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Abstract
In this paper, we not only give the asymptotic behavior at the origin for the maximum
modulus of weak solutions of the stationary Schrödinger equation in a cone but also
obtain the property of the negative parts of them, which generalize the
Phragmén-Lindelöf type theorems for subfunctions.
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1 Introduction and main results
Let Rn be the n-dimensional Euclidean space, where n ≥ . Let E be an open set in Rn, the
boundary and the closure of it are denoted by ∂E and E, respectively. A point P is denoted
by (X, xn), where X = (x, x, . . . , xn–). For P ∈ Rn and r > , let B(P, r) denote the open ball
with center at P and radius r in Rn.

We introduce a system of spherical coordinates (r,�), � = (θ, θ, . . . , θn–), in Rn which
are related to the cartesian coordinates (X, xn) = (x, x, . . . , xn–, xn) by xn = r cos θ.

Let Sn– and Sn–
+ denote the unit sphere and the upper half unit sphere, respectively. For

� ⊂ Sn–, a point (,�) on Sn–, and the set {�; (,�) ∈ �} are simply denoted by � and
� respectively. The set {(r,�) ∈ Rn; r ∈ �, (,�) ∈ �} in Rn is simply denoted by � × �,
where � ⊂ R+ and � ⊂ Sn–. Especially, the set R+ × � by Cn(�), where R+ is the set of
positive real number and � ⊂ Sn–.

Let Cn(�; I) and Sn(�; I) denote the sets I × � and I × ∂�, respectively, where I is
an interval on R and R is the set of real numbers. Especially, the set Sn(�) denotes
Sn(�; (, +∞)), which is ∂Cn(�) – {O}.

Let �∗ be the spherical part of the Laplace operator � (see []),

� =
n – 

r
∂

∂r
+

∂

∂r +
�∗

r ,

and � be a domain on Sn– with smooth boundary. We consider the Dirichlet problem
(see [], p.)

(
�∗ + λ

)
ϕ(�) =  on �,

ϕ(�) =  on ∂�.
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The least positive eigenvalue of the above boundary value problem is denoted by λ and the
normalized positive eigenfunction corresponding to λ by ϕ(�),

∫
�

ϕ(�) d� = , where
d� denotes the (n – )-dimensional volume element.

We put a rather strong assumption on �: if n ≥ , then � is a C,α-domain ( < α < )
on Sn– surrounded by a finite number of mutually disjoint closed hypersurfaces (e.g. see
[], pp.-, for the definition of the C,α-domain).

Let Aa denote the class of nonnegative radial potentials a(P), i.e.  ≤ a(P) = a(r), P =
(r,�) ∈ Cn(�), such that a ∈ Lb

loc(Cn(�)) with some b > n/ if n ≥  and with b =  if n = 
or n = .

Let I be the identical operator. If a ∈ Aa, then the stationary Schrödinger operator

SSEa = –� + a(P)I

can be extended in the usual way from the space C∞
 (Cn(�)) to an essentially self-adjoint

operator on L(Cn(�)) (see [], Chapter ). We will denote it SSEa as well. This last one
has a Green-Sch function Ga

�(P, Q) which is positive on Cn(�) and its inner normal deriva-
tive ∂Ga

�(P, Q)/∂nQ ≥ , where ∂/∂nQ denotes the differentiation at Q along the inward
normal into Cn(�).

In this paper, we are concerned with the weak solutions of the inequality

SSEau(P) ≤ , (.)

where P = (r,�) ∈ Cn(�).
We will also consider the class Ba, consisting of the potentials a ∈ Aa such that there

exists the finite limit limr→∞ ra(r) = k ∈ [,∞), moreover, r–|ra(r) – k| ∈ L(,∞).
We denote by SbHa(�) the class of all weak solutions of the inequality (.) for any

P = (r,�) ∈ Cn(�), which are continuous when a ∈ Ba (see []). We denote by SpHa(�) the
class of u(P) satisfying –u(P) ∈ SbHa(�). If u(P) ∈ SbHa(�) and u(P) ∈ SpHa(�), then u(P)
is the solution of SSEau(P) =  for any P = (r,�) ∈ Cn(�). In our terminology we follow
Nirenberg []. Other authors have under similar circumstances used various terms such
as subfunctions, subsolutions, submetaharmonic function, subelliptic functions, panhar-
monic functions, etc.; see, for example, Duffin, Littman, Qiao et al., Topolyansky, Vekua
(see [–]).

Solutions of the ordinary differential equation

–�′′(r) –
n – 

r
�′(r) +

(
λ

r + a(r)
)

�(r) = ,  < r < ∞, (.)

play an essential role in this paper. It is well known (see, for example, []) that if the po-
tential a ∈ Aa, then equation (.) has a fundamental system of positive solutions {V , W }
such that V is non-decreasing with

 ≤ V (+) ≤ V (r) ↗ ∞ as r → +∞,

and W is monotonically decreasing with

+∞ = W (+) > W (r) ↘  as r → +∞.
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Denote

ι±k =
 – n ± √

(n – ) + (k + λ)


,

then the solutions to equation (.) have the following asymptotic (see []):

V (r) ≈ rι+k , W (r) ≈ rι–k , as r → ∞.

Let u(P) (P = (r,�) ∈ Cn(�)) be a function. We introduce the following notations: u+ =
max{u, }, u– = – min{u, }, Mu(r) = sup�∈� u(P), l = max�∈� ϕ(�),

Su(r) = sup
�∈�

u(P)
ϕ(�)

, Lu = lim sup
r→

Su(r)
W (r)

, Ju = sup
P∈Cn(�)

u(P)
W (r)ϕ(�)

.

For any two positive numbers δ an r, we put

Eu
(r; δ) =

{
� ∈ � : u(P) ≤ –δW (r)

}

and

ξu(δ) = lim sup
r→

∫

Eu
(r;δ)

ϕ(�) d�.

The integral

∫

�

u(r,�)ϕ(�) d�,

is denoted by Nu(r), when it exists. The finite or infinite limits

lim
r→∞

Nu(r)
V (r)

and lim
r→

Nu(r)
W (r)

are denoted by μu and ηu, respectively, when they exist.
We shall say that u(P) (P = (r,�) ∈ Cn(�)) satisfies the Phragmén-Lindelöf boundary

condition on Sn(�), if

lim sup
P→Q,Q∈Sn(�)

u(P) ≤ 

for every Q ∈ Sn(�).
Throughout this paper, unless otherwise specified, we will always assume that u(P) ∈

SbHa(�) and satisfy the Phragmén-Lindelöf boundary condition on Sn(�). Recently, about
the Phragmén-Lindelöf theorems for subfunctions in a cone, Qiao and Deng (see [], The-
orem ) proved the following result.

Theorem A If

μu+ = ηu+ = ,
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then

u(P) ≤ 

for any P = (r,�) ∈ Cn(�).

A stronger version of a Phragmén-Lindelöf type theorem is also due to Qiao and Deng
(see [], Theorem ).

Theorem B If

lim inf
r→∞

Mu(r)
V (r)

< +∞ (.)

and

lim inf
r→

Mu(r)
W (r)

< +∞, (.)

then

u(P) ≤ (
μuV (r) + ηuW (r)

)
ϕ(�) (.)

for any P = (r,�) ∈ Cn(�).

However, they do not tell us in [] whether or not the limit

Bu = lim
r→

Mu(r)
W (r)

exists. In this paper, we first of all answer this question positively and prove the following
result.

Theorem  If (.) is satisfied, then the limit Bu ( ≤ Bu ≤ +∞) exists and

Bu = (Lu)+l, (.)

where

(Lu)+ = ηu+ . (.)

Remark It is obvious that ηu ≤ Lu. On the other hand, we have ηu ≥ Lu from (.). Thus,
if (.) and (.) are satisfied, then we have ηu = Lu.

As an application of Theorem  we immediately have the following result by using
Lemma  in Section .

Corollary If

lim inf
r→∞

Mu(r)
V (r)

≤ , (.)
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then

Bu = (Ju)+l. (.)

In [], the authors gave the properties of the positive part of weak solutions satisfying
the Phragmén-Lindelöf boundary condition on Sn(�). Finally, we shall show one of the
properties of its negative part.

From the remark, we have

ηu+ = Lu+ = (Lu)+ = (ηu)+.

Since

Nu(r) = Nu+ (r) – Nu– (r),

Theorem  follows immediately.

Theorem  Under the conditions of Theorem B, if ηu ≥ , then

lim
r→

Nu– (r)
W (r)

= .

2 Some lemmas
Lemma  (see [], Lemma )

() Both of the limits μu and ηu (–∞ < μu,ηu ≤ +∞) exist.
() If ηu ≤ , then V –(r)Nu(r) is non-decreasing on (, +∞).
() If μu ≤ , then W –(r)Nu(r) is non-increasing on (, +∞).

Lemma  If (.) is satisfied and there exists a positive number R such that u(P) ≤  for
any P = (r,�) ∈ Cn(�; (, R)), then for any positive number δ, we have

u(P) ≤ (
μuV (r) – δξu(δ)W (r)

)
ϕ(�) (.)

for any P = (r,�) ∈ Cn(�).

Proof Let δ be any given positive number and {rk} be a sequence such that

lim
k→∞

rk =  and lim
k→∞

∫

Eu
(rk ;δ)

ϕ(�) d� = ξu(δ).

Then we have

Nu(rk) ≤
∫

Eu
(rk ;δ)

u(rk ,�)ϕ(�) d� ≤ –δW (rk)
∫

Eu
(rk ;δ)

ϕ(�) d�

for any  < rk < R and hence

ηu ≤ –δξu(δ).

Thus we obtain (.) from Theorem B. �
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Lemma  Under the conditions of the corollary, Lu > –∞ and Ju = Lu.

Proof It is evident that

Ju ≥ Lu. (.)

Hence, we shall prove that Ju = Lu under the assumption that Lu < +∞. Since (.) and
(.) are satisfied and (.) gives μu ≤ , we have

u(P) ≤ ηuW (r)ϕ(�)

for any P = (r,�) ∈ Cn(�) from Theorem B, which gives

ηu ≥ Ju. (.)

Since Lemma  and the remark give ηu > –∞ and ηu = Lu, respectively, we have the
conclusion from (.) and (.).

Given a continuous function ψ defined on the truncated cone ∂Cn(�; (R, R)), where R

and R are two positive real numbers satisfying R < R, then the solution of the Dirichlet-
Sch problem on Cn(�; (R, R)) with ψ is denoted by Hψ (P; Cn(�; (R, R))). �

Lemma  If

μu+ < +∞ and ηu+ < +∞, (.)

are satisfied, then

Bu ≤ ηu+ .

Proof Take any P = (r,�) ∈ Cn(�) and any pair of numbers R, R satisfying  < R < r <

 R < ∞. If ψ(P) is a boundary function on ∂Cn(�; (R, R)) satisfying

ψ(P) =

{
u(Ri,�) on {Ri} × � (i = , ),
 on Sn(�; (R, R)),

then we have

u(P) � Hψ

(
P; Cn

(
�; (R, R)

))

=
∫

�

u+(R,�)
Ga

Cn(�;(R,R))(P, (R,�))
∂y

Rn–
 d�

–
∫

�

u+(R,�)
Ga

Cn(�;(R,R))(P, (R,�))
∂y

Rn–
 d�,

where Ga
Cn(�;(R,R))(·, ·) is the Green-Sch function on Cn(�; (R, R)) with the pole at P.

Here we use the following inequalities (see [], p.):

∂(Ga
Cn(�;(R,R))(P, (R,�)))

∂R
� c

W (r)
W (R)

ϕ(�)ϕ(�)
Rn–


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and

∂(Ga
Cn(�;(R,R))(P, (R,�)))

∂R
� –c

V (r)
V (R)

ϕ(�)ϕ(�)
Rn–


,

where c and c are two positive constants.
Then we have

u(P) ≤ cW –(R)Nu+ (R)W (r)ϕ(�) + cV –(R)Nu+ (R)V (r)ϕ(�), (.)

where c and c are two positive constants.
As R →  and R → ∞ in (.), we obtain

Mu(r) ≤ (
cηu+ W (r) + cμu+ V (r)

)
max
�∈�

ϕ(�)

from Lemma , which gives the conclusion of Lemma  from (.). �

3 Proof of Theorem 1
Put

τ = lim inf
r→

Mu(r)
W (r)

.

Since

Nu(r) ≤ Mu(r)
∫

�

ϕ(�) d�,

and Lemma  gives

ηu > –∞, (.)

we immediately see that τ > –∞.
Now we distinguish two cases.
Case  τ = +∞.
In this case Bu exists and is equal to +∞. It is obvious that for any positive number r

Mu+ (r)
W (r)

≤ l
Su+ (r)
W (r)

, (.)

which gives Lu = +∞.
These results show that (.) holds in this case.
Case  τ < +∞.
From Theorem B, we see that Lu < +∞. On the other hand, we have Lu > –∞ from (.).
Subcase .  ≤ Lu < +∞.
There exists a positive number Rε such that

u(P) ≤ (Lu + ε)W (r)ϕ(�)

for any ε > , where P = (r,�) ∈ Cn(�; (, Rε)).



Wan Boundary Value Problems  (2015) 2015:239 Page 8 of 10

This gives

lim sup
r→

Mu(r)
W (r)

≤ Lul. (.)

Now, assume that τ < Lul. There exist a positive number δ and a set Eu ⊂ � such that
∫

Eu

ϕ(�) d� > 

and

Luϕ(�) – τ ≥ δ (.)

for � ∈ Eu.
We define v(P) (P = (r,�) ∈ Cn(�)) by

v(P) = u(P) – (Lu + ε)W (r)ϕ(�) (.)

and apply Lemma  to v(P). It gives

u(P) ≤ [{
Lu + ε – δξv (δ)

}
W (r) + μv V (r)

]
ϕ(�)

for any P = (r,�) ∈ Cn(�).
So we have

Lu ≤ Lu – δξv (δ).

If we can show that

ξv (δ) > , (.)

then we have a contradiction.
To prove (.), take a sequence {rk}, with limk→∞ rk = , such that

Mu(rk)
W (rk)

≤ τ + δ (k = , , , . . .).

From (.) and (.) we have

v(rk ,�)
W (rk)

≤ u(rk ,�)
W (rk)

– Luϕ(�) ≤ –δ

for any � ∈ Eu, which gives

Eu ⊂ Ev
 (rk ; δ) (k = , , , . . .).

Hence

ξv (δ) ≥
∫

Eu

ϕ(�) d� > .



Wan Boundary Value Problems  (2015) 2015:239 Page 9 of 10

Thus from (.) we can simultaneously prove the existence of Bu and (.).
Subcase . –∞ ≤ Lu < .
Take any small number ε >  satisfying Lu + ε < . There exists a positive number Rε

such that

u(P) ≤ (Lu + ε)W (r)ϕ(�)

for any P = (r,�) ∈ Cn(�; (, Rε)).
This gives

lim sup
r→

Mu(r)
W (r)

≤ . (.)

Now suppose that τ < . There are a sequence {rk} tending to  and a positive number
δ such that

Mu(rk)
W (rk)

≤ –δ (k = , , , . . .).

Define v(P) (P = (r,�) ∈ Cn(�)) by

v(P) = u(P) – (Lu + ε)W (r)ϕ(�)

and apply Lemma  to v(P). Then we obtain

u(P) ≤ [{
Lu + ε – δξv (δ)

}
W (r) + μv V (r)

]
ϕ(�)

for any P = (r,�) ∈ Cn(�), which gives

Lu ≤ Lu – δξv (δ).

If we can show that

ξv (δ) > , (.)

then we have a contradiction.
To prove (.), write

Fu =
{
� ∈ �; –Luϕ(�) ≤ δ

}
.

It is evident that
∫

Fu

ϕ(�) d� > .

For every � ∈ Fu, we have

v(rk ,�)
W (rk)

≤ u(rk ,�)
W (rk)

– Luϕ(�) ≤ –δ,
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which shows that

Fu ⊂ Ev
 (rk ; δ) (k = , , , . . .).

Hence we have

ξv (δ) ≥
∫

Fu

ϕ(�) d� > .

Thus we can prove that τ ≥ . With (.), this also gives the existence of Bu and

Bu =  = (Lu)+l.

Lastly, we shall show that (.) holds.
If ηu+ = +∞, then it is evident that Bu+ = +∞. This together with (.) gives Lu+ = +∞.

Since

Lu+ = (Lu)+, (.)

we know that (.) holds.
Next suppose that ηu+ < +∞. We have Bu < +∞ by Lemma  and hence Lu+ = ηu+ by the

remark. With (.), this gives (.).
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