqueness of the viscosity solutions to
the Dirichlet problem to the infinity harmonic equation. Since then, the infinity Laplace
equation has been attracting considerable attention and we direct the reader to see [–]
and the references therein.

By a solution to the problem (.), we mean a nonnegative function u ∈ C(�) that sat-
isfies the equation in the viscosity sense (see Section  for definition) and the boundary
condition with u(x) → ∞ as the distance function d(x) := dist(x,�) → . Such a solution
is called a boundary blow-up solution. Recently, A Mohammed and S Mohammed [, ]
first supplied a necessary and sufficient condition

∫ ∞

a

ds
√F(s)

< ∞, ∀a > , F(s) =
∫ s


f (ν) dν, (.)

for the existence of solutions to problem (.).
The investigation of boundary blow-up problems for elliptic equations has a long his-

tory. Early studies mainly focused on problems involving the classical Laplace operator �,
i.e.

�u = b(x)f (u), u > , x ∈ �, u|∂� = ∞, (.)

The problem (.) arises in Riemannian geometry, mathematical physics or population
dynamics, and has been discussed and extended by many authors in many contexts; see,
for instance, [–] and the references therein.

For b ≡  on � and f satisfying (f), Keller and Osserman [, ] first supplied the
necessary and sufficient condition

∫ ∞

a

ds√
F(s)

< ∞, ∀a > , F(s) =
∫ s


f (ν) dν, (.)

for the existence of solutions to problem (.).
Loewner and Nirenberg [] showed that if f (u) = up with p = (N + )/(N – ), N > ,

then problem (.) has a unique positive solution u which satisfies

lim
d(x)→

u(x)
(
d(x)

)(N–)/ =
(
N(N – )/

)(N–)/.

When f satisfies (f), (f), and the condition that

(f) there exist p > , S >  such that f (s)/sp is increasing on [S,∞)

and b ∈ Cα(�) which is positive in � and satisfies

(b) there exist b >  and σ ∈ (, ) such that

lim
d(x)→

b(x)
(
d(x)

)σ = b,
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García-Melián [] showed (by using nonlinear transformations, a perturbation method,
and a comparison principle) that:

(i) if Cf > , then for any solution u of problem (.)

lim
d(x)→

u(x)
ψ(A(d(x))–σ )

= , (.)

where

A =
b

( – σ )(( – σ )(Cf – ) + )

and ψ satisfies

∫ ∞

ψ(t)

ds
f (s)

= t, ∀t > ; (.)

(ii) if Cf =  and h(t) := tf ′(ψ(t)) ≥  for sufficiently small t > , then (i) still holds.
Now we introduce a class of functions.
Let 	 denote the set of all positive non-decreasing functions k ∈ C(,ν) which satisfy

lim
t→+

d
dt

(
K(t)
k(t)

)
= Ck , where K(t) =

∫ t


k(s) ds. (.)

We note that for each k ∈ 	,

lim
t→+

K(t)
k(t)

=  and Ck ∈ [, ].

The set 	 was first introduced by Cîrstea and Rǎdulescu. Meanwhile, Cîrstea and
Rǎdulescu [–] introduced the Karamata regular variation theory to study the bound-
ary behavior and uniqueness of solutions for problem (.) and obtained a series of rich
and significant information about the boundary behavior of the blow-up solutions.

Inspired by the above works, in this paper, by constructing new comparison functions,
we consider the exact asymptotic behavior of the solution u of problem (.) near ∂� under
appropriate conditions on b(x).

Suppose b also satisfies

(b) there exist some k ∈ 	 and a positive constant b ∈R such that

lim
d(x)→

b(x)
k(d(x))

= b.

The key to our estimates in this paper is the solution to the problem

∫ ∞

φ(t)

ds
(f (s)) 


= t, t > . (.)

Our main results are summarized as follows.
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Theorem . Let f satisfy (f)-(f), b satisfy (b)-(b) and  ≤ Cf < 
 . Then, for any solution

u of problem (.),

lim
d(x)→

u(x)
φ(K 

 (d(x)))
= ξ, (.)

where φ is uniquely determined by (.) and

ξ =
((




) Ck

b
+

(



) Cf – 
b( – Cf )

) Cf –
–Cf

. (.)

In particular, when Cf = , u verifies

lim
d(x)→

u(x)
φ(K 

 (d(x)))
= .

Remark . For the existence of solutions for problem (.), see A. Mohammed and S. Mo-
hammed [, ].

The outline of this paper is as follows. In Sections  and , we give some preparation
that will be used in the next section. The proof of Theorem . will be given in Section .

2 Preparation
Our approach relies on Karamata regular variation theory established by Karamata in 
which is a basic tool in the theory of stochastic process (see [–] and the references
therein). In this section, we first give a brief account of the definition and properties of
regularly varying functions involved in our paper (see [–]).

Definition . A positive measurable function f defined on [a,∞), for some a > , is
called regularly varying at infinity with index ρ , written as f ∈ RVρ , if for each ξ >  and
some ρ ∈R,

lim
s→∞

f (ξ s)
f (s)

= ξρ . (.)

In particular, when ρ = , f is called slowly varying at infinity.

Clearly, if f ∈ RVρ , then L(s) := f (s)/sρ is slowly varying at infinity.

Definition . A positive measurable function f defined on [a,∞), for some a > , is
called rapidly varying at infinity if for each ρ > 

lim
s→∞

f (s)
sρ

= ∞. (.)

Some basic examples of slowly varying functions at infinity are
() every measurable function on [a,∞) which has a positive limit at infinity;
() (ln s)β and (ln(ln s))β , β ∈R;
() e(ln s)p ,  < p < ,
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and some basic examples of rapidly varying functions at infinity are
() es and ees ;
() ee(ln s)p , esp and eesp

, p > ;
() sβe(ln s)p and (ln s)βe(ln s)p , p > , β ∈ R;
() (ln s)βesp and sβesp , p > , β ∈R.
We also see that a positive measurable function g defined on (, a) for some a > , is

regularly varying at zero with index σ (written as g ∈ RVZσ ) if t → g(/t) belongs to RV–σ .
Similarly, g is called rapidly varying at zero if t → g(/t) is rapidly varying at infinity.

Proposition . (Uniform convergence theorem) If f ∈ RVρ , then (.) holds uniformly for
ξ ∈ [c, c] with  < c < c. Moreover, if ρ < , then uniform convergence holds on intervals
of the form (a,∞) with a > ; if ρ > , then uniform convergence holds on intervals (, a]
provided f is bounded on (, a] for all a > .

Proposition . (Representation theorem) A function L is slowly varying at infinity if and
only if it may be written in the form

L(s) = ϕ(s) exp

(∫ s

a

y(τ )
τ

dτ

)
, s ≥ a, (.)

for some a ≥ a, where the functions ϕ and y are measurable and for s → ∞, y(s) → , and
ϕ(s) → c, with c > .

We call

L̂(s) = c exp

(∫ s

a

y(τ )
τ

dτ

)
, s ≥ a, (.)

normalized slowly varying at infinity and

f (s) = csρ L̂(s), s ≥ a, (.)

normalized regularly varying at infinity with index ρ (and written as f ∈ NRVρ ).
Similarly, g is called normalized regularly varying at zero with index σ , written as g ∈

NRVZσ , if t → g(/t) belongs to NRV–σ .
A function f ∈ RVρ belongs to NRVρ if and only if

f ∈ C[a,∞) for some a >  and lim
s→∞

sf ′(s)
f (s)

= ρ. (.)

Proposition . If functions L, L are slowly varying at infinity, then
(i) Lσ for every σ ∈R, cL + cL (c ≥ , c ≥  with c + c > ), L ◦ L (if L(t) → +∞

as t → +∞), are also slowly varying at infinity.
(ii) For every θ >  and t → +∞, tθ L(t) → +∞, t–θ L(t) → .

(iii) For ρ ∈R and t → +∞, ln(L(t))
ln t →  and ln(tρL(t))

ln t → ρ .

Proposition .
(i) If f ∈ RVρ , f ∈ RVρ with limt→∞ f(t) = ∞, then f ◦ f ∈ RVρρ .

(ii) If f ∈ RVρ , then f α ∈ RVρα for every α ∈R.
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Proposition . (Asymptotic behavior) If a function L is slowly varying at infinity, then
for a ≥  and t → ∞,

(i)
∫ t

a sβL(s) ds ∼= (β + )–t+βL(t), for β > –;
(ii)

∫ ∞
t sβL(s) ds ∼= (–β – )–t+βL(t), for β < –.

Proposition . (Asymptotic behavior) If a function L is slowly varying at zero, then for
a >  and t → +,

(i)
∫ t

 sρL(s) ds ∼= (ρ + )–t+ρL(t), for ρ > –;
(ii)

∫ a
t sρL(s) ds ∼= (–ρ – )–t+ρL(t), for ρ < –.

Next, we recall here the precise definition of viscosity solutions for the problem (.).

Definition . A function u ∈ C(�) is a viscosity subsolution of the PDE �∞u = b(x)f (u)
in � if for every ϕ ∈ C(�), with the property that u – ϕ has a local maximum at some
x ∈ �, then

�∞ϕ(x) ≥ b(x)f
(
u(x)

)
.

Definition . A function u ∈ C(�) is a viscosity supersolution of the PDE �∞u =
b(x)f (u) in � if for every ϕ ∈ C(�), with the property that u – ϕ has a local minimum
at some x ∈ �, then

�∞ϕ(x) ≤ b(x)f
(
u(x)

)
.

Definition . A function u ∈ C(�) is a viscosity solution of the PDE �∞u = b(x)f (u) in
� if it is both a subsolution and a supersolution. Finally, by a solution of (.) we mean a
function u that is a solution of the PDE �∞u = b(x)f (u) such that u = ∞ on ∂�.

3 Some auxiliary results
In this section, we collect some useful results that will be used in the proof of the theorem.

Lemma . Let k ∈ 	. Then
(i) limt→+ K (t)

k(t) = , limt→+ tk(t)
K (t) = C–

k , i.e., K ∈ NRVZC–
k

;

(ii) limt→+ tk′(t)
k(t) = –Ck

Ck
, i.e., k ∈ NRVZ(–Ck )/Ck ; limt→+ K (t)k′(t)

k(t) =  – Ck .

Proof The proof is similar to the proof of Lemma . in [], so we omit it. �

Lemma . If f satisfies (f)-(f), then
(i) Cf ∈ [,∞);

(ii) there exists S >  such that f (s)/sq is increasing in [S,∞), where q ∈ (, Cf
Cf – ) for

Cf >  and q ∈ (,∞) for Cf = ;
(iii) if  ≤ Cf < 

 , f satisfies the Keller-Osserman condition (.);
(iv) (f) holds for Cf >  if and only if f ∈ NRVCf /(Cf –);
(v) if Cf = , f is rapidly varying at infinity.

Proof We only need to prove (iii). The proof of the rest can be found in [].
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When Cf = , according to (ii) and Definition ., we obtain for each q > 

lim
s→∞

f (s)
sq = ∞.

When  < Cf < 
 , by (ii) and Proposition ., we obtain for each  < q < Cf

Cf – ,

lim
s→∞

f (s)
sq = ∞.

Consequently, there exist S >  and cq >  such that

f (s)
sq > cq, ∀s ≥ S.

Then there exists S > S such that

F(s) ≥ cqsq+, ∀s ≥ S,

i.e., (iii) holds. �

Lemma . Suppose f satisfy (f)-(f) and  ≤ Cf < 
 . Let φ be the solution to the problem

∫ ∞

φ(t)

ds
(f (s)) 


= t, ∀t > .

Then
(i) –φ′(t) = (f (φ(t))) 

 , φ(t) > , t > , φ() := limt→+ φ(t) = +∞ and
φ′′(t) = 

 (f (φ(t)))– 
 f ′(φ(t)), t > ;

(ii) φ ∈ NRVZ
–

(Cf –)
–Cf

;

(iii) φ′ ∈ NRVZ
–

Cf
–Cf

;

(iv) limt→+
ln(φ(t))

– ln t = (Cf –)
–Cf

and limt→+
ln(f (φ(t)))

– ln t = Cf
–Cf

.

Proof By the definition of φ and a direct calculation, we show that (i) holds.
(ii) It follows from the proof of Lemma . and Proposition .(ii) that f – 

 ∈ RV
–

Cf
(Cf –)

.

Define L(t) := f – 
 (t)/t

–
Cf

(Cf –) . Then L is slowly varying, and – Cf
(Cf –) < – due to  ≤ Cf <


 . Therefore, by Proposition ., we have

lim
t→∞

tf – 
 (t)

∫ ∞
t f – 

 (s) ds
= lim

t→∞
tL(t)t

–
Cf

(Cf –)

∫ ∞
t L(s)s

–
Cf

(Cf –) ds
=

 – Cf

(Cf – )
. (.)

Hence,

lim
t→+

tφ′(t)
φ(t)

= – lim
t→+

t(f (φ(t))) 


φ(t)
= – lim

s→+∞

(f (s)) 

∫ ∞

s
dν

(f (ν))



s
= –

(Cf – )
 – Cf

,

i.e., φ ∈ NRVZ
–

(Cf –)
–Cf

.
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(iii) By Lemma ., (i) and (.), we know

lim
t→+

tφ′′(t)
φ′(t)

= –



lim
t→+

f ′(φ(t))
∫ ∞
φ(t)(f (s))– 

 ds

(f (φ(t))) 


= – lim
s→+∞

f ′(s)
∫ ∞

s (f (ν))– 
 dν

(f (s)) 


= –



lim
s→+∞

sf ′(s)
f (s)

∫ ∞
s (f (ν))– 

 dν

s(f (s))– 


= –
Cf

 – Cf
.

The last result (iv) follows from (ii)-(iii) and Proposition .(iii). �

4 Proof of the theorem
In this section, we prove Theorem ..

First, we need the following result.

Lemma . (The comparison principle) ([], Lemma .) Let b satisfy (b), and f satisfy
(f). Suppose u, v ∈ C(�̄) such that

�∞u ≥ b(x)f (u) in � and �∞v ≤ b(x)f (v) in �

in the viscosity sense. If u ≤ v on ∂� and  ≤ v on ∂�, then u ≤ v in �.

For any δ > , we define

�δ =
{

x ∈ � : d(x) < δ
}

.

Since � is smooth, there exists δ >  such that d ∈ C(�δ ) and |∇d(x)| = , ∀x ∈ �δ , and
consequently �∞d =  in �δ in the viscosity sense.

Proof of Theorem . Fix a small ε > . Let δ ∈ (, δ
 ), ρ ∈ (, δ), and, for simplicity, denote

d–(x) := d(x) – ρ, d+(x) := d(x) + ρ.

Define ūε = (ξ +ε)φ(K 
 (d–(x))) for any x ∈ �δ\�̄ρ =: �–

ρ and uε = (ξ –ε)φ(K 
 (d+(x)))

for any x ∈ �δ–ρ =: �+
ρ .

Let

η(t) = (ξ + ε)φ
(
K


 (t)

)
, t ∈ (ρ, δ).

Note that K and φ are increasing and decreasing in their respective definition domains.
Therefore, when δ is small enough, η is decreasing in (ρ, δ). Let ζ be the inverse of η. One
can easily check that

ζ ′(t) =


η′(ζ (t))
=

(



(ξ + ε)φ′(K


(
ζ (t)

))
K



(
ζ (t)

)
k
(
ζ (t)

))–

(.)
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and

ζ ′′(t) = –
(




(ξ + ε)φ′(K


(
ζ (t)

))
K



(
ζ (t)

)
k
(
ζ (t)

))–

×
(




(ξ + ε)φ′′(K


(
ζ (t)

))
K



(
ζ (t)

)
k(ζ (t)

)

+



(ξ + ε)φ′(K


(
ζ (t)

))
K– 


(
ζ (t)

)
k(ζ (t)

)

+



(ξ + ε)φ′(K


(
ζ (t)

))
K



(
ζ (t)

)
k′(ζ (t)

))
. (.)

Let (x,ψ) ∈ �–
ρ × C(�–

ρ) be a pair such that ūε ≥ ψ in a neighborhood N of x and
ūε(x) = ψ(x) Then ϕ = ζ (ψ) ∈ C(�–

ρ), and

d–(x) ≤ ϕ(x) in N , d–(x) = ϕ(x).

Since �∞d =  in �–
ρ , we have �∞ϕ(x) ≥ . A simple computation shows that

�∞ϕ = ζ ′′(ψ)
(
ζ ′(ψ)

)|Dψ | +
(
ζ ′(ψ)

)
�∞ψ .

It follows by �∞ϕ(x) ≥  and ζ ′ <  that

�∞ψ(x) ≤ –ζ ′′(ψ(x)
)(

ζ ′(ψ(x)
))–∣∣Dψ(x)

∣∣.

Moreover, since |Dd(x)| =  for x ∈ �–
ρ and d– – ϕ attains a local maximum at x, it follows

that

∣∣Dd–(x)
∣∣ =

∣∣ζ ′(ψ(x)
)
Dψ(x)

∣∣.

Hence

�∞ψ(x) ≤ –ζ ′′(ψ(x)
)(

ζ ′(ψ(x)
))–.

Combining with (.) and (.), we further obtain

�∞ψ(x) ≤
(




(ξ + ε)
)(

φ′(K


(
ϕ(x)

)))k(ϕ(x)
)

×
[




φ′′(K 
 (ϕ(x)))K 

 (ϕ(x))
φ′(K 

 (ϕ(x)))
+




+
K(ϕ(x))k′(ϕ(x))

k(ϕ(x))

]
.

Hence,

�∞ψ(x) – b(x)f
(
ūε(x)

)

≤
(




(ξ + ε)
)(

–φ′(K


(
d–(x)

)))k(d–(x)
)[

–



φ′′(K 
 (d–(x)))K 

 (d–(x))
φ′(K 

 (d–(x)))
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–



–
K(d–(x))k′(d–(x))

k(d–(x))
–

(



(ξ + ε)
)– b(x)

k(d–(x))
f (ūε(x))

(–φ′(K 
 (d–(x))))

]

=:
(




(ξ + ε)
)(

–φ′(K


(
d–(x)

)))k(d–(x)
)
I(x).

Notice that K 
 (d–(x)) →  as δ →  (and thereby x tends to the boundary of �). Then

it follows from Lemmas . and . that

I(x) → Ck +
Cf – 
( – Cf )

– b

(



)

(ξ + ε)
–Cf
Cf – as δ → .

By the choice of ξ, we have I(x) <  provided δ ∈ (, δ
 ) small enough. Thus

�∞ψ(x) ≤ b(x)f
(
ūε(x)

)
,

i.e., ūε is a supersolution of equation (.) in �–
ρ .

In a similar way, we can show that uε is a subsolution of equation (.) in �+
ρ .

Now let u be an arbitrary solution of problem (.). We assert that there exists a positive
constant M such that

u ≤ M(δ) + ūε , x ∈ �–
ρ , (.)

uε ≤ u + M(δ), x ∈ �+
ρ . (.)

In fact, we may choose a large M(δ) such that

u ≤ M(δ) + ūε on �δ :=
{

x ∈ � : d(x) = δ
}

,

where M(δ) := max{u(x) : d(x) ≥ δ}.
By (f), we see that ūε + M(δ) is also a supersolution of equation (.) in �–

ρ . Since u < ūε

on �ρ := {x ∈ � : d(x) = ρ}, (.) follows by Lemma ..
In a similar way, we can show (.).
Hence, x ∈ �–

ρ ∩ �+
ρ , by letting ρ → , we have

ξ – ε –
M(δ)

φ(K 
 (d(x)))

≤ u(x)
φ(K 

 (d(x)))

and

u(x)
φ(K 

 (d(x)))
≤ ξ + ε +

M(δ)
φ(K 

 (d(x)))
.

Moreover, by Lemma ., we obtain

ξ – ε ≤ lim inf
d(x)→

u(x)
φ(K 

 (d(x)))
and lim sup

d(x)→

u(x)
φ(K 

 (d(x)))
≤ ξ + ε.

Thus the proof is finished by letting ε → . �
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Appendix
The following result shows that φ defined by (.) is stable.

Lemma A. Let f and f be positive continuous on (,∞) and f ∈ RVρ+ (ρ > ). If

lim
t→∞

f(t)
f(t)

=  and
∫ ∞

φ(t)

ds
(f(s)) 


= t =

∫ ∞

φ(t)

ds
(f(s)) 


, ∀t > ,

then

lim
t→+

φ(t)
φ(t)

= .

Proof Since f ∈ RVρ+ (ρ > ), f



 ∈ RV ρ
 +. Hence, for any given small ε > , there exists

t >  such that

(
f
(
( + ε)s

)) 
 > ( + ε)

ρ
 +(f(s)

) 


and

(
f(s)

) 
 < ( + ε)

ρ

(
f(s)

) 
 , ∀s > φ(t),∀t ∈ (, t).

It follows that, for t ∈ (, t),

∫ ∞

φ(t)

ds
(f(s)) 


=

∫ ∞

φ(t)

ds
(f(s)) 



>
∫ ∞

φ(t)

ds
( + ε)

ρ
 (f(s)) 


>

∫ ∞

φ(t)

( + ε) ds
(f(( + ε)s)) 



=
∫ ∞

(+ε)φ(t)

ds
(f(s)) 


.

This implies that

φ(t) < ( + ε)φ(t), t ∈ (, t).

Similarly we can show that there exists t >  such that

φ(t) < ( + ε)φ(t), t ∈ (, t).

Therefore

lim
t→+

φ(t)
φ(t)

= .

The proof is finished. �
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