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Abstract
This paper focuses on the following elliptic problem involving a fractional Laplacian:

(–�)αu + V(x)u = f (u) in R
N ,

where N ≥ 2, α ∈ (0, 1), (–�)α stands for the fractional Laplacian. Using some
variational methods, we obtain the existence of positive solutions without
compactness conditions.
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1 Introduction
In this paper, we consider the existence of positive solutions to the following fractional
Schrödinger equation:

(–�)αu + V (x)u = f (u) in R
N , (P)

where N ≥ , α ∈ (, ), (–�)α stands for the fractional Laplacian, f ∈ C(R+,R+). The frac-
tional Laplacian (–�)α with α ∈ (, ) of a function φ ∈ S is defined by

F
((

(–�)α
)
φ
)
(ξ ) = |ξ |αF (φ)(ξ ), ∀α ∈ (, ),

where S denotes the Schwartz space of rapidly decreasing C∞ functions in R
N , F is the

Fourier transform, i.e.,

F (φ)(ξ ) =


(π )N/

∫

RN
e–π iξ ·xφ(x) dx.

In the past few years, there have been research activities (see [–], etc.) on the study of
existence and multiplicity of solutions for such kind of problems (P). Here we just mention
some results related to our problems.

• For the case V ≡ , the authors in [] studied the existence of positive solutions of (P)
when f has subcritical growth and satisfies the Ambrosetti-Rabinowitz condition.
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• For the case V ≡ , Chang and Wang in [] obtained the existence of a positive
ground state under the general Berestycki-Lions type assumptions.

• Moreover, for the general potential V , which is allowed to vary, ground states were
found by imposing a coercivity assumption on V , i.e.,

lim|x|→+∞ V (x) = +∞.

We refer the readers to [, ] for details. Recently, when the potential V satisfies the con-
ditions H(V )() and H(V )(), Chang in [] proved the existence of ground state solutions
under the assumption that f (u) is asymptotically linear with respect to u.

Inspired by the above-mentioned papers, we are concerned with the existence of positive
solutions of (P). The novelties in this paper are mainly two parts. First, we just assume that
the nonlinear term f (u) is superlinear with respect to u at infinity instead of the asymptot-
ically linear condition or Ambrosetti-Rabinowitz condition, which is completely different
from those appearing in the literature. To compensate the lack of compactness, we em-
ploy the Pohozaev identity to obtain the boundedness of Palais-Smale sequence. Second,
it is worth mentioning that in the present paper we consider the existence of non-radial
positive solutions of (P). We have to prove a new compact embedding theorem by virtue
of some assumptions imposed on the potential V .

Throughout this paper, we assume:

H(V ): () V ∈ C(RN ,RN ), V := infx∈RN V (x) > .
() 〈∇V (x), x〉 ∈ L N

α (RN ) and

∣
∣〈∇V (x), x

〉∣∣
L

N
α (RN )

< αSα ,

where Sα is the best Sobolev constant of the embedding

Ḣα(RN ) ↪→ L∗
α (RN ), i.e., Sα = infu∈Ḣα (RN )

∫
RN |(–�)

α
 u| dx

|u|∗
α

(see []).

() There exists r >  such that, for any b > ,

lim|y|→∞μ
({

x ∈R
N : V (x) ≤ b

} ∩ Br(y)
)

= ,

where μ is the Lebesgue measure on R
N .

H(f ): () f : R+ →R+ is of class C,γ for some γ > max{,  – α}.
() |f (u)| ≤ C(|u| + |u|p–) for all u ∈R+ = [, +∞) and p ∈ (, ∗

α), where
∗

α = N
N–α

for N ≥ .
() limu→

f (u)
u = .

() limu→∞ f (u)
u = ∞.

Next, we state our main result.

Theorem  Assume that H(V ) and H(f ) hold. Then problem (P) has at least one positive
solution.

The rest of this paper is organized as follows. In Section , we state and prove some
preliminary results which will be used later. We will finish the proof of our main result
(Theorem ) in Section .
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2 Preliminary
In this section we recall some results on Sobolev spaces of fractional order. A very com-
plete introduction to fractional Sobolev spaces can be found in [].

Consider the fractional order Sobolev space

Hα
(
R

N)
=

{
u ∈ L(

R
N)

:
∫

RN

(|ξ |αû + û)dξ < +∞
}

,

where û .= F (u). The norm is defined by

‖u‖Hα (RN ) =
(∫

RN

(|ξ |αû + û)dξ

) 


.

The homogeneous fractional Sobolev space Dα,(RN ), also denoted by Ḣα(RN ), is de-
fined as the completion of C∞

 (RN ) with respect to the norm

‖u‖Ḣα (RN ) =
(∫

RN
|ξ |αû dξ

) 


=
(∫

RN

∣
∣(–�)

α
 u(x)

∣
∣ dx

) 


.

In this paper we consider its subspace:

E =
{

u ∈ Ḣα
(
R

N)
:
∫

RN
V (x)u dx < +∞

}

with the norm

‖u‖E =
(∫

RN

∣
∣(–�)

α
 u(x)

∣
∣ dx +

∫

RN
V (x)u dx

) 


.

Lemma  ([]) Hα(RN ) continuously embedded into Lp(RN ) for p ∈ [, ∗
α], and compactly

embedded into Lp
loc(RN ) for p ∈ [, ∗

α).

Using the above lemma, we can obtain the following result.

Theorem  Assume that H(V )() and H(V )() hold. Then:
(i) we have a compact embedding E ↪→ L(RN );

(ii) for any p ∈ (, ∗
α), we have a compact embedding E ↪→ Lp(RN ).

Proof (i) Assume un ⇀  in E, and ‖un‖E ≤ c. We need to show un →  in L(RN ). By
Lemma , we have un →  in L

loc(RN ). It suffices to show that for every ε > , there exists
R >  such that

∫

Bc
R

|un| dx ≤ ε for all n = , , . . . ,

where BR = {x ∈R
N : |x| < R}, Bc

R = {x ∈R
N : |x| ≥ R}.
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First of all, choose {yi} ⊂ R
N such that RN ⊂ ⋃∞

i= Br(yi) and each x ∈ R
N is covered by

at most N such balls. So

∫

Bc
R

|un| dx ≤
∑

|yi|≥R–r

∫

Br(yi)
|un| dx

=
∑

|yi|≥R–r

[∫

Br(yi)∩{x∈RN :V (x)>b}
|un| dx +

∫

Ab(yi)
|un| dx

]
,

where Ab(yi) = Br(yi) ∩ {x ∈R
N : V (x) ≤ b}.

On the one hand,

∫

Br (yi)∩{x∈RN :V (x)>b}
|un| dx ≤ 

b

∫

Br (yi)
V (x)|un| dx,

where Br(y) = {x ∈R
N : |x – y| < r}.

On the other hand, since Sobolev embedding E ↪→ Hα(RN ) ↪→ L∗
α (RN ) is continuous,

there is a constant c >  such that

|un|∗
α

≤ c‖un‖E ≤ cc.

Applying the Hölder inequality, we get

∫

Ab(yi)
|un| dx ≤

(∫

Ab(yi)
|un| N

N–α dx
) N–α

N
(∫

Ab(yi)


N
α dx

) α
N

≤
(∫

Ab(yi)
|un| N

N–α dx
) N–α

N
sup

|yi|≥R–r

[
μ

(
Ab(yi)

)] α
N .

Hence,

∫

Bc
R

|un| dx ≤
∑

|yi|≥R–r

[

b

∫

Br (yi)
V (x)|un| dx

+
(∫

Ab(yi)
|un| N

N–α dx
) N–α

N
sup

|yi|≥R–r

[
μ

(
Ab(yi)

)] α
N

]

≤ N

b

∫

Bc
R–r

V (x)|un| dx

+
(

N
∫

Bc
R–r

|un| N
N–α dx

) N–α
N

sup
|yi|≥R–r

[
μ

(
Ab(yi)

)] α
N

≤ N

b

∫

RN
V (x)|un| dx

+ N–α

(∫

RN
|un| N

N–α dx
) N–α

N
sup

|y|≥R–r

[
μ

(
Ab(y)

)] α
N

≤ N

b

∫

RN

(∣∣(–�)
α
 un

∣
∣ + V (x)|un|

)
dx
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+ N–α|un|∗
α

sup
|y|≥R–r

[
μ

(
Ab(y)

)] α
N

≤ N

b
‖un‖

E + N–αc
‖un‖

E sup
|y|≥R–r

[
μ

(
Ab(y)

)] α
N

≤ N

b
c

 + N–αc
c

 sup
|y|≥R–r

[
μ

(
Ab(y)

)] α
N .

Now, choose b >  such that

N

b
c

 <
ε


. ()

For such a fixed b > , since

sup
|y|≥R–r

[
μ

(
Ab(y)

)] α
N →  as R → +∞,

there exists R >  large enough such that

sup
|y|≥R–r

[
μ

(
Ab(y)

)] α
N ≤ ε

N–α+c
c


. ()

It follows from () and () that
∫

Bc
R

|un| dx ≤ ε,

from which conclusion (i) of the lemma follows.
(ii) To prove the lemma for general exponent p ∈ (, ∗

α), we use an interpolation argu-
ment. Let un ⇀  in E, we have just proved that un →  in L(RN ).

Moreover, since the embedding E ↪→ L∗
α (RN ) is continuous and {un} is bounded in E,

we also have supn
∫
RN |un|∗

α dx < +∞.
Since  < p < ∗

α , there exists λ ∈ (, ) such that


p

=
λ


+

 – λ

∗
α

.

Then we have

s =


pλ
>  and t =

∗
α

p( – λ)
> .

Using Hölder’s inequality, we deduce that

∫

RN
|un|p dx =

∫

RN
|un| 

s |un|
∗
α
t dx

≤ ∣
∣|un| 

s
∣
∣
s

∣
∣|un|

∗
α
t
∣
∣
t

= |un|

s

 |un|
∗
α
t

∗
α

→  as n → +∞.

This implies un →  in Lp(RN ), and the proof of conclusion (ii) is completed. �
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Next, we state the following version of the Pohozaev identity, which will be used to ob-
tain the boundedness of ‖un‖E . Similar results can be found in [, –]. Its proof is a
mixture of many ingredients that are scattered through the literature. We refer the read-
ers to Proposition . in [] (see also Proposition . in [] for the case that V (x) ≡ ) for
the details.

Lemma  Let N ≥ . Assume that H(f )() and H(f )() hold. If u ∈ E is a weak solution of
(P), then the following Pohozaev type identity holds:

N – α



∫

RN

∣∣(–�)
α
 u

∣∣ dx +
N


∫

RN
V (x)|u| dx +




∫

RN

〈∇V (x), x
〉∣∣u(x)

∣∣ dx

= N
∫

RN
F
(
u(x)

)
dx.

Remark  We would like to mention that the regularity condition H(f )() is necessary to
prove the Pohozaev identity. The smoothness of f will only be used here.

In order to discuss the problem (P), we need to define a functional in E:

ϕ(u) =



∫

RN

(∣∣(–�)
α
 u(x)

∣
∣ + V (x)

∣
∣u(x)

∣
∣)dx –

∫

RN
F
(
u(x)

)
dx, ∀u ∈ E.

Then we see from H(f )() and H(f )() that ϕ is well defined on E and is of C, and

〈
ϕ′(u), v

〉
=

∫

RN

(
(–�)

α
 u(–�)

α
 v + V (x)uv

)
dx –

∫

RN
f (u)v dx, ∀u, v ∈ E.

It is standard to verify that the weak solutions of (P) correspond to the critical points of
the functional ϕ.

Next we recall a monotonicity method due to Struwe [] and Jeanjean [], which will
be used in our proof. The version here is from [].

Theorem  Let (X,‖ · ‖) be a Banach space and I ⊂ R+ an interval. Consider the family
of C functionals on X,

ϕλ(u) = A(u) – λB(u), λ ∈ I,

with B nonnegative and either A(u) → ∞ or B(u) → ∞ as ‖u‖ → ∞ and such that
ϕλ() = .

For any λ ∈ I we set Tλ = {γ ∈ C([, ], X) : γ () = ,ϕλ(γ ()) < }.
If for every λ ∈ I the set Tλ is nonempty and

cλ = inf
γ∈Tλ

max
t∈[,]

ϕλ

(
γ (t)

)
> ,

then for almost every λ ∈ I there is a sequence {un} ⊂ X such that:
() {un} is bounded;
() ϕλ(un) → cλ as n → ∞;
() ϕ′

λ(un) →  as n → ∞, in the dual space X– of X .



Ge and Zhang Boundary Value Problems  (2015) 2015:235 Page 7 of 12

In our case, X = E,

A(u) =



∫

RN

(∣∣(–�)
α
 u

∣∣ + V (x)u)dx and B(u) =
∫

RN
F(u) dx.

3 Some lemmas and proof of main result
In this section, to overcome the lack of compactness, we need to consider the functional
ϕλ in the functions space E. We shall prove that ϕλ satisfies the conditions of Theorem 
in the next several lemmas.

Lemma  Let Tλ be the set of paths defined in Theorem . Then Tλ �= ∅ for λ ∈ I = [δ, ],
where δ ∈ (, ) is a positive constant.

Proof We choose η ∈ C∞
 (RN ) with ‖η‖E =  and supη ⊂ Br() for some r > . From

H(f )(), we know that for any c >  with cδ
∫

Br() η
 dx > /, there exists c >  such

that

F(u) ≥ c|u| – c, u ∈R+. ()

Then we have

ϕλ(tη) =
t



∫

RN

(∣∣(–�)
α
 η

∣
∣ + V (x)η)dx – λ

∫

RN
F(tη) dx

=
t


– λ

∫

RN
F(tη) dx

≤ t


– δct

∫

Br()
η dx + c

∣∣Br()
∣∣

= t
(




– δc

∫

Br()
η dx

)
+ c

∣
∣Br()

∣
∣.

Therefore, we can choose t >  large such that ϕλ(tη) < . The proof is completed. �

Lemma  Let cλ be the set of paths defined in Theorem . Then there exists a constant c > 
such that cλ ≥ c for λ ∈ [δ, ].

Proof By H(f )() and H(f )(), for any ε ∈ (, /), there exists cε >  such that

∣∣F(u)
∣∣ ≤ εV


|u| + cε|u|p, u ∈R+. ()

Furthermore, by Theorem , we have E ↪→ Lp(RN ) compactly. Then there exists c > 
such that |u|p ≤ c‖u‖E . Hence, for any u ∈ E and λ ∈ [δ, ], using () it follows that

ϕλ(u) =



∫

RN

(∣∣(–�)
α
 u

∣∣ + V (x)u)dx – λ

∫

RN
F(u) dx

≥ 

‖u‖

E –
∫

RN

(
εV


|u| + cε|u|p

)
dx

≥ 

‖u‖

E –
ε



∫

RN
V (x)|u| dx – cε

∫

RN
|u|p dx
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≥ 

‖u‖

E –
ε



∫

RN

(∣∣(–�)
α
 u

∣∣ + V (x)|u|)dx – cε

∫

RN
|u|p dx

≥ 


‖u‖
E – cε|u|pp

≥ 


‖u‖
E – cεcp

‖u‖p
E ,

which implies that there exists ρ >  such that ϕλ(u) >  for every u ∈ E and ‖u‖E ∈ (,ρ].
In particular, for ‖u‖E = ρ , we have ϕλ(u) ≥ c > . Fix λ ∈ [δ, ] and γ ∈ Tλ. By the definition
of Tλ we can see that ‖γ ()‖E > ρ . By continuity, we deduce that there exists tγ ∈ (, ) such
that ‖γ (tγ )‖E = ρ . Thus, for any λ ∈ [δ, ],

cλ ≥ inf
γ∈Tλ

ϕλ

(
γ (tγ )

) ≥ c > .

Therefore, we complete the proof. �

Next we prove that the functional ϕλ can achieve the critical value at cλ for any λ ∈ [δ, ].

Lemma  For any λ ∈ [δ, ], each bounded (PS) sequence of the functional ϕλ admits a
convergent subsequence.

Proof Let λ ∈ [δ, ]. Suppose that {un} ⊂ E is a (PS) sequence for ϕλ, that is, {un} and ϕλ(un)
are bounded, ϕ′

λ(un) →  in E′, where E′ is the dual space of E. Then there exists u ∈ E such
that un ⇀ u in E. Thus, Theorem  implies that

un → u in Lp(
R

N)
,

un → u a.e. in R
N .

By virtue of hypothesis H(f )() and H(f )(), for any ε ∈ (, /), there exists cε >  such
that

∣
∣f (u)

∣
∣ ≤ ε|u| + cε|u|p–, u ∈ R+. ()

So it follows from () that

∣∣
∣∣

∫

RN
f (un)(un – u) dx

∣∣
∣∣ ≤

∫

RN

∣
∣f (un)

∣
∣|un – u|dx

≤
∫

RN

(
ε|un| + cε|un|p–)|un – u|dx

≤ ε|un||un – u| + cε

∣∣|un|p–∣∣
p′ |un – u|p

≤ ε|un||un – u| + cε|un|p–
p |un – u|p

≤ εc‖un‖E|un – u| + cεcp–
 ‖un‖p–

E |un – u|p,

which implies that

∫

RN
f (un)(un – u) dx →  as n → ∞.
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Thus

〈
ϕ′

λ(un), un – u
〉

=
∫

RN

(
(–�)

α
 un(–�)

α
 (un – u) + V (x)un(un – u)

)
dx

– λ

∫

RN
f (un)(un – u) dx

=
∫

RN

(
(–�)

α
 un(–�)

α
 (un – u) + V (x)un(un – u)

)
dx + o()

and
∫

RN

(
(–�)

α
 un(–�)

α
 (un – u) + V (x)un(un – u)

)
dx →  as n → ∞.

Therefore we conclude that ‖un‖
E → ‖u‖

E . This together with un ⇀ u in E shows that
un → u in E. The proof is completed. �

Now we are in the position to show that the modified functional ϕλ has a nontrivial
critical point.

Lemma  For almost every λ ∈ [δ, ], there exists uλ ∈ E\{} such that ϕ′
λ(uλ) =  and

ϕλ(uλ) = cλ.

Proof By virtue of Theorem , for almost every λ ∈ [δ, ], there exists a bounded sequence
{un

λ} ⊂ E such that

ϕλ

(
un

λ

) → cλ and ϕ′
λ

(
un

λ

) →  as n → ∞.

According to Lemma , we may assume that there exists uλ ∈ E such that un
λ → uλ in E.

Then it follows that ϕλ(uλ) = cλ and ϕ′
λ(uλ) =  and uλ �=  from Lemma . �

From Lemma  we know that there exist a sequence λn ∈ [δ, ] with λn → – and an
associated sequence {un} ⊂ E such that

ϕλn (un) = cλn and ϕ′
λn (un) = . ()

Next, we will show that the sequence {un} is bounded, which is a key ingredient in this
paper.

Lemma  Let un be a critical point of ϕλn at the level cλn as defined in (). Then there exists
a constant c >  such that ‖un‖E ≤ c for all n.

Proof In view of Lemma  and (), we see that un satisfies the following Pohozaev identity:

N – α



∫

RN

∣∣(–�)
α
 un

∣∣ dx +
N


∫

RN
V (x)|un| dx +




∫

RN

〈∇V (x), x
〉|un| dx

= λnN
∫

RN
F(un) dx. ()
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Recall that ϕλn (un) = cλn . So we have

N


∫

RN

(∣∣(–�)
α
 un

∣
∣ + V (x)u

n
)

dx – λnN
∫

RN
F(un) dx = cλn N . ()

Then from (), (), and hypothesis H(f )(), it follows that

α

∫

RN

∣
∣(–�)

α
 un

∣
∣ dx = cλn N +




∫

RN

〈∇V (x), x
〉|un| dx

≤ cλn N +


∣
∣〈∇V (x), x

〉∣∣
L

N
α (RN )

|un|∗
α

≤ cλn N +


Sα

∣
∣〈∇V (x), x

〉∣∣
L

N
α (RN )

∫

RN

∣
∣(–�)

α
 un

∣
∣ dx. ()

Set M = α – 
Sα

|〈∇V (x), x〉|
L

N
α (RN )

. Then

M

∫

RN

∣∣(–�)
α
 un

∣∣ dx ≤ cλn N . ()

We estimate the right-hand side of (). By the min-max definition of the mountain pass
level cλn , Lemma  and (), we have

cλn ≤ max
t

ϕλn (tη)

≤ max
t

{
t


– λn

∫

RN
F(tη) dx

}

≤ max
t

{
t

(



– δc

∫

Br ()
η dx

)
+ c

∣∣Br()
∣∣
}

≤ c
∣∣Br()

∣∣. ()

From () and (), we conclude that

M

∫

RN

∣∣(–�)
α
 un

∣∣ dx ≤ cN
∣∣Br()

∣∣. ()

Note that E ⊂ Ḣα(RN ) and the embedding Ḣα(RN ) ↪→ L∗
α (RN ) is continuous. Then we

have

|u|∗
α

≤ 
Sα

∫

RN

∣∣(–�)
α
 u

∣∣ dx, ∀u ∈ E.

Recall from ()
∫

RN

(∣∣(–�)
α
 un

∣∣ + V (x)u
n
)

dx = Nλn

∫

RN
f (un)un dx. ()

Using () in (), we obtain
∫

RN

(∣∣(–�)
α
 un

∣∣ + V (x)u
n
)

dx

≤ N
∫

RN

(
ε|un| + cε|un|p

)
dx
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≤ N
∫

RN

(
ε

V (x)
V

|un| + cε|un|∗
α

)
dx

≤ Nε

V

∫

RN

(∣∣(–�)
α
 un

∣∣ + V (x)|un|
)

dx + cεN
∫

RN
|un|∗

α dx

≤ Nε

V

∫

RN

(∣∣(–�)
α
 un

∣
∣ + V (x)|un|

)
dx

+ cεN
[


Sα

∫

RN

∣∣(–�)
α
 un

∣∣ dx
] N

N–α

, ()

which implies that

(
 –

Nε

V

)∫

RN

(∣∣(–�)
α
 un

∣∣ + V (x)u
n
)

dx

≤ cεN
[


Sα

∫

RN

∣
∣(–�)

α
 un

∣
∣ dx

] N
N–α

≤ cεN
[


Sα

cN |Br()|
α

] N
N–α

.

It follows that

‖un‖
E ≤ cεN

[


Sα

cN |Br()|
M

] N
N–α V

(V – Nε)
.

Then the conclusion holds. �

Finally, we are ready to prove our main theorem.

Proof of Theorem  Let un be a critical point for ϕλn at the level cλn . Then from Lemma 
we may assume that ‖un‖E ≤ c.

Note that λn → , we can show that {un} is a (PS) sequence of ϕ. Indeed, the boundedness
of {un} implies that {ϕ(un)} is bounded. Also

〈
ϕ′(un), v

〉
=

〈
ϕ′

λn (un), v
〉
+ (λn – )

∫

RN
f (un)v dx, ∀u ∈ E.

Hence, ϕ′(un) → , and consequently {un} is a bounded (PS) sequence of ϕ. By Lemma ,
{un} has a convergent subsequence, hence without loss of generality we may assume that
un → u. Therefore, ϕ′(u) = . By virtue of Lemma , we have

ϕ(u) = lim
n→∞ϕ(un) = lim

n→∞ϕλn (un) ≥ c > ,

and u is a positive solution by the condition H(f )(). The proof is completed. �
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