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Abstract
This paper is concerned with the quenching phenomenon for the one-dimensional
non-Newtonian filtration equation with both source term and Neumann boundary
condition. With two different kinds of initial data, we prove that the solution must
quench in a finite time and the time derivative blows up at a quenching point. The
corresponding quenching rate and a lower bound for the quenching time are also
obtained.
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1 Introduction
In this paper, we study the following problem:

ut =
(|ux|p–ux

)
x + ( – u)–h,  < x < , t > , (.)

ux(, t) = , ux(, t) = –u–q(, t), t > , (.)

u(x, ) = u(x),  ≤ x ≤ , (.)

where p ≥ , h, q are positive constants. u(x) : [, ] → (, ) and satisfies some compati-
bility conditions. Equation (.) is known as the classical non-Newtonian filtration equa-
tion that incorporates the effects of nonlinear reaction source and nonlinear boundary
outflux. The quenching behavior describes the phenomenon that there exists a finite time
T such that the solution u(x, t) of the problem (.) satisfy

lim
t→T–

max
{

u(x, t) :  ≤ x ≤ 
} →  or lim

t→T–
min

{
u(x, t) :  ≤ x ≤ 

} → .

In , Kawarada [] first studied the quenching phenomenon for the semilinear heat
equation ut = uxx + ( – u)–. He obtained the results that, when the solution reaches level
u = , the reaction term and the time derivative blow up. Since then, quenching phenom-
ena for semilinear parabolic equations have been studied by many researchers; see for ex-
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amples [–] and the references therein. Quenching phenomenon is dependent on the sin-
gular term of the model. Different singular terms cause the problem may occur quenching
phenomenon at different levels. Recently, more and more researchers have focused on the
quenching phenomenon for parabolic problem with two nonlinear heat sources [–].
For example, Chan and Yuen [] investigated the problem with two nonlinear boundary
outfluxes:

ut = uxx,  < x < a,  < t < T ,

ux(, t) =
(
 – u(, t)

)–p, ux(a, t) =
(
 – u(a, t)

)–q,  < t < T ,

u(x, ) = u(x),  ≤ x ≤ a,

where a, p, q > . The authors proved that the solution quenches only at x = a, meanwhile,
the time derivative ut blows up. Moreover, making use of the positive steady states, they
have given criteria for nonquenching and quenching. It is worth mentioning the work by
Selcuk and Ozalp [], who considered the problem

ut = uxx + ( – u)–p,  < x < ,  < t < T ,

ux(, t) = , ux(a, t) = –u(, t)–q,  < t < T ,

u(x, ) = u(x),  ≤ x ≤ ,

where p, q > . They showed that quenching occurs only at x =  in finite time and they
estimated the bounds of the quenching rate and a lower bound for the quenching time.

On the other hand, as is well known, the singular or degenerate parabolic equations
have the property of finite speed of propagation, which are more consistent with biological
phenomena in the real world. So, it should be more reasonable to discuss some nonlinear
diffusion models. There is a natural question if quenching phenomenon may occur for
singular or degenerate equations. Few works were concerned with singular or degenerate
parabolic equations [–], where only models with one nonlinear source are studied.
In [–], the authors studied a nonlinear equation with homogeneous boundary condi-
tions. In [–], a nonlinear model with nonlinear boundary conditions was discussed.
It was Nie et al. [] who considered quenching for a singular and degenerate quasilinear
diffusion equation as follows:

xq ∂u
∂t

–
∂um

∂x = f
(
um)

, (x, t) ∈ (, a) × (, T),

u(, t) =  = u(a, t), t ∈ (, T),

u(x, ) = , x ∈ (, a).

Here a > , q ∈R, m ≥ . They established the existence of a critical length a∗ and proved
that the solution exists globally if  < a < a∗, while the solution quenches if a > a∗. They
also investigated the set of the quenching points and the blowing up of ut . Deng and Xu []
studied nonlinear diffusion equation with a singular boundary condition and investigated
finite time quenching for the solution. They also gave the quenching set and quenching
rate near the quenching time.
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However, as far as we know, there are very few papers concerned with the quench-
ing phenomenon for singular or degenerate parabolic problem with two nonlinear heat
sources, even if the linear diffusion equation holds. Obviously, in the model (.), the in-
ternal source ( – u)–h and the boundary flux u–q exist, both of which may become singular
in some finite time, if the solution reach level u =  or u = , respectively. In the present
paper, we will discuss these two cases by imposing conditions (A)-(A) upon the initial
datum, which are give below. First of all, motivated by the work of [], in Section , we
will study the quenching phenomenon for the solution reaching the level u = . We will
prove that quenching occurs in finite time under condition (A) and the only quenching
point is x =  under conditions (A) and (A). Furthermore, ut blows up at quenching
time is discussed. Then the bounds for the quenching rate and the lower bound for the
quenching time are estimated. Second, in Section , we will do research on the quenching
phenomenon for the solution reaching the level u =  under conditions (A) and (A). It
will be shown that the solution quenches in finite time and ut blows up at quenching time
at the only quenching point x = . Finally, we will give bounds on the quenching rate.

Furthermore, in this paper, we need the following hypotheses:

(A) (|u′
(x)|p–u′

(x))′ + ( – u(x))–h ≥ ;
(A) u′

(x) ≤ ;
(A) u′

(x) ≤ –xu–q
 (x);

(A) (|u′
(x)|p–u′

(x))′ + ( – u(x))–h ≤ .

2 Quenching phenomenon for the solution reaching the level u = 1
In this section, we study the quenching phenomenon for the problem (.) under the con-
ditions (A) and (A). Due to the degeneracy of the equation, the classical solutions might
not exist and the weak solution should be considered. However, for simplicity of our argu-
ments, we assume that the solution is appropriately smooth, since we may consider some
approximate boundary and initial value conditions.

2.1 Quenching on the boundary and blow-up of ut

In this section, we prove the solution quenches in finite time and blowing up of ut at the
only quenching point x = .

Remark . The assumptions (A) and (A) on u(x) are proper. For example, for p = ,
h = , and q = log/ , we can choose u(x) = . – 

 x., which satisfies (A), (A), and
compatibility conditions.

In the following, we discuss the properties of the solution to the problem (.).

Lemma . Assume that (A), (A) hold and the solution u of the problem (.) exists in
(, T) for some T > . Then u ∈ C,((, ] × (, T)) with ux(x, t) <  and ut(x, t) ≥  in
(, ] × (, T).

Proof Let v = ux. Then v satisfies

vt =
(|v|p–v

)
xx + h( – u)–h–v,  < x < ,  < t < T,

v(, t) = , v(, t) = –u–q(, t),  < t < T,

v(x, ) = u′
(x),  ≤ x ≤ .

(.)
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Using the maximum principle, we have v < , that is, ux(x, t) <  in (, ] × (, T). Then it
is easy to see that the problem (.) is nondegenerate in (, ] × (, T). So ux is a classical
solution of (.).

On the other hand, setting w = ut , then w solves the following:

wt = (p – )
(|ux|p–wx

)
x + h( – u)–h–w,  < x < ,  < t < T,

wx(, t) = , wx(, t) = qu–q–(, t)w(, t),  < t < T,

w(x, ) = (p – )
∣∣u′

(x)
∣∣p–u′′

(x) +
(
 – u(x)

)–h,  ≤ x ≤ .

Utilizing the maximum principle, one shows that ut(x, t) ≥  in (, ] × (, T). Therefore,
the solutions of the problem (.) u ∈ C,((, ] × (, T)) and they satisfy ux(x, t) <  and
ut(x, t) ≥  in (, ] × (, T). �

Now, we are in a position to show the quenching result.

Theorem . Assume that (A) and (A) hold. Then there exists a finite time T , such that
every solution of (.) quenches in this time, and the only quenching point is x = .

Proof The maximum principle leads to  < u(·, t) <  for all t in the existence interval.
Taking advantage of the assumption (A), we have

α = –u–q(p–)(, ) +
∫ 



(
 – u(x, )

)–h dx > .

Denote A(t) =
∫ 

 ( – u(x, t)) dx. By Lemma ., it is easy to see that

A′(t) = –
∫ 


ut(x, t) dx = u–q(p–)(, t) –

∫ 



(
 – u(x, t)

)–h dx ≤ –α.

Thus A(t) ≤ A() – ωt, which means that A(t) =  for some t > . In addition, since
ux <  for  < x ≤ , we can see that there exists T ( < T < t) such that limt→T– u(, t) =
. By means of the singular nonlinearity in the source, u must occur quenching on the
boundary x = . Here and below, we use T to denote the quenching time of the solutions
u. In the following, we only need to show that the solutions u cannot take place quenching
in (, ] × (η, T) for some η ( < η < T ).

Denote

B(x, t) = ux + ε(b – x) in (b, b) × [η, T),

where b ∈ (, ], b ∈ (, b), and ε is a positive constant to be specified later. Since
ux(x, t) <  in (, ] × [, T), B(x, t) satisfies

Bt – (p – )|ux|p–Bxx

= –(p – )(p – )|ux|p–(Bx + ε) + h( – u)–h–ux < , for (x, t) ∈ (b, b) × [η, T).
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Hence, according to the maximum principle, B(x, t) cannot attain a positive interior max-
imum. Further, on the parabolic boundary, since ux(x, t) <  in (, ] × [, T), choosing ε

small enough, we have

B(b, t) = ux(b, t) + ε(b – b) < , t ∈ (η, T),

B(b, t) = ux(b, t) < , t ∈ (η, T),

B(x,η) = ux(x,η) + ε(b – x), x ∈ (b, b).

Making use of the maximum principle, we obtain B(x, t) < , that is,

ux < –ε(b – x), (x, t) ∈ [b, b] × [η, T).

Integrating the above inequality with respect to x from b to b gives

u(b, t) < u(b, t) –
ε(b – b)


<  –

ε(b – b)


< ,

which implies that u(x, t) <  if  < x ≤ . �

Theorem . Assume that h ≥ . Then ut blows up at the quenching point x = .

Proof We prove the theorem by contradiction. Assume that ut is bounded on [, ] ×
[, T). Then there exists a positive constant M such that ut < M. Thus, we have

(|ux|p–ux
)

x + ( – u)–h < M.

Multiplying the above inequality by ux, and integrating with respect to x from  to x yield

ln
[
 – u(, t)

]
> –

p – 
p

|ux|p + ln
[
 – u(x, t)

]
+ M

[
u(x, t) – u(, t)

]

for h =  and

( – u(, t))–h+

–h + 
> –

p – 
p

|ux|p +
( – u(x, t))–h+

–h + 
+ M

[
u(x, t) – u(, t)

]

for h �= . It can be seen that the left-hand side tends to negative infinity as t → T–, while
the right-hand side is finite. This completes the proof of Theorem .. �

2.2 Quenching rate and lower bound for the quenching time
In this section, a bound on the quenching rate is given and a lower bound for the quenching
time is obtained. We present the quenching rate in the following:

Theorem . Assume that (A), (A), and (A) hold. Then there exists a positive constant
C such that

u(, t) ≥  – C(T – t)/(h+),

for t sufficiently close to T .
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Proof We define a function G(x, t) = |ux(x, t)|p–ux(x, t) + xp–u–q(p–)(x, t) in [, ] × [, T).
Then G(x, t) solves

Gt – (p – )|ux|p–Gxx

= –(p – )|ux|p–h( – u)–h– – q(p – )u–q(p–)–xp–( – u)–h

– (p – )(p – )|ux|p–xp–u–q(p–) – q(p – )|ux|p–xp–u–q(p–)–

– (p – )q
[
q(p – ) + 

]
xp–u–q(p–)–|ux|p,

since ux < , G(x, t) cannot attain a positive interior maximum. On the other hand, it fol-
lows from (A) that

G(x, ) = –
(
ux(x, )

)p– + xp–u–q(p–)(x, ) ≤ .

Also

G(, t) = , G(, t) = ,

for t ∈ (, T). The maximum principle yields G(x, t) ≤  for (x, t) ∈ [, ]×[, T). Therefore

Gx(, t) = lim
σ→+

G(σ , t) – �(, t)
σ

= lim
σ→+

G(σ , t)
σ

≤ .

Hence, for p = ,

Gx(, t) = uxx(, t) + u–q(, t) = ut(, t) –
(
 – u(, t)

)–h + u–q(, t) ≤ 

and for p > 

Gx(, t) =
(|ux|p–ux

)
x(, t) = ut(, t) –

(
 – u(, t)

)–h ≤ .

Thus, we get

ut(, t) ≤ (
 – u(, t)

)–h.

Integrating for t from t to T , we have

u(, t) ≥  – C(T – t)


h+ ,

where C = (h + )/(h+). This completes the proof of Theorem .. �

Remark . According to Theorem ., a lower bound of quenching time T is ( –
u())h+/(h + ). As in Remark ., if u(x) = . – 

 x., then it can be found that T = –

for h = .

3 Quenching phenomenon for the solution reaching the level u = 0
In this section, we investigate the quenching phenomenon for the problem (.) under the
conditions (A) and (A).
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3.1 Quenching on the boundary and blow-up of ut

In this section, we prove the solution quenches in finite time and blowing up of ut at the
only quenching point x = . First of all, we have the following:

Lemma . Assume that (A) and (A) hold and the solution u of the problem (.) exists
in (, T̃) for some T̃ > . Then ux(x, t) <  and ut(x, t) <  in (, ] × (, T̃).

The proof is similar to Lemma ., so we omit it.

Theorem . Assume that (A) and (A) hold. Then there exists a finite time T , such that
every solution of (.) quenches in this time, and the only quenching point is x = .

Proof By the maximum principle, we can obtain  < u(·, t) <  for all t in the existence
interval. Together with (A), we get

β = –u–q(p–)(, ) +
∫ 



(
 – u(x, )

)–h dx < .

Denote I(t) =
∫ 

 u(x, t) dx. By Lemma ., it is easy to see that

I ′(t) =
∫ 


ut(x, t) dx = –u–q(p–)(, t) – +

∫ 



(
 – u(x, t)

)–h dx ≤ β .

Thus I(t) ≤ I() + βt, which means that I(t̃) =  for some t̃ > . In addition, notice that
ux <  for  < x ≤ , we can see that there exists T ( < T < t̃) such that limt→T– u(, t) = .
Combining with the singular nonlinearity of the boundary flux, u must occur quenching
on the boundary x = . As in Theorem ., in the following, we only need to show that the
solutions u cannot take place quenching in (/, ) × (γ , T) for some γ ( < γ < T ).

Define

H(x, t) = ux + ε

(
x –




)
, (x, t) ∈

(



, 
)

× (γ , T),

where ε is sufficiently small. Since ux(x, t) <  in (, ] × [, T), H(x, t) satisfies

Ht – (p – )|ux|p–Hxx = –(p – )(p – )|ux|p–(Hx – ε) + h( – u)–h–ux < ,

for (x, t) ∈
(




, 
)

× (γ , T).

Further, on the parabolic boundary, since ux(x, t) <  in (, ]× [, T) and choosing ε small
enough, we have

H
(




, t
)

= ux

(



, t
)

< , for t ∈ [γ , T),

H(, t) = –u–q(, t) +



ε ≤ – +



ε < , for t ∈ [γ , T),

H(x, η̃) ≤ ux

(



,γ
)

+



ε < , for x ∈
[




, 
]

.
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Making use of the maximum principle, we obtain H(x, t) ≤  in (/, ) × (γ , T), which
yields

–ux ≥ ε

(
x –




)
, (x, t) ∈

(



, 
)

× (η̃, T). (.)

Integrating (.) with respect to x from x to  gives

u(x, t) ≥ u(, t) +
∫ 

x
ε

(
x –




)
dx ≥

∫ 

x
ε

(
x –




)
dx > ,

which implies that u(x, t) if x < . This completes the proof of Theorem .. �

Theorem . ut blows up at the quenching point x = .

Proof We prove the theorem by contradiction. Assume that ut is bounded on [, ] ×
[, T). Then there exists a positive constant L such that ut > –L. Thus, we have

(|ux|p–ux
)

x + ( – u)–h > –L.

Integrating with respect to x from x to  yields

–u–q(p–)(, t) > –u–q(p–)(x, t) – L –
(
 – u(, t)

)–h.

Therefore, it is found that the left-hand side tends to negative infinity as t → T–, while the
right-hand side is finite. This completes the proof of Theorem .. �

3.2 Quenching rate
Now, we are in a position to investigate the bounds on the quenching rate. First of all, we
will show the lower bound of the quenching rate.

Theorem . Assume that (A) and (A) hold. Then there exists a positive constant C

such that

u(, t) ≥ C(T – t)


pq+

for t sufficiently close to T .

Proof Let k(u) = –qu–q(p–)(δ–)–q–, where  – q+
q(p–) < δ <  – 

q(p–) . It is easy to see that
k(u) < , k′(u) > , and k′′(u) < . Letting τ be close to T , we introduce the function

Q(x, t) = ut – εk(u)(–ux)(p–)(–δ), in ( – T + τ , ) × (τ , T),

where ε is a positive constant. Through a fairly complicated calculation, one has

Qt = (p – )|ux|p–Qxx + (p – )(p – )(–ux)p–(–uxx)Qx + J(x, t)Q + W (x, t).
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Here

J(x, t) = h( – u)–h– + ε( – δ)
[
(p – )( – δ) – 

]
(–ux)(p–)(–δ)–k(u)ut

+ ε
[
(p – )( – δ) – 

]
k′(u)(–ux)(p–)(–δ)

+ ε( – δ)
[
(p – )( – δ) – 

]
k(u)(–ux)(p–)(–δ)–

and

W (x, t) = ε(p – )k′′(u)(–ux)(p–)(–δ)+ + ε[(p – )( – δ) – 
]
k′(u)k(u)(–ux)(p–)(–δ)

+ ε( – δ)
[
(p – )( – δ) – 

]
k(u)(–ux)(p–)(–δ)–

– ε( – δ)
[
(p – )( – δ) – 

]
k(u)(–ux)(p–)(–δ)–ut( – u)–h

+ ε( – δ)
[
(p – )( – δ) – 

]
k(u)(–ux)(p–)(–δ)( – u)–h

– ε(p – )
[
( – δ)k′(u)( – u) + ( – δ)k(u)h

]
(–ux)(p–)(–δ)( – u)–h–.

Notice that k(u) < , k′(u) > , k′′(u) < , and τ is sufficiently close to T , then J(x, t) >  and
W (x, t) < . Therefore,

Qt < (p – )|ux|p–Qxx + (p – )(p – )(–ux)p–(–uxx)Qx + J(x, t)Q,

(x, t) ∈ ( – T + τ , ) × (τ , T).

Further, on the parabolic boundary, in view of the only quenching point x =  and provided
ε sufficient small, both Q( – T +τ , t) and Q(x, τ ) are negative. On the right boundary x = ,
we get

Qx(, t) = q
[
 – ε( – δ)

]
u–q–(, t)Q(, t) + εq

{[
εq( – δ) + q(p – )(δ – ) + 

]

× u–qp–(, t) + ( – δ)
(
 – u(, t)

)–h}u–q–(, t)

≤ q
[
 – ε( – δ)

]
u–q–(, t)Q(, t),

provided ε is sufficiently small and τ is sufficiently close to T . Thus, take advantage of the
maximum principle, Q(x, t) ≤  on [ – T + τ , ] × [τ , T). Then we have Q(, t) ≤ , that is,

ut(, t) ≤ εk
(
u(, t)

)(
–ux(, t)

)(p–)(–δ) = –εqu–qp–(, t). (.)

Integrating (.) with respect to t from t to T , it gives

u(, t) ≥ [
εq(qp + )

] 
qp+ (T – t)


qp+ = C(T – t)


qp+ ,

where C = [εq(qp + )]


qp+ . This completes the proof of Theorem .. �

To end this section, we present the upper bound on the quenching rate.
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Theorem . Assume that (A) and (A) hold. Then there exists a positive constant C

such that

u(, t) ≤ C(T – t)


pq+

for t sufficiently close to T .

Proof Denote E(x, t) = |ux(x, t)|p–ux(x, t) + p–(x)u–q(p–)(x, t) in (, ) × (, T), where

(x) =

{
, x ∈ [, x],
(x–x)r

(–x)r , x ∈ (x, ],

with some x <  and choosing r ≥  large enough so that (x) ≤ –u′
(x)uq

(x) for x < x ≤ .
We can easily obtain E(, t) = E(, t) = , and E(x, ) ≤ . In addition, in (, ) × (, T),
E satisfies

Et = (p – )|ux|p–Exx

– (p – )[pq + q
]
p–(x)|ux|pu–q(p–)–

– (p – )qp–(x)′(x)|ux|p–u–q(p–)–

– (p – )|ux|p–p–(x)
[
(p – )′(x) + (x)′′(x)

]
u–q(p–)

– q(p – )p–(x)u–q(p–)–( – u)–h – (p – )h|ux|p–( – u)–h–.

According to the definition of ϕ(x), it is easy to see that (x) ≥ , ′(x) ≥ , and ′′(x) ≥ .
Then we have

Et ≤ (p – )|ux|p–Exx.

Making use of the maximum principle, we get E(x, t) ≤ , that is,

(x)u–q(x, t) ≤ –ux(x, t), for (x, t) ∈ [, ] × [, T).

Furthermore, because of E(x, t) ≤ , we have Ex(, t) ≥ . In fact,

Ex(, t) = lim
x→–

E(x, t) – E(, t)
x – 

≥ ,

which implies

ut(, t) ≥ –(p – )
[
′() + qu–q–(, t)

]
u–q(p–)(, t) +

(
 – u(, t)

)–h

≥ –C̃q(p – )u–pq–(, t). (.)

Integrating (.) with respect to t from t to T gives

u(, t) ≤ [
C̃q(p – )(pq + )

] 
pq+ (T – t)


pq+ = C(T – t)


pq+ ,
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where C = [C̃q(p – )(pq + )]


pq+ , which produces the asserted result. This completes the
proof of Theorem .. �

From Theorem . and Theorem ., we have the following exact quenching rate.

Corollary . Assume that (A) and (A) hold. Then the solution of the problem (.) sat-
isfies

C(T – t)


pq+ ≤ u(, t) ≤ C(T – t)


pq+ ,

that is,

u(, t) ∼ (T – t)


pq+

for t sufficiently close to T . Here C, C are positive constants which are given in Theorem .
and Theorem ..
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