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Abstract
We investigate the effects of momentum, thermal, and solute slip boundary
conditions on nanofluid boundary layer flow along a permeable surface. The
conventional no-slip boundary conditions at the surface are replaced by slip
boundary conditions. At moderate to high temperatures, the
temperature-concentration dependence relation is nonlinear and the Soret effect is
significant. The governing partial differential equations are solved numerically. The
influence of significant parameters on the fluid properties as well as on the skin
friction, local Nusselt number, local Sherwood number, and the local nanoparticle
Sherwood number are determined. We show, among other results, that the existence
and uniqueness of the solutions depends on the slip parameters, and that the region
of existence of the dual solution increases with the slip parameters.

Keywords: stagnation-point flow; nonlinear convection; partial slip; dual solutions;
Soret effect

1 Introduction
Boundary layer flow over a stretching surface is important as it occurs in several engineer-
ing process, for example, materials manufactured by extrusion. During the manufacturing
process, a stretching sheet interacts with the ambient fluid both thermally and mechan-
ically. Several studies on the dynamics of boundary layer flow over a stretching surface
have appeared in the literature (Crane []; Dutta et al. []). Recently an innovative tech-
nique used for improving heat transfer is to add ultra fine solid particles to a base fluid,
Choi []. Recent literature shows a significant rise in applications of nanofluids such as in
microchannels (Ebrahimi et al. [], enzyme biosensors (Li et al. []), drug delivery (Shaw
and Murthy []) biomimetic microsystems (Huh et al. []) etc. An impressive review of
nanofluid research is given by Das et al. []. Kameswaran et al. [] studied homogeneous-
heterogeneous reactions in a nanofluid flow over a porous stretching sheet. Mabood et al.
[] studied the MHD boundary layer flow of nanofluids over a nonlinear stretching sheet.

A significant number of studies have applied the no-slip boundary conditions at the
wall. However, the no-slip assumption is not applicable when fluid flows in micro and
nano channels and must be replaced by slip boundary conditions (Aziz []). Nield and
Kuznetsov [] presented an analytic solution for convection flow in channel or circu-
lar ducts saturated with a rarefied gas in a slip-flow regime. The slip condition applies to
corner flows and in the extrusion of polynomial melts from a capillary tube (Thompson

© 2016 Shaw et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13661-015-0506-2
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-015-0506-2&domain=pdf
mailto:sibandap@ukzn.ac.za


Shaw et al. Boundary Value Problems  (2016) 2016:2 Page 2 of 11

and Troian []; Nguyen and Wereley []). Karniadakis et al. [] showed that hydrody-
namic and thermal slip occur simultaneously. The difference between the fluid velocity at
the wall and the velocity of the wall itself is directly proportional to the shear stress. The
proportionality constant is called the slip length (Maxwell []; Hak []).

Beavers and Joseph [] investigated fluid flow over a permeable wall with a slip bound-
ary condition. The effects of a second order velocity-slip and temperature-jump on basic
gaseous fluctuating micro-flows were analyzed by Hamdan et al. []. The effects of partial
slip on steady boundary layer stagnation-point flow of an incompressible fluid and heat
transfer from a shrinking sheet was investigated by Bhattacharyya et al. []. This was ex-
tended in Bhattacharyya et al. [] to unsteady stagnation-point flow of a Newtonian fluid
and heat transfer from a stretching sheet with partial slip conditions. Niu et al. [] in-
vestigated slip flow and heat transfer in a non-Newtonian nanofluid in a microtube. Khan
et al. [] analyzed the effects of hydrodynamic and thermal slip boundary conditions on
double-diffusive free convective flow of a nanofluid along a semi-infinite flat solid vertical
plate. Ibrahim and Shankar [] studied the effects of velocity, thermal and solutal slip
condition on the MHD boundary layer flow of a nanofluid past a permeable stretching
sheet. Mabood et al. [] studied the MHD slip flow over a radiation stretching sheet by
using the optimal homotopy asymptotic method.

Some thermal systems such as those encountered in reactor safety, combustion and solar
collectors operate at moderate to very high temperatures. In such cases, the temperature-
concentration dependence relation is nonlinear and the Soret effect is of immense im-
portant. Partha [] studied natural convection in a non-Darcy porous medium with a
nonlinear temperature-concentration-dependent density relation.

In this paper, we analyze the effects of momentum, temperature and solute slip on
stagnation-point flow over a permeable stretching or shrinking sheet. We transform the
governing partial differential equations into similarity equations which are then solved
numerically. The effects of physical parameters on the flow, heat, mass and nanoparticle
concentration are determined and presented graphically. In the present paper, we mainly
focus on the effect of slip parameters on the governing system along with the nonlinear
thermal convection. To the best of authors knowledge such study has not been reported
earlier in the literature.

2 Mathematical formulation
Consider steady, incompressible two dimensional boundary layer flow near the stagnation
point in a permeable stretching or shrinking sheet. The x-axis is along the plate, the y-
axis is measured normal to the plate. The temperature T , solute concentration S, and
nanoparticle concentration C at the wall are denoted by Tw, Sw, and Cw, respectively, and
their ambient values are T∞, S∞, and C∞, respectively, where Tw > T∞, Sw > S∞, and Cw >
C∞, and hence a momentum, thermal, solute, and nanoparticle concentration boundary
layer form near the wall (Figure ). We assume that hydrodynamic, thermal, and solute
slip occur at the fluid-solid interface. Using the above assumption and the Oberbeck-
Boussinesq approximation, the boundary layer equations are written as

∂u
∂x

+
∂v
∂y

= , ()



Shaw et al. Boundary Value Problems  (2016) 2016:2 Page 3 of 11

Figure 1 Schematic diagram of the problem.
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+ v
∂S
∂y

= DS
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(
DmKT

Tm

)
∂T
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u
∂C
∂x

+ v
∂C
∂y

= DB
∂C
∂y +

(
DT

T∞

)
∂T
∂y , ()

and the corresponding boundary conditions are

u = cx + L(∂u/∂y), v = , T = Tw + k(∂T/∂y), S = Sw + k(∂S/∂y),

C = Cw, at y = ,

u → ue(x) = ax, T → T∞, S → S∞, C → C∞, as y → ∞,

()

u and v are the velocity components along the x- and y- directions, respectively, ue(x) = ax
is the ambient velocity of the fluid, a is a constant, ν , ρf , and μ are the kinematic viscosity,
density, and apparent viscosity of the base fluid, ρP is the density of the nanoparticle, K is
the permeability of the porous medium, g is the acceleration due to gravity, β and β are
the volumetric thermal expansion coefficient, respectively, β and β are the volumetric
solute expansion coefficient, respectively, αm is the effective thermal diffusivity, τ = (ρc)p

(ρc)f
,

(ρc)p, and (ρc)f are the volumetric heat capacity for nanoparticle and fluid, respectively,
DB and DT are the Brownian and thermophoresis diffusion coefficients, respectively, Ds

and Dm are the solute and mass diffusivities, respectively, KT is the thermal diffusion ra-
tio, c is a constant, L, k, and k are the hydrodynamic, thermal, and solute slip factors,
respectively.



Shaw et al. Boundary Value Problems  (2016) 2016:2 Page 4 of 11

We introduce the following similarity variables (see Ibrahim and Shankar []):

ψ =
√

aνxf (η), η =
√

a
ν

y, θ =
T – T∞
Tw – T∞

, χ =
S – S∞

Sw – S∞
, φ =

C – C∞
Cw – C∞

, ()

where ψ is the stream function, which is defined in the usual way as u = ∂ψ/∂y and v =
–∂ψ/∂x. Using the similarity variables, the governing equations are written as

f ′′′ + ff ′′ +  – f ′ + Kp
(
 – f ′) + λ

[
( + λθ )θ + Nc( + λχ )χ – Nrφ

]
= , ()

θ ′′ + Pr
(
f θ ′ + Nbθ ′φ′ + Ntθ ′) = , ()

χ ′′ + Lnf χ ′ + Srθ ′′ = , ()

φ′′ + Lef φ′ +
(

Nt
Nb

)
θ ′′ = , ()

and the boundary conditions are written as

f ′() = α + αf ′′(), θ () =  + αθ
′(), χ () =  + αχ

′(), φ() = ,

f ′(∞) = , θ (∞) = , χ (∞) = , φ(∞) = .
()

In the above equations, Kp = ν/aK is a parameter which is inversely proportional to the
permeability K , λ = Grx/ ˆRex


is the mixed convection parameter, Grx is the Grashof num-

ber, Rex is the Reynolds number, Nc is the regular buoyancy parameter, λ and λ are
the volumetric nonlinear thermal and solute constants, respectively, Nr is the buoyancy
ratio parameter, Pr is the Prandtl number, Nb is the Brownian parameter, Nt is the ther-
mophoresis parameter, Le is the Lewis number, α is the velocity ratio or stretching ratio,
α, α, and α are momentum, thermal, and solute slip, respectively. These parameters are
defined as

Grx =
( – S∞)ρKg(Tw – T∞)βx

ν , ˆRex =
ue(x)x

ν
, Nc =

β(Sw – S∞)
β(Tw – T∞)

,

λ =
β(Tw – T∞)

β
, λ =

β(Sw – S∞)
β

, Nr =
(ρp – ρf )(Cw – C∞)

ρf ( – S∞)β(Tw – T∞)
,

Pr =
ν

αm
, Nb =

τDB(Cw – C∞)
ν

, Nt =
τDT (Tw – T∞)

νT∞
,

Le =
αm

εDB
, α = c/a, α =

√
a/νL, α = k

√
a/ν, α = k

√
a/ν.

The parameters of practical interest are the skin friction, local Nusselt number Nux, the
local Sherwood number Shx, and the local nanoparticle Sherwood number Nnx. These
parameters are defined as

Cf =
xτw

ρu
e

, Nux =
xqw

k(T – T∞)
, Shx =

xqs

DS(S – S∞)
, Nnx =

xqn

DB(C – C∞)
, ()

where τw = μ( ∂u
∂y )y=, qw = –k( ∂T

∂y )y=, qs = –DS( ∂S
∂y )y=, qn = –DB( ∂C

∂y )y=.
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Using the above non-dimensionless and similarity transformation we get

Re/
x Cf = f ′′(), Re–/

x Nux = –θ ′(),

Re–/
x Shx = –χ ′(), Re–/

x Nnx = –φ′(),
()

where Rex = ue(x)x/ν is the local Reynolds number.

3 Results and discussion
The system of ordinary differential equations ()-() along with boundary conditions ()
are integrated numerically by first choosing suitable initial guess values for f (), f ′′(),
θ ′(), χ ′(), and φ′() to match the boundary conditions at ∞. Matlab bvp4c solver was
used to integrate the system of equations. To verify the accuracy of the numerical results,
we compared our results with those reported by Noghrehabadi et al. [] as shown in
Table . The results are in very good agreement, thus lending confidence to the accuracy
of the present results.

A representative set of graphical results for the velocity, temperature, solute concentra-
tion and nanoparticle volume fraction as well as the skin friction, local Nusselt number,
local Sherwood number and local nanoparticle Sherwood number is presented and dis-
cussed for different parametric values. We note that solutions of equations () and ()
exist for all values of α > , while in the case of a shrinking surface (α < ), the equations
have a solution only in the range α > αcrit, where αcrit is a critical value of α. This criti-
cal value depends on other parameter values. There are no solutions real when α < αcrit.
Dual solutions of the boundary layer equations appear in the range αcrit < α. As noted by

Table 1 Comparison of the reduced Nusselt number –θ ′(0) and Sherwood number –φ′(0)
with Noghrehabadi et al. [27] for Nc = 1, Nr = 3, δ1 = 1, Le = Pr = 10. (a) δ3 = δ4 = λ = γ =
Ln = Sr = Kp = 0 and (b) δ3 = δ4 = λ = 0, Ln = 1, Sr = 0.5, Kp = 0.5

δ2 Nb Nt Noghrehabadi et al. [27] Present (a) Present (b)

Nur Shr Nur Shr Nur Shr

0.0 0.1 0.1 0.952377 2.129394 0.95237683 2.12939377 1.00058819 2.66004285
0.3 0.520079 2.528638 0.52007905 2.52863816 0.54419785 3.46549450
0.5 0.321054 3.035142 0.32105433 3.03514247 0.31586598 4.38704894

0.2 0.1 0.505581 2.381871 0.50558141 2.38187064 0.54400672 2.85986019
0.3 0.273096 2.655459 0.27309580 2.65545946 0.28254157 3.33932740
0.5 0.168077 2.888339 0.16807658 2.88833918 0.16127263 3.75314398

0.3 0.1 0.252156 2.410019 0.25215609 2.41001880 0.27177120 2.86844013
0.3 0.135514 2.608819 0.13551419 2.60881871 0.13604735 3.19990440
0.5 0.083298 2.751875 0.08329860 2.75187540 0.07566950 3.45202615

1.0 0.1 0.1 2.751875 1.607430 0.71892800 1.60743180 1.14988755 3.00376688
0.3 0.392596 1.908809 0.39259606 1.90881247 0.63804840 3.78822390
0.5 0.242357 2.291156 0.24235674 2.29116127 0.37823785 4.77292460

0.2 0.1 0.381652 1.798019 0.38165211 1.79802095 0.63400147 3.28337188
0.3 0.206154 2.004545 0.20615392 2.00454704 0.33706394 3.78349666
0.5 0.126877 2.180339 0.12687726 2.18034274 0.19696830 4.23378793

10.0 0.1 0.1 0.412468 0.922099 0.41247939 0.92225151 1.20480363 3.13488626
0.3 0.225245 1.094883 0.22524897 1.09516618 0.67291837 3.91228460
0.5 0.139050 1.314098 0.13905033 1.31453566 0.40123365 4.91834227

0.2 0.1 0.218955 1.031454 0.21896995 1.03160059 0.66701497 3.44165247
0.3 0.118275 1.149881 0.11827923 1.15009326 0.35709376 3.94942212
0.5 1.204555 1.250672 0.07279486 1.25095500 0.21002703 4.41174227

0.3 0.1 0.109199 1.043650 0.10921014 1.04379192 0.33770638 3.47832715
0.3 0.058689 1.129708 0.05869191 1.12989321 0.17488396 3.84292518
0.5 0.036078 1.191622 0.03607706 1.19185182 0.10098316 4.12849783
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Figure 2 Effect of the velocity as a function of (a) Nc, Nr (λ = 1, Kp = 0.1), (b) λ, Kp (Nc = Nr = 0.1) with
λ1 = λ2 = Nt = Nb = 0.1, Pr = 0.5, Ln = Le = 1, Sr = 0.5, α1 = –1.6, α2 = 0.5, α3 = α4 = 0.1.

Figure 3 Solute concentration as a function of Ln, Sr (Le = 1, Pr = 0.5) (a) and (b) nanoparticle
concentration as a function of Le, Pr (Ln = 1, Sr = 0.5) with Kp = λ = λ1 = λ2 = Nr = Nc = 0.1, α1 = –1.6,
α2 = 0.5, α3 = α4 = 0.1.

Merkin [], Postelnicu and Pop [], the first solution is stable and physically realizable,
while the second solution is unstable. In this study our primary focus is on the dual solu-
tions and the effects of the slip coefficients and nonlinear volumetric thermal and solute
constants.

The influence of the parameters Nr, Nc, λ, and Kp on the velocity profiles is shown in
Figure . Dual solutions are observed in both instances. We note that the buoyancy ratio
parameter has the effect of decelerating the fluid flow along the surface. This is reflected
by the decrease in the fluid velocity in the vicinity of the surface. Hence the momentum
boundary layer thickness decreases with an increase in Nr. The regular buoyancy ratio pa-
rameter Nc is similar to Nr and hence the momentum boundary layer thickness decreases
with an increase in Nc. The parameter Kp is inversely proportional to the permeability of
the medium K , hence the porous medium drag increases with K and so the velocity of the
fluid increases with Kp. The momentum boundary layer thickness increased with an in-
crease in the mixed convection parameter. Dual solutions were obtained for the opposing
flow when λ < .

Figure  shows the effect of the nanofluid Lewis number Ln, the Soret number Sr, the
Lewis number Le and the Prandtl number Pr on the solute and the nanoparticle concen-
trations when the other parameters are fixed. The concentration boundary layer thickness
decreases with an increase in the nanofluid Lewis number. This is because an increase in
the nanofluid Lewis number causes a reduction in the mass diffusivity of the nanofluid
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Figure 4 Effect of λ1 and λ2 on (a) velocity, (b) temperature, (c) solute concentration, and (d)
nanoparticle concentration with Kp = λ = Nr = Nc = 0.1, Le = Ln = 1, Pr = Sr = 0.5, α1 = –1.6, α2 = 0.5,
α3 = α4 = 0.1.

which in turn reduces the velocity of the fluid as well as the solute concentration. The
solute concentration boundary layer thickness decreases with an increase in Ln while the
nanoparticle volume fraction decreases with an increase in the Lewis number. The Prandtl
number enhances the viscous diffusion rate which in turn reduces the velocity of the fluid
and increases the concentration of the nanoparticle.

The effects of the nonlinear temperature and concentration coefficient on the velocity,
temperature, solute concentration and nanoparticle concentration are shown in Figure .
Dual solutions were obtained when α = –. for all other parameter values. We observed
that the effect of the convection nonlinearity (λ and λ) is to reduce the thermal and
solute boundary layer thicknesses. A similar observation was made by Partha []. This
may partly be due to the nonlinear term enhancing the solute and nanoparticle density
gradients near the wall. A careful observation shows that the effect of λ is more significant
compared with λ, particularly with respect to the momentum boundary layer profiles.

The slip coefficients have a significant influence on the velocity, temperature, solute,
and nanoparticle concentration as clearly shown in Figure . The velocity of the nanofluid
increases with momentum slip constant α. This is because momentum slip enhances the
velocity at the fluid-solid interface. In the case of the no-slip condition, the fluid velocity
adjacent to a solid surface is equal to the velocity of the stretching sheet i.e., f ′() = α = 
while with an increase in other slip parameters, the momentum boundary layer thickness
decreases. The thermal slip coefficient mainly affects the temperature profile and reduces
the temperature at the surface. With thermal slip, more heat is transferred leading to a
reduction in surface temperature and this reduces the velocity of the nanofluid. As a result
both solute and nanoparticle concentration thickness decreases. The solute concentration
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Figure 5 Effect of α2, α3, and α4 on (a) velocity, (b) temperature, (c) solute concentration, and
(d) nanoparticle concentration with Kp = λ = λ1 = λ2 = Nr = Nc = 0.1, Le = Ln = 1, Pr = Sr = 0.5, α1 = 1.

Figure 6 Local Nusselt number as a function Kp
with λ = 1, Nt = Nb = Nr = Nc = 0.1, Pr = 0.5, Ln
= Le = 1, Sr = 0.5, α1 = α2 = α3 = α4 = 0.1.

is mainly affected by the solute slip coefficient and the thickness of the solute concentration
decreases with increase of the solute slip coefficient.

Figures  and  show the Nusselt number, Sherwood number, and density of the
nanoparticle as a function of nonlinear thermal and solute constants for different values
of Kp. With an increase in the permeability parameter, the velocity of the fluid reduces,
hence as Kp increases, the surface temperature gradient, solute, and the nanoparticle con-
centration at the surface decrease which helps to reduce the local Nusselt number, local
Sherwood number, and local nanoparticle Sherwood number. It evident that nonlinear-
ity of the temperature and solute concentration both enhance the local Nusselt number
and the local Sherwood number. This may be due to the fact that the nonlinearity term
increases the temperature and concentration of the solute at the surface. A similar be-
havior is observed in the case of the nanoparticle concentration. It is interesting to note
that the nonlinear curves are highly influenced by the nonlinear convection parameter as
compared to the nonlinear concentration parameter.
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Figure 7 Effects of nonlinear thermal and solute constants on (a) local Sherwood number and (b)
local density of nanoparticles as a function Kp with λ = 1, Nt = Nb = Nr = Nc = 0.1, Pr = 0.5, Ln = Le = 1,
Sr = 0.5, α1 = α2 = α3 = α4 = 0.1.

Figure 8 Effect of the slip constants on (a) skin friction, (b) local Nusselt number, (c) local Sherwood
number, and (d) local density of nanoparticle with Kp = 0.1, λ = λ1 = λ2 = 1, Nt = Nb = Nr = Nc = 0.1,
Pr = 0.5, Ln = Le = 1, Sr = 0.5, α2 = 0.5.

Figure  shows the skin friction, local Nusselt number, local Sherwood number, and
local nanoparticle Sherwood number for different values of the thermal and solute slip
constants. Here α = . is kept constant. As seen in Wang [], in the case of the no-slip
boundary conditions (i.e., α = α = α = ), the solution is unique for α > –, there exist
dual solutions for –. ≤ α ≤ –, and no solution is found when α < –.. The
first solution is shown by marker while the second solution by the dotted line. With slip
conditions, the range of α values for which a unique solution as well as dual solutions
exists significantly increases. The increased range of values of α depends principally on
the momentum slip coefficient. The critical values of α are shown in Table . The critical
value of α decreases from –. to –. when the thermal slip coefficient increases
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Table 2 Value of critical velocity ratio α1 for different momentum, thermal, and solute slip
constants for Kp = λ1 = λ2 = Nt = Nb = Nc = Nr = 0.1, Pr = 0.5, Le = Ln = 1, Sr = 0.5

(α1)crit α2 α3 α4 dual solution range

–1.902 0.5 0.1 0.1 –1.902, –1.18
–1.899 0.5 0.5 0.1 –1.899, –1.18
–1.898 0.5 0.5 0.5 –1.898, –1.18
–2.622 1 0.1 0.1 –2.622, –1.18
–3.407 1.5 0.1 0.1 –3.407, –1.18

from . to .. Similarly the critical α decreases with an increase in the solute concentra-
tion. But the critical α is enhanced by the momentum slip coefficient. It is observed that
the lower limit of the critical α is influenced more by the momentum slip parameter than
by the thermal and concentration slip since it is part of the nanofluid velocity (see Fig-
ure (a)), which makes the system more unstable. A close observation shows that the dual
solution region increases nonlinearly with increase of the momentum slip coefficient. The
skin friction initially increases with momentum slip parameter but after a certain point (in
this case α = –.) it decreases nonlinearly.

The local Nusselt number, local Sherwood number, and the local nanoparticle density
are nonlinear increasing functions of the momentum slip parameter for the first solution
while they are a decreasing function for the case of the second solution. It is interesting to
note that the generation of vorticity for the shrinking velocity is reduced by an increase in
the momentum slip at the surface (when α > ). The momentum slip parameter enhances
the velocity at the surface which forces the solute and particle to move away from the sur-
face. As a result, the local Nusselt number, local Sherwood number, and local nanoparticle
Sherwood number increase nonlinearly with the momentum slip parameter but decrease
with increases in the solute slip coefficient. It evident that the local Nusselt number de-
creases with increase of the partial thermal slip coefficient and this finding is similar to
earlier results by Zheng et al. []. The nature of the second solution for the local Nusselt
number, local Sherwood number, and local nanoparticle Sherwood number is quite sim-
ilar and this mainly depends on the momentum slip coefficient rather than the other slip
coefficient.

4 Conclusions
The effect of momentum, thermal, and solute slip on nonlinear convection boundary layer
flow from a stretching and shrinking sheet has been investigated numerically. Analysis of
stagnation-point slip flow from a shrinking sheet has shown that existence and uniqueness
of the solution depends on the slip parameters, mainly the momentum slip and the veloc-
ity ratio parameter α. Dual solutions were obtained when the velocity ratio was less than
a certain critical value. The region of existence of the dual solution increases with the slip
parameters. The nonlinear temperature and concentration coefficients reduce the thermal
and solute boundary layer thicknesses. The thermal slip coefficient reduces the momen-
tum and thermal boundary layer thickness. The local Nusselt number, local Sherwood
number, and local density of the nanoparticles increase nonlinearly with the convection
coefficient.
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