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Abstract
Using a well-known fixed point theorem on cones, we study the number of positive
solutions for a second-order differential equation with integral boundary conditions
and deviating arguments. We discuss our problems under two cases when the
deviating arguments are delayed and advanced. Our results extend and improve
those of Boucherif (Nonlinear Anal. 70:364-371, 2009) and Kong (Nonlinear Anal.
72:2628-2638, 2010) by generalizing the nonlinearity f (t,u(t)) to f (t,u(α(t))) with
general α(t) �≡ t. The dependence of solutions on the parameter λ is also studied.

Keywords: differential equations with advanced or delayed arguments; integral
boundary conditions; number of positive solutions; parameter dependence of
positive solutions

1 Introduction
Boundary value problems with integral boundary conditions arise naturally in thermal
conduction problems [], semiconductor problems [], hydrodynamic problems [], ther-
mostat problems [] and so on. It is interesting to point out that such problems include
two, three, multi-point and nonlocal boundary value problems as special cases and have
been extensively studied in the last ten years; see for example [, –]. Recently, Boucherif
[] applied the fixed point theorem in cones to study the existence of positive solutions for
the problem given by

⎧
⎪⎨

⎪⎩

x′′(t) = f (t, x(t)),  < t < ,
x() – cx′() =

∫ 
 g(s)x(s) ds,

x() – dx′() =
∫ 

 g(s)x(s) ds,

where f : [, ]×R → R is continuous, g, g : [, ] → [, +∞) are continuous and positive,
c and d are nonnegative real parameters. The author established some excellent results for
the existence of positive solutions to the above problem by using the fixed point theorem
in cones.

We notice that a type of boundary value problems with deviating arguments have re-
ceived much attention. For example, in [], Jankowski considered the following three-
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point boundary value problem:

{
x′′(t) = f (t, x(t), x(α(t))), t ∈ [, T],
x() = , x(T) = rx(γ ),  < γ < T .

The author obtained some solvability results by using monotone iterative technique.
In [], Yang et al. studied the existence and multiplicity of positive solutions to a three-

point boundary value problem with an advanced argument

{
x′′(t) + a(t)f (x(α(t))) = , t ∈ (, ),
x() = , bx(η) = x(),

where  < η < , b > , and  – bη > . The main tool is the fixed point index theory. For
some other excellent results and applications of the case that ordinary differential equa-
tion with deviating arguments to a variety of problems from Jankowski [–], Jiang and
Wei [], Wang [], Wang et al. [] and Hu et al. []. However, few papers have been
reported on the same problems with a parameter.

At the same time, the dependence of positive solution xλ(t) on the parameter λ has re-
ceived much attention; see [, , –] and the references cited therein. In particular,
we would like to mention some excellent results of Kong [] and Dai et al. []. In [], Kong
considered the existence and uniqueness of positive solutions for second-order singular
boundary value problem

{
u′′(t) + λf (u(t)) = , t ∈ (, ),
u() =

∫ 
 u(s) dA(s), u() =

∫ 
 u(s) dB(s).

The author examined the uniqueness of the solution and its dependence on the parameter
λ under condition

(H) f : [,∞) → (,∞) is nondecreasing, and there exists ν ∈ (, ) such that

f (kx) ≥ kν f (x), for k ∈ (, ) and x ∈ [, +∞).

In [], Dai et al. investigated the existence of one-sign solutions for the following peri-
odic p-Laplacian problem:

{
–(ϕp(u′))′ + q(t)ϕp(u) = λω(t)f (u),  < t < T ,
u() = u(T), u′() = u′(T).

The authors also examined the uniqueness of the solution and its dependence on the pa-
rameter λ under condition

(H∗) f (s)
ϕp(s) is strictly decreasing in (,∞).

But to the best of our knowledge, there are no results for the dependence of positive
solution xλ(t) on the parameter λ of second-order boundary value problems with deviating
arguments without a condition similar to (H) or (H∗). The objective of the present paper
is to fill this gap.
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In this paper, we consider the following second-order boundary value problem with in-
tegral boundary conditions and deviating arguments:

⎧
⎪⎨

⎪⎩

(g(t)x′(t))′ + λω(t)f (t, x(α(t))) = ,  < t < ,
ax() – b limt→+ g(t)x′(t) =

∫ 
 h(s)x(s) ds,

ax() + b limt→– g(t)x′(t) =
∫ 

 h(s)x(s) ds,
(.)

where λ >  is a parameter, a, b > , and ω may be singular at t =  and/or t = .
Throughout this paper we assume that α(t) �≡ t on J = [, ]. In addition, g , ω, f , α, and

h satisfy

(H) g ∈ C(J , (, +∞)), α ∈ C(J , J);
(H) ω ∈ C((, ), [, +∞)) with

 <
∫ 


ω(s) ds < ∞

and ω does not vanish on any subinterval of (, );
(H) f ∈ C([, ] × [, +∞), [, +∞)) with f (t, x) >  for all t and x > ;
(H) h ∈ C[, ] is nonnegative with ν ∈ [, a), where

ν =
∫ 


h(t) dt. (.)

Some special cases of (.) have been investigated. For example, Boucherif [] considered
problem (.) under the case that λ = , g(t) ≡ , ω(t) ≡ , and α(t) ≡ t on J . By using
Krasnoselskii’s fixed point theorem in a cone, the author proved the existence results of
positive solution for problem (.).

Kong [] considered problem (.) under the case that g(t) ≡ , ω(t) ≡ , and α(t) ≡ t
on J . By using the mixed monotone operator theory, the author obtained the existence
and uniqueness of positive solutions for problem (.).

In this paper, we shall show that the number of positive solutions of problem (.) can
be determined by the asymptotic behaviors of the quotient of f (t,x)

x at zero and infinity.
Specifically, let

f  = lim sup
x→+

max
t∈J

f (t, x)
x

, f = lim inf
x→+

min
t∈J

f (t, x)
x

,

f ∞ = lim sup
x→∞

max
t∈J

f (t, x)
x

, f∞ = lim inf
x→∞ min

t∈J

f (t, x)
x

.

We also define as in []

i = number of zeros in the set
{

f , f ∞}
,

i∞ = number of infinities in the set {f, f∞}.

It is clear that i, i∞ = ,  or . Then we shall show that problem (.) has i or i∞ positive
solution(s) for sufficiently large or small λ, respectively.
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Moreover, being directly inspired by [] and [], we study the dependence of positive
solution xλ(t) on the parameter λ for problem (.), i.e.,

lim
λ→+∞‖xλ‖ = +∞ or lim

λ→+∞‖xλ‖ = ,

and the condition is weaker than that of Kong [], Graef et al. [], Dai et al. [], Liu and
Li [], He and Su [] and Li and Liu []. To our knowledge, it is the first paper when
the dependence of positive solution xλ(t) on the parameter λ has been investigated for
second-order boundary value problems with deviating arguments α, which can be both
of advanced and of delayed type.

The paper is organized in the following fashion. In Section , we provide some neces-
sary background. In particular, we state some properties of the Green’s function associated
with problem (.). In Section , we use a well-known fixed point theorem to study the exis-
tence, multiplicity and nonexistence of positive solutions for problem (.) with advanced
argument α. In Section  we discuss the dependence of solution xλ(t) on the parameter
λ for problem (.) with advanced argument α and we formulate sufficient conditions un-
der which delayed problem (.) has positive solutions in Section . Finally, an example is
given to illustrate the main results in Section .

2 Preliminaries
Let E = C[, ]. It is well known that E is a real Banach space with the norm ‖ · ‖ defined
by ‖x‖ = maxt∈J |x(t)|.

In our main results, we will make use of the following definitions and lemmas.

Definition . (see []) Let E be a real Banach space over R. A nonempty closed set
P ⊂ E is said to be a cone provided that

(i) cu + dv ∈ P for all u, v ∈ P and all c ≥ , d ≥  and
(ii) u, –u ∈ P implies u = .

Every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if y – x ∈ P.

Definition . A function x ∈ E ∩C(, ) is called a solution of problem (.) if it satisfies
(.). If x(t) ≥  and x(t) �≡  on J , then x is called a positive solution of problem (.).

Lemma . Assume that (H) and (H) hold. Then for any y ∈ E, boundary value problem

⎧
⎪⎨

⎪⎩

–(g(t)x′(t))′ = y(t),  < t < ,
ax() – b limt→+ g(t)x′(t) =

∫ 
 h(s)x(s) ds,

ax() + b limt→– g(t)x′(t) =
∫ 

 h(s)x(s) ds,
(.)

has a unique solution x given by

x(t) =
∫ 


H(t, s)y(s) ds, (.)

where

H(t, s) = G(t, s) +


a – ν

∫ 


G(τ , s)h(τ ) dτ , (.)
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G(t, s) =




{
(b + a

∫ s


dr
g(r) )(b + a

∫ 
t

dr
g(r) ), if  ≤ s ≤ t ≤ ,

(b + a
∫ t


dr

g(r) )(b + a
∫ 

s
dr

g(r) ), if  ≤ t ≤ s ≤ ,
(.)

where 
 = ab + a ∫ 



g(r) dr, ν =

∫ 
 h(s) ds.

Proof The proof is similar to that of Lemma . in []. �

Lemma . Let G and H be given as in Lemma .. Then we have the following results:

G(t, s) ≤ G(s, s), H(t, s) ≤ H(s, s) ≤ a
a – ν

G(s, s), ∀t, s ∈ J , (.)

G(t, s) ≥ δG(s, s), H(t, s) ≥ δH(s, s) ≥ δa
a – ν

G(s, s), ∀t, s ∈ J , (.)

where

δ =
b

b + a
∫ 




g(r) dr
.

Proof It follows from the definition of G(t, s) and H(t, s) that (.) holds. Now, we show
that (.) also holds.

Note that

G(t, s)
G(s, s)

=
b + a

∫ 
t


g(r) dr

b + a
∫ 

s


g(r) dr
≥ b

b + a
∫ 




g(r) dr
for s ≤ t,

G(t, s)
G(s, s)

=
b + a

∫ t



g(r) dr

b + a
∫ s




g(r) dr
≥ b

b + a
∫ 




g(r) dr
for t ≤ s,

for t, s ∈ J .
Similarly, we can prove that H(t, s) ≥ δH(s, s) for t, s ∈ J . Hence, it follows from G(t, s) ≥

δG(s, s) that

H(t, s) ≥ δH(s, s) ≥ δa
a – ν

G(s, s), ∀t, s ∈ J .

This gives the proof of Lemma .. �

Remark . Noticing that a, b > , it follows from (.) and (.) that





b ≤ G(t, s) ≤ G(s, s) ≤ 



D; (.)





abγ ≤ H(t, s) ≤ H(s, s) ≤ 



aγ D, for t, s ∈ J , (.)

where

D =
(

b + a
∫ 



dr
g(r)

)

, γ =


a – ν
. (.)
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Being directly inspired by [], we define a cone K in E by

K =
{

x ∈ E : x ≥ , min
t∈J

x(t) ≥ δ‖x‖
}

. (.)

Also, define, for a positive number r, �r by

�r =
{

x ∈ E : ‖x‖ < r
}

.

Note that ∂�r = {x ∈ E : ‖x‖ = r}.
Define T : K → K by

(Tx)(t) = λ

∫ 


H(t, s)ω(s)f

(
s, x

(
α(s)

))
ds. (.)

From (.), we know that a function x ∈ K is a solution of problem (.) if and only if x
is a fixed point of operator T , and we obtain Lemma ..

Lemma . Assume that (H)-(H) hold. If x is a fixed point of operator T , then x ∈ E ∩
C(, ), and x is a solution of problem (.).

Lemma . Suppose that (H)-(H) hold. Then T(K) ⊂ K and T : K → K is completely
continuous.

Proof For all x ∈ K , from (.) we have Tx ≥  and

(Tx)(t) = λ

∫ 


H(t, s)ω(s)f

(
s, x

(
α(s)

))
ds

≤ λ

∫ 


H(s, s)ω(s)f

(
s, x

(
α(s)

))
ds, t ∈ J . (.)

It follows from (.), (.), and (.) that

min
t∈J

(Tx)(t) = min
t∈J

λ

∫ 


H(t, s)ω(s)f

(
s, x

(
α(s)

))
ds

≥ δλ

∫ 


H(s, s)ω(s)f

(
s, x

(
α(s)

))
ds

≥ δ‖Tx‖.

Thus, T(K) ⊂ K .
Finally, similar to the proof of Theorem . in [], one can prove that T : K → K is

completely continuous. This gives the proof of Lemma .. �

In the rest of this section, we state a well-known fixed point theorem which we need
later.

Lemma . (see []) Let P be a cone in a real Banach space E. Assume �, � are bounded
open sets in E with  ∈ �, �̄ ⊂ �. If

A : P ∩ (�̄\�) → P
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is completely continuous such that either
(i) ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂� and ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂�, or

(ii) ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂� and ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂�,
then A has at least one fixed point in P ∩ (�̄\�).

The fixed point theorem in a cone has often been used to study the existence and mul-
tiplicity of positive solutions of boundary value problems over the last several years. As
recent example, we mention the paper of Baleanu et al. [].

3 Existence of positive solutions for problem (1.1) under α(t) ≥ t on J
In this section, we show that problem (.) has i or i∞ positive solution(s) for sufficiently
large or small λ under α(t) ≥ t on J .

For convenience we introduce the following notation:

β =
∫ 


ω(s) ds.

Theorem . Assume (H)-(H) hold and α(t) ≥ t on J .
(i) If i =  or , then there exists λ >  such that problem (.) has i positive

solution(s) for λ > λ.
(ii) If i∞ =  or , then there exists λ >  such that problem (.) has i∞ positive

solution(s) for  < λ < λ.
(iii) If i =  or i∞ = , then problem (.) has no positive solution for sufficiently large or

small λ, respectively.

Proof Part (i). Noticing that f (t, x) >  for all t and x > , we can define

mr = min
t∈J ,δr≤x≤r

{
f (t, x)

}
> ,

where r > .
Since  ≤ t ≤ α(t) ≤  on J , for a function x ∈ K with ‖x‖ = r, it follows from δr ≤ x(t) ≤ r

on J that

δr ≤ x
(
α(t)

) ≤ r for t ∈ J .

Let λ = 
r
mrβabγ

. Then, for x ∈ K ∩ ∂�r and λ > λ, we have

(Tx)(t) = λ

∫ 


H(t, s)ω(s)f

(
s, x

(
α(s)

))
ds

≥ abγ



λ

∫ 


ω(s)f

(
s, x

(
α(s)

))
ds

≥ abγ



λmr

∫ 


ω(s) ds

≥ abγ



λmrβ

>
abγ



λmrβ

= r = ‖x‖,



Zhang and Feng Boundary Value Problems  (2015) 2015:222 Page 8 of 21

which implies that

‖Tx‖ > ‖x‖, ∀x ∈ K ∩ ∂�r ,λ > λ. (.)

If f  = , we can choose  < r < r such that

f (t, x) ≤ 


aλβγ D
x, ∀t ∈ J ,  ≤ x ≤ r.

Since  ≤ t ≤ α(t) ≤  on J , for a function x ∈ K with ‖x‖ = r, it follows from  ≤ x(t) ≤ r

on J that

 ≤ x
(
α(t)

) ≤ r for t ∈ J .

Consequently, for any t ∈ J and x ∈ K ∩ ∂�r , (.) and (.) imply

(Tx)(t) = λ

∫ 


H(t, s)ω(s)f

(
s, x

(
α(s)

))
ds

≤ aγ D



λ

∫ 


ω(s)f

(
s, x

(
α(s)

))
ds

≤ aγ D



λ

∫ 


ω(s)




aλβγ D
x
(
α(s)

)
ds

≤
∫ 


ω(s)


β

‖x‖ds

≤ 
β

‖x‖
∫ 


ω(s) ds

= ‖x‖,

which implies

‖Tx‖ ≤ ‖x‖, ∀x ∈ K ∩ ∂�r . (.)

Thus by (i) of Lemma ., it follows from (.) and (.) that T has a fixed point x in
K ∩ (�̄r\�r ) with r ≤ ‖x‖ ≤ r. Lemma . implies that problem (.) has at least one
positive solution x with r ≤ ‖x‖ ≤ r.

If f ∞ = , we can choose  < ε < 

aγ Dλβε

and l >  such that

f (t, x) ≤ εx for t ∈ J and x ≥ l.

Letting ζ = maxt∈J ,x∈[,l] f (t, x), then

 ≤ f (t, x) ≤ εx + ζ for t ∈ J and x ∈ [,∞).

Since  ≤ t ≤ α(t) ≤  on J , for a function x ∈ K with ‖x‖ = r, it follows from x(t) ≥ l or
 ≤ x(t) ≤ l on J that

x
(
α(t)

) ≥ l or  ≤ x
(
α(t)

) ≤ l for t ∈ J .
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Let r > max{r, aγ Dλζβ


–aγ Dλβε
}. Then for t ∈ J and x ∈ K ∩ ∂�r , (.) and (.) imply

(Tx)(t) = λ

∫ 


H(t, s)ω(s)f

(
s, x

(
α(s)

))
ds

≤ aγ D



λ

∫ 


ω(s)f

(
s, x

(
α(s)

))
ds

≤ aγ D



λ

∫ 


ω(s)

(
εx

(
α(s)

)
+ ζ

)
ds

≤ aγ D



λ

∫ 


ω(s)

(
ε‖x‖ + ζ

)
ds

≤ aγ D



λβ(εr + ζ )

< r,

which implies

‖Tx‖ ≤ ‖x‖, ∀x ∈ K ∩ ∂�r . (.)

Thus by (ii) of Lemma ., it follows from (.) and (.) that T has a fixed point x in
K ∩ (�̄r\�r) with r ≤ ‖x‖ ≤ r. Lemma . implies that problem (.) has at least one
positive solution x with r ≤ ‖x‖ ≤ r.

Turning to f  = f ∞ = . Choose two numbers r and r satisfying

 < r < r < δr < r < δr < r < +∞. (.)

Similar to the proof of (.), there exists λ >  such that for λ > λ

‖Tx‖ > ‖x‖, ∀x ∈ K ∩ ∂�ri , i = , , (.)

which together with (.) and (.) shows that T has a fixed point x in K ∩ (�r\�r ) and
a fixed point x in K ∩ (�̄r\�r ) with

r ≤ ‖x‖ ≤ r < r ≤ ‖x‖ ≤ r.

Consequently, it follows from Lemma . that problem (.) has two positive solutions
for λ > λ if f  = f ∞ = .

Part (ii). Noticing that f (t, x) >  for all t and x > , we can define

Mr = max
t∈J ,≤x≤r

{
f (t, x)

}
> ,

where r > .
Since  ≤ t ≤ α(t) ≤  on J , for a function x ∈ K with ‖x‖ = r, it follows from  ≤ x(t) ≤ r

on J that

 ≤ x
(
α(t)

) ≤ r for t ∈ J .
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Let λ ≤ 
r
MrβaDγ

. Then, for x ∈ K ∩ ∂�r and  < λ < λ, we have

(Tx)(t) = λ

∫ 


H(t, s)ω(s)f

(
s, x

(
α(s)

))
ds

≤ aγ D



λ

∫ 


ω(s)f

(
s, x

(
α(s)

))
ds

≤ aγ D



Mrλ

∫ 


ω(s) ds

=
aγ D



Mrλβ

<
aγ D



Mrλβ

≤ r,

which implies that

‖Tx‖ < ‖x‖, ∀x ∈ K ∩ ∂�r ,  < λ < λ. (.)

If f = ∞, we can choose  < r < r such that

f (t, x) ≥ 


abδλβγ
x, ∀t ∈ J ,  ≤ x ≤ r.

Since  ≤ t ≤ α(t) ≤  on J , for a function x ∈ K with ‖x‖ = r, it follows from  ≤ x(t) ≤ r

on J that

 ≤ x
(
α(t)

) ≤ r for t ∈ J .

Consequently, for any t ∈ J and x ∈ K ∩ ∂�r , (.) and (.) imply

(Tx)(t) = λ

∫ 


H(t, s)ω(s)f

(
s, x

(
α(s)

))
ds

≥ abγ



λ

∫ 


ω(s)f

(
s, x

(
α(s)

))
ds

≥ abγ



λ

∫ 


ω(s)




abδλβγ
x
(
α(s)

)
ds

≥ abγ



λ

∫ 


ω(s)




abδλβγ
δ‖x‖ds

≥ ‖x‖,

which implies

‖Tx‖ ≥ ‖x‖, ∀x ∈ K ∩ ∂�r . (.)

Thus by (ii) of Lemma ., it follows from (.) and (.) that T has a fixed point x
in K ∩ (�̄r\�r ) with r ≤ ‖x‖ ≤ r. Lemma . shows that problem (.) has at least one
positive solution x with r ≤ ‖x‖ ≤ r.
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If f∞ = ∞, we can choose sufficiently large ε >  and l >  such that

f (t, x) ≥ εx for t ∈ J and x ≥ l,

where ε satisfies

abγ



λεδβ ≥ .

Since  ≤ t ≤ α(t) ≤  on J , it follows from x(t) ≥ l on J that

x
(
α(t)

) ≥ l for t ∈ J .

Let r > max{r, l
δ
}. Then for t ∈ J and x ∈ K ∩ ∂�r we have

x(t) ≥ δ‖x‖ > l.

Hence, for t ∈ J and x ∈ K ∩ ∂�r , it follows from (.) and (.) that

(Tx)(t) = λ

∫ 


H(t, s)ω(s)f

(
s, x

(
α(s)

))
ds

≥ abγ



λ

∫ 


ω(s)f

(
s, x

(
α(s)

))
ds

≥ abγ



λ

∫ 


ω(s)εx

(
α(s)

)
ds

≥ abγ



λ

∫ 


ω(s)εδ‖x‖ds

=
abγ



λεδ‖x‖β

≥ ‖x‖,

which implies

‖Tx‖ ≥ ‖x‖, ∀x ∈ K ∩ ∂�r . (.)

Thus by (i) of Lemma ., it follows from (.) and (.) that T has a fixed point x in
K ∩ (�̄r\�r) with r ≤ ‖x‖ ≤ r. Lemma . shows that problem (.) has at least one
positive solution x with r ≤ ‖x‖ ≤ r.

Turning to f = f∞ = ∞. Choose two numbers r and r satisfying (.). Similar to the
proof of (.), there exists λ >  such that for  < λ < λ

‖Tx‖ < ‖x‖, ∀x ∈ K ∩ ∂�ri , i = , , (.)

which together with (.) and (.) shows that T has a fixed point x in K ∩ (�r\�r ) and
a fixed point x in K ∩ (�̄r\�r ) with

r ≤ ‖x‖ ≤ r < r ≤ ‖x‖ ≤ r.
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Consequently, it follows from Lemma . that problem (.) has two positive solutions for
 < λ < λ if f = f∞ = ∞.

Part (iii). If i = , then f >  and f∞ > . It follows that there exist positive numbers
η > , η > , h > , and h >  such that h < h and, for t ∈ J ,  < x ≤ h, we have

f (t, x) ≥ ηx, (.)

and, for t ∈ J , x ≥ h, we have

f (t, x) ≥ ηx. (.)

Let

η = min

{

η,η, min

{
f (t, x)

x
: t ∈ J , δh ≤ x ≤ h

}}

> .

Thus, for t ∈ J , x ≥ δh, we have

f (t, x) ≥ ηx, (.)

and, for t ∈ J , x ≤ h, we have

f (t, x) ≥ ηx. (.)

Assume y ∈ K is a positive solution of problem (.). We will show that this leads to a
contradiction for λ > λ = [abγ ηδβ]–
.

In fact, if ‖y‖ ≤ h, (.) shows that

f (t, y) ≥ ηy, for t ∈ J .

On the other hand, if ‖y‖ > h, then

min
t∈J

y(t) ≥ δ‖y‖ > δh.

Since  ≤ t ≤ α(t) ≤ , it follows from y(t) > δh on t ∈ J that y(α(t)) > δh on t ∈ J , which,
together with (.), shows that

f (t, y
(
α(t)

) ≥ ηy
(
α(t)

)
, t ∈ J .

Since (Ty)(t) = y(t), for λ > λ, it follows from (.) and (.) that

‖y‖ = ‖Ty‖

= max
t∈J

λ

∫ 


H(t, s)w(s)f

(
s, y

(
α(s)

))
ds

≥ abγ



λ

∫ 


ω(s)f

(
s, y

(
α(s)

))
ds
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≥ abγ



λ

∫ 


ω(s)ηy

(
α(s)

)
ds

≥ abγ



λ

∫ 


ω(s)ηδ‖y‖ds

=
abγ



ληδ‖y‖β

>
abγ



ληδ‖y‖β

= ‖y‖,

which is a contradiction.
If i∞ = , then f  < ∞ and f ∞ < ∞. It follows that there exist positive numbers η > ,

η > , h > , and h >  such that h < h and, for t ∈ J ,  < x ≤ h, we have

f (t, x) ≤ ηx, (.)

and, for t ∈ J , x ≥ h, we have

f (t, x) ≤ ηx. (.)

Let

η∗ = max

{

η,η, max

{
f (t, x)

x
: t ∈ J , h ≤ x ≤ h

}}

> .

Thus, we have

f (t, x) ≤ η∗x, t ∈ J , x ∈ [,∞). (.)

Since  ≤ t ≤ α(t) ≤  on J , it follows from  ≤ x(t) ≤ h, x(t) ≥ h, and h ≤ x(t) ≤ h

on J that  ≤ x(α(t)) ≤ h, x(α(t)) ≥ h, and h ≤ x(α(t)) ≤ h on J , respectively.
Assume y ∈ K is a positive solution of problem (.). We will show that this leads to a

contradiction for  < λ < λ = [aγ Dη∗β]–
.
Since (Ty)(t) = y(t), for  < λ < λ, it follows from (.) and (.) that

‖y‖ = ‖Ty‖

= max
t∈J

λ

∫ 


H(t, s)w(s)f

(
s, y

(
α(s)

))
ds

≤ aγ D



λ

∫ 


ω(s)f

(
s, y

(
α(s)

))
ds

≤ aγ D



λ

∫ 


ω(s)η∗y

(
α(s)

)
ds

≤ aγ D



λη∗‖y‖
∫ 


ω(s) ds

=
aγ D



λη∗‖y‖β
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<
aγ D



λη
∗‖y‖β

= ‖y‖,

which is a contradiction. �

Theorem . is a direct consequence of the proof of Theorem .(iii). Under the con-
ditions of Theorem . we are able to give explicit intervals of λ such that (.) has no
positive solution.

Theorem . Assume (H)-(H) hold and α(t) ≥ t on J .
(i) If there exists l >  such that f (t, x) ≥ lx for t ∈ J and x ∈ [,∞), then there exists

λ >  such that problem (.) has no positive solution for λ > λ.
(ii) If there exists L >  such that f (t, x) ≤ Lx for t ∈ J and x ∈ [,∞), then there exists

λ >  such that problem (.) has no positive solution for  < λ < λ.

Theorem . Assume (H)-(H) hold, α(t) ≥ t on J and i = i∞ = . Then problem (.)
has at least one positive solution in K provided




abγβδ max{f∞, f } < λ <



aDγβ min{f∞, f } . (.)

Proof We give the proof under two cases of f∞ > f  and f∞ < f .
If f∞ > f , then (.) implies that




abγβδf∞
< λ <




aDγβf  .

It is easy to see that there exists ε >  such that




abγβδ(f∞ – ε)
≤ λ ≤ 


aDγβ(f  + ε)
.

Now, considering f  and f∞, there exists r >  such that f (t, x) ≤ (f  + ε)x for t ∈ J and
 ≤ x ≤ r.

Since  ≤ t ≤ α(t) ≤ , it follows from  ≤ x(t) ≤ r on J that  ≤ x(α(t)) ≤ r. Hence,
similar to the proof of (.), for x ∈ K ∩ ∂�r we have

‖Tx‖ ≤ aγ D



λ

∫ 


ω(s)f

(
s, x

(
α(s)

))
ds ≤ aγ D



λ
(
f  + ε

)
β‖x‖ ≤ ‖x‖.

On the other hand, there exists L >  with L > r such that f (t, x) ≥ (f∞ – ε)x for t ∈ J and
x ≥ L.

Since  ≤ t ≤ α(t) ≤ , it follows from  ≤ x(t) ≤ r on J that x(α(t)) ≥ L.
Let r = max{r, L

δ
} and it follows that x(t) ≥ δ‖x‖ ≥ L for t ∈ J and x ∈ K ∩∂�r . Similar

to the proof of (.), for t ∈ J and x ∈ K ∩ ∂�r we have

‖Tx‖ ≥ abγ



λ

∫ 


ω(s)f

(
s, x

(
α(s)

))
ds ≥ abγ



λ(f∞ – ε)βδ‖x‖ ≥ ‖x‖.
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It follows from Lemma . that T has a fixed point in K ∩ (�̄r\�r ). Consequently,
problem (.) has a positive solution.

If f∞ < f , then (.) shows that




abγβδf  < λ <



aDγβf∞
.

It is easy to see that there exists ε >  such that




abγβδ(f  – ε)
≤ λ ≤ 


aDγβ(f∞ + ε)
.

Now, turning to f  and f∞, there exists r >  such that f (t, x) ≥ (f  – ε)x for t ∈ J and
 ≤ x ≤ r.

Since  ≤ t ≤ α(t) ≤ , it follows from  ≤ x(t) ≤ r that  ≤ x(α(t)) ≤ r on J . Hence,
similar to the proof of (.), for x ∈ K ∩ ∂�r we have

‖Tx‖ ≥ abγ



λ

∫ 


ω(s)f

(
s, x

(
α(s)

))
ds ≥ abγ



λ
(
f  – ε

)
βδ‖x‖ ≥ ‖x‖.

On the other hand, there exists L >  with L > r such that f (t, x) ≤ (f∞ + ε)x for t ∈ J and
x ≥ L.

Letting ζ = maxt∈J ,x∈[,L] f (t, x), then

 ≤ f (t, x) ≤ (f∞ + ε)x + ζ for t ∈ J and x ∈ [,∞).

Since  ≤ t ≤ α(t) ≤  on J , it follows from x(t) ≥ L or  ≤ x(t) ≤ L on J that

x
(
α(t)

) ≥ L or  ≤ x
(
α(t)

) ≤ L for t ∈ J .

Let r > max{r, aγ Dλζβ


–aγ Dλβ(f∞+ε) }. Then, for t ∈ J and x ∈ K ∩ ∂�r , similar to the proof of
(.) we get

‖Tx‖ ≤ aγ D



λ

∫ 


ω(s)f

(
s, x

(
α(s)

))
ds ≤ aγ D



λβ

(
(f∞ + ε)r + ζ

)
< r = ‖x‖.

It follows from Lemma . that T has a fixed point in K ∩ (�̄r\�r ). Consequently,
problem (.) has a positive solution. �

Corollary . Assume (H)-(H) hold, α(t) ≥ t on J and i = i∞ = . Then problem (.)
has at least one positive solution in K provided




abγβδ max{f ∞, f} < λ <



aDγβ min{f ∞, f} .

Proof The proof is similar to that of Theorem .. �
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4 The dependence of solution xλ(t) on the parameter λ for problem (1.1) under
α(t) ≥ t on J

In this section, we consider the dependence of positive solution xλ(t) on the parameter λ

under a weaker condition (H)∗ than (H),

(H)∗ f ∈ C([, ] × [, +∞), [, +∞)).

For convenience we introduce the following notation:

M = max
{

max
t∈J

f (t, x),‖x‖ ≤ ς
}

,

where ς > .

Theorem . Assume (H), (H), (H)∗, (H) hold, α(t) ≥ t on J and i = i∞ = . Then the
following two conclusions hold.

(i) If f  =  and f∞ = ∞, then for every λ >  problem (.) has a positive solution xλ(t)
satisfying limλ→+ ‖xλ‖ = ∞.

(ii) If f = ∞ and f ∞ = , then for every λ >  problem (.) has a positive solution xλ(t)
satisfying limλ→+ ‖xλ‖ = .

Proof By definition, i = i∞ =  implies that f  =  and f∞ = ∞ or f = ∞ and f ∞ = . We
need only prove this theorem under the condition f  =  and f∞ = ∞ since the proof is
similar to that of f = ∞ and f ∞ = .

Let λ > . Considering f  = , then similar to the proof of (.), there exists r >  such
that

‖Tx‖ ≤ ‖x‖, ∀x ∈ K ∩ ∂�r . (.)

On the other hand, turning to f∞ = ∞, similar to the proof of (.), there exists R > 
satisfying R > r such that

‖Tx‖ ≥ ‖x‖, ∀x ∈ K ∩ ∂�R. (.)

Applying (i) of Lemma . to (.) and (.) shows that the operator T has a fixed point
xλ ∈ K ∩ (�̄R\�r). Consequently, it follows from Lemma . that problem (.) has a pos-
itive solution xλ ∈ K ∩ (�̄R\�r) with r ≤ ‖xλ‖ ≤ R.

Next we prove that ‖xλ‖ = +∞ as λ → +. In fact, if not, there exist a number ς >  and
a sequence λn → + such that

‖xλn‖ ≤ ς (n = , , , . . .).

Furthermore, the sequence {‖xλn‖} contains a subsequence that converges to a number η

( ≤ η ≤ ς ). For simplicity, suppose that {‖xλn‖} itself converges to η.
If η > , then ‖xλn‖ > η

 for sufficiently large n (n > N). Since  ≤ t ≤ α(t) ≤ , it follows
from  ≤ x(t) ≤ ς that

 ≤ x
(
α(t)

) ≤ ς .
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Hence, it follows from the definition of M, (.), and (.) that


λn

=
‖ ∫ 

 H(t, s)ω(s)f (s, xλn (α(s))) ds‖
‖xλn‖

≤ aγ D
– ∫ 
 ω(s)f (s, xλn (α(s))) ds

‖xλn‖

≤ aγ D
–βM
‖xλn‖

<
aγ D
–βM

η
(n > N),

which contradicts λn → +.
If η = , then ‖xλn‖ →  (n → +∞), and therefore it follows from f  =  that for any

ε >  there exists r∗ >  such that

f (t, xλn ) ≤ εxλn , ∀t ∈ J ,  ≤ xλn ≤ r∗.

Since  ≤ t ≤ α(t) ≤ , it follows from  ≤ xλn (t) ≤ r∗ that

 ≤ xλn

(
α(t)

) ≤ r∗.

Therefore, xλn ∈ K ∩ ∂�r∗ and ‖xλn‖ = r∗ imply that


λn

=
‖ ∫ 

 H(t, s)ω(s)f (s, xλn (α(s))) ds‖
‖xλn‖

≤ aγ D
– ∫ 
 ω(s)f (s, xλn (α(s))) ds

‖xλn‖

≤ aγ D
– ∫ 
 ω(s)εxλn (α(s))
‖xλn‖

≤ βaγ D
–ε‖xλn‖
‖xλn‖

= βaγ D
–ε.

Since ε is arbitrary, we have λn → ∞ (n → +∞) in contradiction with λn → +. Therefore,
‖xλ‖ → +∞ as λ → +. This finishes the proof of Theorem .. �

Remark . In contrast to [] and [], the behavior of the solution as λ → + is inves-
tigated.

5 Positive solutions of problem (1.1) for the case of α(t) ≤ t on J
Now we deal with problem (.) for the case of α(t) ≤ t on J . Let E, K , and T be as defined
in Section . Similarly as Lemmas .-., we can prove the following results.

Lemma . Let G and H be given as in Lemma .. Then we have the following results:

G(t, s) ≥ δG(s, s), H(t, s) ≥ δH(s, s) ≥ δa
a – ν

G(s, s), ∀t, s ∈ J , (.)
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where

δ =
b

b + a
∫ 




g(r) dr
.

Lemma . Assume that (H)-(H) hold. If x is a fixed point of the operator T , then x ∈
E ∩ C(, ), and x is a solution of problem (.).

Lemma . Assume that (H)-(H) hold. Then T(K) ⊂ K and T : K → K is completely
continuous.

By analogous methods, we have the following results.

Theorem . Assume (H)-(H) hold and α(t) ≤ t on J .
(i) If i =  or , then there exists λ >  such that problem (.) has i positive

solution(s) for λ > λ.
(ii) If i∞ =  or , then there exists λ >  such that problem (.) has i∞ positive

solution(s) for  < λ < λ.
(iii) If i =  or i∞ = , then problem (.) has no positive solution for sufficiently large or

small λ, respectively.

Theorem . Assume (H)-(H) hold and α(t) ≤ t on J .
(i) If there exists l >  such that f (t, x) ≥ lx for t ∈ J and x ∈ [,∞), then there exists

λ >  such that problem (.) has no positive solution for λ > λ.
(ii) If there exists L >  such that f (t, x) ≤ lx for t ∈ J and x ∈ [,∞), then there exists

λ >  such that problem (.) has no positive solution for  < λ < λ.

Theorem . Assume (H)-(H) hold, α(t) ≤ t on J , and i = i∞ = . Then problem (.)
has at least one positive solution in K provided




abγβδ max{f∞, f } < λ <



aDγβ min{f∞, f } .

Corollary . Assume (H)-(H) hold, α(t) ≤ t on J and i = i∞ = . Then problem (.)
has at least one positive solution in K provided




abγβδ max{f ∞, f} < λ <



aDγβ min{f ∞, f} .

Theorem . Assume (H), (H), (H)∗, (H) hold, α(t) ≤ t on J and i = i∞ = . Then the
following two conclusions hold.

(i) If f  =  and f∞ = ∞, then for every λ >  problem (.) has a positive solution xλ(t)
satisfying limλ→+ ‖xλ‖ = ∞.

(ii) If f = ∞ and f ∞ = , then for every λ >  problem (.) has a positive solution xλ(t)
satisfying limλ→+ ‖xλ‖ = .

6 An example
To illustrate how our main results can be used in practice we present an example.
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Example . Consider the following boundary value problem:

{
–( 

et x′(t))′ = λ √
t ( + t)xn(α(t)), t ∈ J ,

x() – x′() =
∫ 



 x(t) dt, x() + x′() =

∫ 



 x(t) dt,

(.)

where α ∈ C(J , J), α(t) ≥ t on J , and

ω(t) =
√
t

, f (t, x) =
(
 + t)xn,

here n ≥  is a positive integral.

This means that problem (.) involves the advanced argument α. For example, we can
take α(t) = √t. It is clear that ω is singular at t =  and f is both nonnegative and contin-
uous.

We claim that problem (.) has at least one positive solution for any λ > e(e+)
 .

Proof Problem (.) can be regarded as a problem of the form (.), where

g(t) =

et , a = b = , h(t) =




.

Letting n =  and r = , then, by a simple computation, we have

ν =



, γ = , 
 = e + , β = ,

δ =

e

, mr =

e , λ =

e(e + )


.

It follows from the definition of g , ω, f , α, and h that (H)-(H) hold, and f  = .
Therefore, for any λ > λ = e(e+)

 , it follows from Theorem .(i) that problem (.) has
a positive solution. �
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