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Abstract
In this paper, we mainly study persistence properties for a generalized Camassa-Holm
equation with cubic nonlinearity, and we prove the persistence properties in
weighted spaces of the solution to the equation, provided that the initial potential
satisfies a certain sign condition. Our results extend the work of Brandolese (Int. Math.
Res. Not. 22:5161-5181, 2012) on persistence properties to the
Fokas-Olver-Rosenau-Qiao equation. In contrast to the Camassa-Holm equation with
quadratic nonlinearity, the effect of cubic nonlinearity of the
Fokas-Olver-Rosenau-Qiao equation on the persistence properties is rather delicate.
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1 Introduction
The present paper focuses on the Cauchy problem of the integrable modified Camassa-
Holm equation with cubic nonlinearity

{
mt + (u – u

x)mx + uxm + γ ux = , m = u – uxx, t > , x ∈R,
u(, x) = u(x), x ∈R,

(.)

where γ is a constant. Equation (.) was independently proposed by Fokas [], Fuchs-
steiner [], and Olver and Rosenau [] as a new generalization of an integrable system
by applying the general method of tri-Hamiltonian duality to the bi-Hamiltonian repre-
sentation of the modified Korteweg-de Vries equation. Later, it was obtained by Qiao [,
] from the two-dimensional Euler equations, where the variables u(t, x) and m(t, x) rep-
resent, respectively, the velocity of the fluid and its potential density. Ivanov and Lyons
[] obtained a class of soliton solutions of the integrable hierarchy, which has been put
forward in a series of works by Qiao [, ]. It was shown that Equation (.) admits the
Lax pair and the Cauchy problem (.) may be solved by the inverse scattering transform
method. The formation of singularities and the existence of peaked traveling-wave solu-
tions for Equation (.) was investigated in []. The well-posedness, blow-up mechanism,
and persistence properties are given in []. Using the method of approximate solutions
in conjunction with well-posedness estimate, Himonas and Mantzavinos [] proved that
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the solution map of the Cauchy problem for this modified Camassa-Holm equation is
not uniformly continuous in Sobolev spaces Hs with s > / and called this equation the
Fokas-Olver-Rosenau-Qiao equation. Recently, the authors in [] showed that the local
structure of the initial profile can affect the singularity formation and seek initial datum
with a sign-changing momentum density m that can generate finite-time blow-up. It was
also found that Equation (.) is related to the short-pulse equation derived by Schäfer and
Wayne [],

vxt =


(
v)

xx + γ v, (.)

which is a model for the propagation of ultra-short light pulses in silica optical fibers []
and is also an approximation of nonlinear wave packets in dispersive media in the limit of
few cycles on the ultra-short pulse scale [].

The original Camassa-Holm (CH) equation

mt + umx + uxm + γ ux = , m = u – uxx, (.)

can itself be derived from the Korteweg-de Vries equation by tri-Hamiltonian duality. The
Camassa-Holm equation arises in a variety of different contexts. In , it was originally
derived as a bi-Hamiltonian equation with infinitely many conservation laws by Fokas
and Fuchssteiner []. It has been widely studied since  when Camassa and Holm []
proposed it as a model for the unidirectional propagation of shallow water waves over a
flat bed. The Camassa-Holm equation also has a bi-Hamiltonian structure [, ] and is
completely integrable [, , ], and it possesses infinitely many conservation laws and is
solvable by its corresponding inverse scattering transform [, ]. The stability of smooth
solitons was considered in [], and the orbital stability of the peaked solitons was proved
in []. It is worth pointing out that solutions of this type are not mere abstractions: the
peakons replicate a feature that is characteristic for the waves of greatest height - waves of
largest amplitude that are exact solutions of the governing equations for irrotational wa-
ter waves (see [] and references therein). An explicit interaction of the peaked solitons
was given in []. It has been shown that this problem is locally well posed for initial data
u ∈ Hs with s > 

 [–]. Moreover, the Camassa-Holm equation not only has global
strong solutions, but also admits finite-time blow-up solutions [, –], and the blow-
up occurs in the form of breaking waves, namely, the solution remains bounded, but its
slope becomes unbounded in finite time. On the other hand, it also has global weak solu-
tions in H (see [–]). The advantage of the Camassa-Holm equation in comparison
with the KdV equation lies in the fact that the Camassa-Holm equation has peaked soli-
tons and models peculiar wave breaking phenomena [, ].

Clearly, the nonlinearity in the CH equation is quadratic. Two integrable Camassa-
Holm-type equations with cubic nonlinearity have been discovered, Equation (.) and
the Novikov equation []

mt + umx + uuxm = , m = u – uxx, (.)

which was recently discovered by Novikov in a symmetry classification of nonlocal PDEs
with quadratic or cubic nonlinearity []. The perturbative symmetry approach [] yields
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necessary conditions for a PDE to admit infinitely many symmetries. Using this approach,
Novikov was able to isolate Equation (.) and find its first few symmetries, and he subse-
quently found a scalar Lax pair for it, proving that the equation is integrable. By using the
prolongation algebra method Hone and Wang [] gave a matrix Lax pair and many con-
served densities and a bi-Hamiltonian structure of the Novikov equation and showed how
it was related by a reciprocal transformation to a negative flow in the Sawada-Kotera hier-
archy. Then in [], the authors calculated explicit formulas for multipeakon solutions of
the Novikov equation. Recently, the well-posedness and persistence properties of the so-
lution for (.) were established in [–]. In [, ], we discuss the Cauchy problem for
a generalized b-equation with higher-order nonlinearities and peakons in critical Besov
spaces and weighted Lp spaces, which includes the famous Camassa-Holm and Novikov
equations as particular cases.

The spacial decay rates for the strong solutions to the Camassa-Holm and Novikov equa-
tions were established, provided that the corresponding initial datum decays at infinity [,
, ]. This kind of property is the so-called persistence property. Motivated by the recent
work [] on the nonlinear Camassa-Holm equation in weighted Sobolev spaces, the other
aim of this paper is to establish the persistence properties for the modified Camassa-Holm
equation (.) in weighted Lp spaces. However, there are high nonlinearity and regularity
in (.), which makes the proof of several required nonlinear estimates very difficult.

In the present paper, we intend to find a large class of weight functions φ such that

sup
t∈[,T)

(∥∥u(t)φ
∥∥

p +
∥∥∂xu(t)φ

∥∥
p

)
< ∞,

where ‖·‖p denotes the usual Lp norm. This way we obtain a persistence result on solutions
u to Equation (.) in the weight Lp spaces Lp,φ := Lp(R,φp dx). As a consequence and an
application, we determine the spatial asymptotic behavior of certain solutions to Equation
(.). Our results generalize the work of [] on persistence and nonpersistence of solutions
to Equation (.) in Lp,φ . We will work with moderate weight functions that appear with
regularity in the theory of time-frequency analysis [, ] and have led to optimal results
for the Camassa-Holm equation in [], and we first give the definition for admissible weight
function. (The predefined terminologies like v-moderate, submultiplicative, and so on are
given in Section . For more details, we refer the reader to [, ].)

Definition . An admissible weight function for Equation (.) is a locally absolutely
continuous function φ : R → R such that, for some A >  and almost all x ∈ R, |φ′(x)| ≤
A|φ(x)|, and that is v-moderate for some submultiplicative weight function v satisfying
infR v >  and

∫
R

v(x)
e|x| dx < ∞. (.)

We can now state our main result on admissible weights.

Theorem . Let T > , s > /, and  ≤ p ≤ ∞. Let also u ∈ C([, T], Hs(R)) be a strong
solution of the Cauchy problem for Equation (.) such that u|t= = u satisfies

uφ ∈ Lp(R) and (∂xu)φ ∈ Lp(R),
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where φ is an admissible weight function for Equation (.). Then, for all t ∈ [, T], we have
the estimate

∥∥u(t)φ
∥∥

p +
∥∥(

∂xu(t)
)
φ
∥∥

p ≤ (‖uφ‖p +
∥∥(

∂xu
)
φ
∥∥

p

)
exp

{
C

(
M + |γ |)t

}
for some constant C >  depending only on v, φ (through the constants A, C, infR v, and∫
R

v(x)
e|x| dx < ∞), and

M ≡ sup
t∈[,T]

(∥∥u(t)
∥∥∞ +

∥∥∂xu(t)
∥∥∞ +

∥∥∂
x u(t)

∥∥∞
)

< ∞.

The basic example of the application of Theorem . is obtained by taking the standard
weights φ = φa,b,c,d(x) = ea|x|b ( + |x|)c log(e + |x|)d with the following conditions:

a ≥ , c, d ∈R,  ≤ b ≤ , ab < .

The restriction ab <  guarantees the validity of condition (.) for a multiplicative func-
tion v(x) ≥ . Thus, we have the following two special persistence properties.

Remark . () Take φ = φ,,c, with c > , and choose p = ∞. In this case, Theorem .
states that the condition

∣∣u(x)
∣∣ +

∣∣∂xu(x)
∣∣ ≤ C

(
 + |x|)–c

implies the uniform algebraic decay in [, T]:

∣∣u(x, t)
∣∣ +

∣∣∂xu(x, t)
∣∣ ≤ C

(
 + |x|)–c.

Thus, we obtain the algebraic decay rates of strong solutions to Equation (.). By the way,
we already know that this result holds for the CH equation [].

() Choose φ = φa,,, if x ≥  and φ(x) =  if x ≤  with  ≤ a < . It is easy to see that
such a weight satisfies the admissibility conditions of Definition .. Let further p = ∞ in
Theorem ., then we deduce that Equation (.) preserve the pointwise decay O(e–ax) as
x → +∞ for any t > . Similarly, we have persistence of the decay O(e–ax) as x → –∞.
A corresponding result on persistence of strong solutions of the CH and Novikov equa-
tions and of Equation (.) can be found in [, , ], respectively.

Clearly, the limit case φ = φ,,c,d is not covered by Theorem .. In the following theorem,
however, we may choose the weight φ = φ,,c,d with c < , d ∈R, and 

|c| < p ≤ ∞, or more
generally when ( + | · |)c log(e + | · |)d ∈ Lp(R). See Theorem ., which covers the case of
such fast growing weights. In other words, we want to establish a variant of Theorem .
that can be applied to some v-moderate weights φ for which condition (.) does not hold.
Instead of assuming (.), we now put the weaker condition

ve–|·| ∈ Lp(R), (.)

where  ≤ p ≤ ∞.
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Theorem . Let  ≤ p ≤ ∞, and let φ be a v-moderate weight function as in Definition .
satisfying condition (.) instead of (.). Let also u|t= = u satisfy

uφ ∈ Lp(R), uφ

 ∈ L(R), γφ ∈ L(R)

and

(∂xu)φ ∈ Lp(R), (∂xu)φ

 ∈ L(R).

Let also u ∈ C([, T], Hs(R)) with s > / be the strong solution of the Cauchy problem for
Equation (.) emanating from u. Then,

sup
t∈[,T]

(∥∥u(t)φ
∥∥

Lp +
∥∥(

∂xu(t)
)
φ
∥∥

Lp
)

and

sup
t∈[,T]

(∥∥u(t)φ


∥∥

L +
∥∥(

∂xu(t)
)
φ



∥∥

L
)

are finite.

Remark . Choosing φ(x) = φ,,,(x) = e|x| and p = ∞ in Theorem ., it follows that if
|u(x)| and |∂xu(x)| are both bounded by ce–|x|, then the strong solution satisfies

∣∣u(x, t)
∣∣ +

∣∣∂xu(x, t)
∣∣ ≤ Ce–|x| (.)

uniformly in [, T]. Thus, Theorems . and . generalize the main result of [] on per-
sistence properties of strong solutions to Equation (.).

2 Analysis of the Equation (1.1) in weighted spaces
In this section, we shall discuss the persistence properties for a generalized Camassa-
Holm equation (.) in weighted Lp spaces. For the convenience of the readers, we present
some standard definitions. In general, a weight function is simply a nonnegative function.
A weight function v : Rn →R is called submultiplicative if

v(x + y) ≤ v(x)v(y) for all x, y ∈ R
n.

Given a submultiplicative function v, a positive function φ is v-moderate if and only if

∃C > : φ(x + y) ≤ Cv(x)φ(y) for all x, y ∈R
n.

If φ is v-moderate for some submultiplicative function v, then we say that φ is moderate.
This is the usual terminology in time-frequency analysis papers []. Let us recall the most
standard examples of such weights. Let

φ(x) = φa,b,c,d(x) = ea|x|b( + |x|)c
log

(
e + |x|)d. (.)

We have (see []) the following conditions:
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(i) For a, c, d ≥  and  ≤ b ≤ , such a weight is submultiplicative.
(ii) If a, c, d ∈R and  ≤ b ≤ , then φ is moderate. More precisely, φa,b,c,d is

φα,β ,γ ,δ-moderate for |a| ≤ α, |b| ≤ β , |c| ≤ γ , and |d| ≤ δ.
The elementary properties of submultiplicative and moderate weights can be found

in []. Now, we prove Theorem ..

Proof of Theorem . In fact, we can rewrite the Cauchy problem (.) as follows:

{
ut + (u – 

 u
x)ux = –A(u) – B(u),

u(x, ) = u(x),
(.)

where A(u) = 
 ( – ∂x)–u

x = 
 G ∗ (u

x), B(u) = ∂x( – ∂
x )–( 

 u + uu
x + γ u) = ∂xG ∗ ( 

 u +
uu

x + γ u) with kernel G(x) = 
 e–|x|.

On the other hand, from the assumption u ∈ C([, T], Hs), s > /, we get

M ≡ sup
t∈[,T]

(∥∥u(t)
∥∥∞ +

∥∥∂xu(t)
∥∥∞ +

∥∥∂xxu(t)
∥∥∞

)
< ∞.

For any N ∈ Z
+, let us consider the N-truncations of φ(x): f (x) = fN (x) = max{φ, N}. Then

f : R →R is a locally absolutely continuous function such that

‖f ‖∞ ≤ N ,
∣∣f ′(x)

∣∣ ≤ A
∣∣f (x)

∣∣ a.e. on R.

In addition, if C = max{C,α–}, where α = infx∈R v(x) > , then

f (x + y) ≤ Cv(x)f (y), ∀x, y ∈R.

Moreover, as shown in [], the N-truncations f of a v-moderate weight φ are uniformly
v-moderate with respect to N .

We start by considering the case  ≤ p < ∞. Multiplying Equation (.) by f |uf |p–(uf )
and integrate to obtain

∫
R

|uf |p–(uf )(∂tuf ) dx +
∫
R

|uf |p–(uf )
(

u –



u
x

)
uxf dx

+
∫
R

|uf |p–(uf )f · (A(u) + B(u)
)

dx = . (.)

Note that the estimates
∫
R

|uf |p–(uf )(∂tuf ) dx =

p

d
dt

‖uf ‖p
Lp = ‖uf ‖p–

Lp
d
dt

‖uf ‖Lp ,
∣∣∣∣
∫
R

(uf )p(u∂xu) dx
∣∣∣∣ ≤ ‖u∂xu‖L∞‖uf ‖p

Lp ≤ M‖uf ‖p
Lp ,

and
∣∣∣∣
∫
R

(uf )p–(∂xu)f dx
∣∣∣∣ ≤ ‖uf ‖p–

Lp
∥∥(∂xu)f

∥∥
Lp ≤ M‖uf ‖p–

Lp
∥∥(∂xu)f

∥∥
Lp
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are true. Moreover, we get

∣∣∣∣
∫
R

|uf |p–(uf )
[
f · (A(u) + B(u)

)]
dx

∣∣∣∣
≤ ‖uf ‖p–

Lp
∥∥f · (A(u) + B(u)

)∥∥
Lp

≤ c‖uf ‖p–
Lp

{
‖Gv‖L

∥∥fu
x
∥∥

Lp +
∥∥(∂xG)v

∥∥
L

∥∥∥∥f
(




u + uu
x + γ u

)∥∥∥∥
Lp

}

≤ C‖uf ‖p–
Lp

[(
M + |γ |)‖uf ‖Lp + M‖f ∂xu‖Lp

]
.

In the first inequality, we used Hölder’s inequality, in the second inequality, we applied
Propositions . and . in [], and in the last one, we used condition (.). Here, C depends
only on v and φ. From (.) we can obtain

d
dt

‖uf ‖Lp ≤ C
(
M + |γ |)‖uf ‖Lp + CM∥∥(∂xu)f

∥∥
Lp . (.)

Next, we will give estimates on uxf . Differentiating (.) with respect to the x-variable
and then multiplying by f produce the equation

∂t
[
(∂xu)f

]
+ uf ∂

x u + 
[
(∂xu)f

]
(u∂xu) – (∂xu)f ∂

x u + f
[
∂x

(
A(u) + B(u)

)]
= .

Multiply this equation by |f ∂xu|p–(f ∂xu) with p ∈ Z
+, integrate the result in the x-variable,

and note that∫
R

|f ∂xu|p–(f ∂xu)∂t
[
(∂xu)f

]
dx = ‖f ∂xu‖p–

Lp
d
dt

‖f ∂xu‖Lp ,
∫
R

|f ∂xu|p–(f ∂xu)(∂xu)f ∂
x u dx

≤ ‖f ∂xu‖p–
Lp

∥∥(∂xu)f ∂
x u

∥∥
Lp ≤ M‖f ∂xu‖p–

Lp
∥∥(∂xu)f

∥∥
Lp ,

and ∣∣∣∣
∫
R

|f ∂xu|p–(f ∂xu)
[
f ∂x

(
A(u) + B(u)

)]
dx

∣∣∣∣
≤ ‖f ∂xu‖p–

Lp
∥∥f ∂x

(
A(u) + B(u)

)∥∥
Lp

≤ C‖f ∂xu‖p–
Lp

[(
M + |γ |)‖uf ‖Lp + M‖f ∂xu‖Lp

]
.

In the third inequality, we applied the pointwise bound |∂xG(x)| ≤ 
 e–|x| and the condition

∣∣∣∣
∫
R

|f ∂xu|p–(f ∂xu)uf ∂
x u dx

∣∣∣∣
=

∣∣∣∣
∫
R

|f ∂xu|p–(f ∂xu)u[∂x(f ∂xu) – (∂xu)(∂xf )
]

dx
∣∣∣∣

=
∣∣∣∣
∫
R

u∂x

( |f ∂xu|p
p

)
–

∫
R

|f ∂xu|p–(f ∂xu)u(∂xu)(∂xf ) dx
∣∣∣∣

≤ /pM‖f ∂xu‖p
Lp + AM‖f ∂xu‖p

Lp .
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In the last inequality, we used |∂xf (x)| ≤ Af (x) for a.e. x. Thus, we get

d
dt

‖f ∂xu‖Lp ≤ C
(
M + |γ |)‖uf ‖Lp + CM∥∥(∂xu)f

∥∥
Lp . (.)

Now, combining inequalities (.) and (.) and then integrating yield

∥∥u(t)f
∥∥

Lp +
∥∥(∂xu)(t)f

∥∥
Lp

≤ (‖uf ‖Lp +
∥∥(

∂xu
)
f
∥∥

Lp
)

exp
{

C
(
M + |γ |)t

}
for all t ∈ [, T].

Since f (x) = fN (x) ↑ φ(x) as N → ∞ for a.e. x ∈ R, recalling that uφ ∈ Lp(R) and ∂xuφ ∈
Lp(R), we get

∥∥u(t)φ
∥∥

Lp +
∥∥(∂xu)(t)φ

∥∥
Lp

≤ (‖uφ‖Lp +
∥∥(

∂xu
)
φ
∥∥

Lp
)

exp
{

C
(
M + |γ |)t

}
for all t ∈ [, T].

Finally, we treat the case p = ∞. We have u, ∂xu, ∂
x u ∈ L ∩ L∞ and f (x) = fN (x) ∈ L∞.

Hence, we have

∥∥u(t)f
∥∥

Lq +
∥∥(∂xu)(t)f

∥∥
Lq

≤ (‖uf ‖Lq +
∥∥(

∂xu
)
f
∥∥

Lq
)

exp
{

C
(
M + |γ |)t

}
, q ∈ [,∞). (.)

The last factor in the right-hand side is independent of q. Since ‖f ‖Lp → ‖f ‖L∞ as p → ∞
for any f ∈ L∞ ∩ L, this implies that

∥∥u(t)f
∥∥

L∞ +
∥∥(∂xu)(t)f

∥∥
L∞ ≤ (‖uf ‖L∞ +

∥∥(
∂xu

)
f
∥∥

L∞
)

exp
{

C
(
M + |γ |)t

}
.

The last factor in the right-hand side is independent of N . Now taking N → ∞ implies
that estimate (.) remains valid for p = ∞. �

Proof of Theorem . Arguing as in the proof of Theorem ., we can easily get

d
dt

‖uf ‖Lp ≤ M‖uf ‖Lp +
∥∥f

(
A(u) + B(u)

)∥∥
Lp for p < ∞ (.)

and

d
dt

‖f ∂xu‖Lp ≤ CM∥∥(∂xu)f
∥∥

Lp +
∥∥f ∂x

(
A(u) + B(u)

)∥∥
Lp for p < ∞, (.)

where A(u) = 
 G ∗ (u

x), B(u) = ∂xG ∗ ( 
 u + uu

x + |γ |u), and f (x) = fN (x) = min{φ(x), N}.
Next, we estimate ‖f (A(u) + B(u))‖Lp and ‖f ∂x(A(u) + B(u))‖Lp . Note that φ


 is a

v 
 -moderate weight such that (φ 

 )′(x) ≤ A
 φ


 (x). Moreover, infR v 

 > . By condition
(.), v 

 e–|x|/ ∈ Lp(R); hence, Hölder’s inequality implies that v 
 e–|x| ∈ L(R). Then The-

orem . applies with p =  to the weight φ

 , yielding

∥∥u(t)φ


∥∥

L +
∥∥(∂xu)(t)φ



∥∥

L ≤ (∥∥uφ


∥∥

L +
∥∥(

∂xu
)
φ



∥∥

L
)

exp
{

C
(
M + |γ |)t

}
.
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Therefore,

∥∥f
(
A(u) + B(u)

)∥∥
Lp

≤ C
(

‖Gv‖Lp
∥∥φu

x
∥∥

L +
∥∥(∂xG)v

∥∥
Lp

∥∥∥∥φ

(



u + uu
x + γ u

)∥∥∥∥
L

)

≤ C
(∥∥φ


 ux

∥∥
L +

∥∥φ

 u

∥∥
L +

∥∥φu(∂xu)∥∥
L + ‖γφu‖L

)
≤ C

(∥∥φ

 ux

∥∥
L +

∥∥φ

 u

∥∥
L +

∥∥φ

 u

∥∥
L

∥∥φ

 (∂xu)∥∥

L



+ ‖γφ‖/
L

∥∥φ

 u

∥∥
L

)
≤ C

(∥∥φ

 ux

∥∥
L +

∥∥φ

 u

∥∥
L +

∥∥φ

 u

∥∥
L

∥∥φ

 (∂xu)

∥∥
L +

∥∥φ

 u

∥∥
L

)
≤ C exp

{
C

(
M + |γ |)t

}
,

where the constants C depending only on φ, |γ |, and the initial data.
Similarly, recalling that ∂xG ≤ 

 e–|x| and ∂
x G = G – δ, we have

∥∥f
(
∂x

[
A(u) + B(u)

])∥∥
Lp

≤ c
∥∥f

(
∂xG ∗ (

u
x
))∥∥

Lp + c
∥∥∥∥f

(



u + uu
x + γ u

)∥∥∥∥
Lp

+ c
∥∥∥∥fG ∗

(



u + uu
x + γ u

)∥∥∥∥
Lp

≤ C exp
{

C
(
M + |γ |)t

}
+ C

(
M + |γ |)(‖uf ‖Lp +

∥∥(∂xu)f
∥∥

Lp
)
.

Plugging the last two estimates into (.) and (.), and summing, we obtain

d
dt

(∥∥u(t)f
∥∥

Lp +
∥∥(∂xu)(t)f

∥∥
Lp

)
≤ K

(
M + |γ |)(‖uf ‖Lp +

∥∥(
∂xu

)
f
∥∥

Lp
)

+ K exp
{

C
(
M + |γ |)t

}
.

Integrating and finally letting N → ∞ yield the conclusion in the case  ≤ p < ∞. The
constants throughout the proof are independent of p. Therefore, for p = ∞, we can rely on
the result established for finite exponents q and then let q → ∞. The remaining argument
is fully similar to that of Theorem .. �
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