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Abstract
In this paper, we study the existence of multiple solutions to a class of p-biharmonic
elliptic equations, �2

pu –�pu + V(x)|u|p–2u = λh1(x)|u|m–2u + h2(x)|u|q–2u, x ∈R
N ,

where 1 <m < p < q < p∗ = pN
N–2p , �

2
pu =�(|�u|p–2�u) is a p-biharmonic operator

and �pu = div(|∇u|p–2∇u). The potential function V(x) ∈ C(RN) satisfies
infx∈RN V(x) > 0. By variational methods, we obtain the existence of infinitely many
solutions for a p-biharmonic elliptic equation inR

N .

Keywords: p-biharmonic; elliptic equation; variational methods; mountain pass
lemma

1 Introduction
In this paper, we are interested in the existence of solutions to the following p-biharmonic
elliptic equation:

�
pu – �pu + V (x)|u|p–u = f (x, u), x ∈R

N , (.)

where  < p < N , f (x, u) = λh(x)|u|m–u + h(x)|u|q–u,  < m < p < q < p∗ = pN
N–p , �

pu =
�(|�u|p–�u) is a p-biharmonic operator and �pu = div(|∇u|p–∇u). The potential func-
tion V (x) ∈ C(RN ) satisfies infx∈RN V (x) > .

Recently, the nonlinear biharmonic equation in an unbounded domain has been ex-
tensively investigated, we refer the reader to [–] and the references therein. For the
whole space R

N case, the main difficulty of this problem is the lack of compactness for
the Sobolev embedding theorem. In order to overcome this difficulty, the authors always
assumed the potential V (x) has some special characteristic. For example, in [], Yin and
Wu studied the following fourth-order elliptic equation:

{
�u – �u + V (x)u = f (x, u), x ∈R

N ,
u(x) ∈ H(RN ),

(.)

where the potential V (x) satisfied

(V): V ∈ C(RN ) satisfies infx∈RN V (x) > , and for each M > , meas{x ∈R
N ≤ M} < +∞.
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This assumption guarantees that the embedding H ↪→ Ls(RN ) is compact for each s ∈
[, N

N– ) and obeys the coercivity condition: V (x) → ∞ as |x| → ∞. Hence, under various
sets of assumptions on the nonlinear term f (x, t) (subcriticality, superquadraticity, etc.),
the authors proved the existence of infinitely many solutions to problem (.) by using
the variational techniques in a standard way. In [], Liu et al. considered the following
fourth-order elliptic equation:

{
�u – �u + λV (x)u = f (x, u), x ∈R

N ,
u(x) ∈ H(RN ),

(.)

where the potential V (x) satisfied a weaker condition than (V), that is,

(V): V ∈ C(RN ) satisfies infx∈RN V (x) > , there exists some M > , meas{x ∈ R
N ≤ M} <

+∞.

Under the assumption (V), the compactness of the embedding is lost and this renders
variational techniques more delicate. With the aid of the parameter λ > , they proved that
the variational functional satisfies (PS) condition, and then they showed the existence and
multiplicity results of problem (.). A natural question is whether the existence results
still holds if we assume a more general potential V (x) than (V), (V), namely,

(V): V (x) ∈ C(RN ) satisfies infx∈RN V (x) > .

In the present paper, we will answer this interesting question. We consider the exis-
tence of solutions to the p-biharmonic problem (.) with a more general potential V (x).
To prove that the (PS) sequence weakly converges to a critical point of the correspond-
ing functional, we adapt ideas developed by [–] and then by variational methods, we
establish the existence of infinitely many high-energy solutions to problem (.) with a
concave-convex nonlinearity, i.e., f (x, u) = λh(x)|u|m–u + h(x)|u|q–u,  < m < p < q <
p∗ = pN

N–p . To the best of our knowledge, little has been done for p-biharmonic problems
with this type of nonlinearity. Here, we give our assumptions on the weight functions h(x)
and h(x):

(H) h ∈ Lσ (RN ) with σ = p
p–m ;

(H) h(x) ≥  ( 	≡ ), h(x) ∈ L∞(RN ).

The main result in this paper is as follows.

Theorem . Let  < p < N ,  < m < p < q < p∗ = pN
N–p . Assume (V), (H), and (H) hold.

Then there exists λ >  such that for all λ ∈ [,λ], problem (.) admits infinitely many
high-energy solutions in R

N .

This paper is organized as follows. In Section , we build the variational framework for
problem (.) and establish a series of lemmas, which will be used in the proof of Theo-
rem .. In Section , we prove Theorem . by the mountain pass theorem [].

2 Preliminaries
In order to apply the variational setting, we assume the solutions of (.) belong to the
following subspace of D,p(RN ):

E =
{

u ∈D,p(
R

N)∣∣∣ ∫
RN

|�u|p + |∇u|p + V (x)|u|p dx < ∞
}

(.)
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endowed with the norm

‖u‖E =
(∫

RN

(|�u|p + |∇u|p + V (x)|u|p)dx
)/p

, (.)

where D,p(RN ) = {u ∈ Lp∗ (RN )|�u ∈ Lp(RN )}, ‖ · ‖s means the norm in Ls(RN ).
We denote by S∗ the Sobolev constant, that is,

S∗ = inf
u∈D,p\{}

∫
RN |�u|p dx

(
∫
RN |u|p∗ dx)p/p∗ (.)

and

S∗
(∫

RN
|u|p∗ dx

)p/p∗
≤

∫
RN

|�u|p dx, ∀u ∈D,p(
R

N)
, (.)

where S∗ is obtained by a positive and radially symmetric function; see for instance [].

Definition . A function u ∈ E is said to be a weak solution of (.) if, for any ϕ ∈ E, we
have

∫
RN

(|�u|p–�u�ϕ + |∇u|p–∇uϕ + V |u|p–uϕ
)

dx

=
∫
RN

(
λh(x)|u|m–u + h(x)|u|q–u

)
ϕ dx. (.)

Let J(u) : E →R be the energy functional associated with problem (.) defined by

J(u) =

p
‖u‖p

E –
λ

m

∫
RN

h|u|m dx –

q

∫
RN

h|u|q dx. (.)

From the embedding inequality (.) and the assumptions in Theorem ., we see the
functional J ∈ C(E,R) and its Gateaux derivative is given by

J ′(u)ϕ =
∫
RN

(|�u|p–�u�ϕ + |∇u|p–∇uϕ + V (x)|u|p–uϕ
)

dx

–
∫
RN

(
λh(x)|u|m–u + h(x)|u|q–u

)
ϕ dx. (.)

To prove the existence of infinitely many solutions to problem (.), we need to prove
that the functional J defined by (.) satisfies the (PS) condition. Recall that a sequence
{un} in E is called a (PS)c sequence of J if

J(un) → c, J ′(un) →  in E∗ as n → ∞. (.)

The functional J satisfies the (PS) condition if any (PS)c sequence possesses a convergent
subsequence in E.

Lemma . Assume (V), (H), and (H) hold. If {un} ⊂ E is a (PS)c sequence of J , then {un}
is bounded in E.
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Proof It follows from Hölder’s inequality that

∫
RN

|h||un|m dx ≤ V
– m

p


(∫
RN

|h|σ dx
) 

σ
(∫

RN
V |un|p dx

) m
p

≤ a‖un‖m
E , (.)

where a = V –m/p
 ‖h‖σ . Choose t ∈ (, ) such that q = pt + ( – t)p∗, then

∫
RN

h|un|q dx ≤
(∫

RN
V |un|p dx

)t(∫
RN

|un|p∗h– 
–t

 V – t
–t dx

)–t

≤ a

(∫
RN

V |un|p dx
)t

‖�un‖(–t)p∗
p ≤ a‖un‖q

E , (.)

where a = S–p∗(q–p)/p(p∗–p)
∗ V –t

 ‖h‖∞. Thus,

c +  + ‖un‖E ≥ J(un) – q–J ′(un)un

≥
(


p

–

q

)
‖u‖p

E – λ

(

m

–

q

)∫
RN

|h||u|m dx

≥
(


p

–

q

)
‖un‖p

E – λ

(

m

–

q

)
a‖un‖m

E . (.)

Since  < m < p < q, we conclude that ‖u‖E is bounded and the proof is complete. �

In the following, we shall show that {un} has a convergent subsequence in E. Since the
sequence {un} given by (.) is a bounded sequence in E, there exist a subsequence of {un}
(still denoted by {un}) and v ∈ E such that ‖un‖E ≤ M, ‖v‖E ≤ M, and

un ⇀ v weakly in E,

un → v in Ls
loc

(
R

N)
,  < s < p∗, (.)

un(x) → v(x) a.e. in R
N .

Lemma . Assume (V), (H), and (H) hold. If the sequence {un} is bounded in E satisfying
(.), then

(i) limn→∞
∫
RN h(x)|un|m dx =

∫
RN h(x)|v|m dx, limn→∞

∫
RN h(x)|un – v|m dx = ;

(ii) limn→∞
∫
RN h(x)|un|q dx =

∫
RN h(x)|v|q dx, limn→∞

∫
RN h(x)|un – v|q dx = .

Proof (i) In fact, from h ∈ Lσ (RN ) and (.), we obtain, for any r > ,
∫

Br

h(x)|un|m dx →
∫

Br

h(x)|v|m dx as n → ∞, (.)

where and in the sequel Br = {x ∈ R
N : |x| < r}, Bc

r = R
N \ Br . On the other hand, we see

from the Hölder inequality that

∫
Bc

r

|h||un|m dx ≤ V
– m

p


(∫
Bc

r

|h|σ dx
) 

σ
(∫

Bc
r

V |un|p dx
) m

p

≤ V
– m

p
 ‖h‖Lσ (Bc

r)‖un‖m
E ≤ V

– m
p

 Mm‖h‖Lσ (Bc
r) →  (.)
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as r → ∞. By Fatou’s lemma, we see that, as n → ∞,
∫

Bc
r

|h||v|m dx ≤ lim inf
n→∞

∫
Bc

r

|h||un|m dx ≤ V
– m

p
 Mm‖h‖Lσ (Bc

r ) → . (.)

Then, the application of (.)-(.) gives the first limit of (i). Furthermore, by the Brezis-
Lieb lemma in [], we have the second limit of (i).

(ii) To prove the conclusion (ii), we follow the argument used in [–]. Here, we give
a detailed proof for the reader’s convenience.

Since p < p < p∗, it easy to see that, for any small ε > , there exist S > s >  such that
|s|q < ε|s|p if |s| ≤ s and |s|q ≤ ε|s|p∗ , if |s| ≥ S. This shows that

|s|q ≤ ε
(|s|p + |s|p∗) + χ[s,S]

(|s|)|s|q, ∀s ∈ R. (.)

Denote An = {x ∈ R
N ; s ≤ |un(x)| ≤ S}. It follows from (.), (.), and (.) that

∫
Bc

r

|h||un|q dx ≤ ‖h‖∞
∫

Bc
r

(
ε
(|un|p + |un|p∗) + χ[s,S]

(|un|
)|un|q

)
dx

≤ ε‖h‖∞
(∫

RN
V –

 V (x)|un|p dx + S– p∗
p ‖�u‖p∗

p

)

+ Sq
‖h‖∞ meas

(
An ∩ Bc

r
)

≤ Mε + Sq
‖h‖∞ meas

(
An ∩ Bc

r
)

(.)

with some constant M > , and

|s|p∗ |An| ≤
∫
RN

|un|p∗ dx ≤ M, ∀n ∈N, (.)

where |An| = meas(An). Equation (.) implies that supn∈N |An| ≤ M|s|–p∗ < ∞, so it is
easy to see that

lim
r→∞ meas

(
An ∩ Bc

r
)

= , for all n ∈ N. (.)

In the following, we show that limr→∞ meas(An ∩ Bc
r) =  uniformly in n ∈N.

In fact, it follows from (.) that v ∈ Lp(RN ) and un(x) → v(x) a.e. RN . Therefore, for
any small ε > , there exists r >  such that r ≥ r,

∫
Bc

r

|v|p dx ≤ ε.

For this ε, we choose t = r, tj ↑ ∞ such that Dj = Bc
tj

\ Bc
tj+

, Bc
r =

⋃∞
j= Dj and

∫
Dj

|v|p dx ≤ ε

j , ∀j ∈N.

Obviously, for every fixed j ∈ N , Dj is a bounded domain and Dj ∩ Di = ∅ (j 	= i). Further-
more, s ≤ |un| ≤ S in Dj ∩ An. By Fatou’s lemma, we have, for every j ∈N,

lim sup
n→∞

∫
Dj∩An

|un|p dx ≤
∫

Dj

lim sup
n→∞

|un|p dx ≤
∫

Dj

|v|p dx ≤ ε

j .
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Then, for s = –qsq
, we obtain

s lim sup
n→∞

∣∣An ∩ Bc
r

∣∣ ≤ lim sup
n→∞

∫
Bc

r ∩An

|un|p dx

= lim sup
n→∞

∞∑
j=

∫
Dj∩An

|un|p dx

≤
∞∑
j=

lim sup
n→∞

∫
Dj∩An

|un|p dx

≤
∞∑
j=

∫
Dj

|v|p dx ≤
∞∑
j=

ε

j = ε. (.)

Notice that, for any r ≥ r and n ∈ N, we have (An ∩ Bc
r) ⊂ (An ∩ Bc

r ). Therefore, the ap-
plication of (.) and (.) yields limr→∞ |An ∩ Bc

r| =  uniformly in n ∈N. Thus, for any
ε > , there exists r ≥  such that meas(An ∩ Bc

r) < ε

Sq
‖h‖∞

, for r ≥ r. Then it follows from
(.) that∫

Bc
r

h|un|q dx ≤ max{M, }ε, ∀n ∈N, r ≥ r (.)

and ∫
Bc

r

h|v|q dx ≤ lim inf
n→∞

∫
Bc

r

h|un|q dx ≤ max{M, }ε, r ≥ r. (.)

Moreover, we derive from (.) that∫
Br

h(x)|un|q dx →
∫

Br

h(x)|v|q dx. (.)

Therefore, using (.) and (.), and the application of Brezis-Lieb lemma in [] we
conclude the second limit of (ii). Then the proof is complete. �

Lemma . Let {un} be a (PS)c sequence satisfying (.), then un → v in E, that is, the
functional J satisfies the (PS) condition.

Proof Denote

Pn = J ′(un)(un – v)

=
∫
RN

(|�un|p–�un�(un – v) + |∇un|p–∇un∇(un – u)

+ V (x)|un|p–un(un – v)
)

dx

–
∫
RN

(
λh(x)|un|m–un + h(x)|un|q–un

)
(un – v) dx.

Then the fact J ′(un) →  in E∗ shows that Pn →  as n → ∞. Moreover, the fact un ⇀ v
in E implies Qn → , where

Qn =
∫
RN

(|�v|p–�v�(un – v) + |∇u|p–∇u∇(un – u) + V (x)|v|p–v(un – v)
)

dx.
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It follows from the Hölder inequality and the limit (i) in Lemma . that

∫
RN

∣∣h(x)
∣∣|un|m–|un – v|dx ≤

(∫
RN

∣∣h(x)
∣∣|un – v|m dx

) 
m

(∫
RN

∣∣h(x)
∣∣|un|m dx

) m–
m

→ . (.)

Similarly, we can derive from the limit (ii) in Lemma . that

∫
RN

h(x)|un|q–|un – v|dx ≤
(∫

RN
h(x)|un – v|q dx

) 
q
(∫

RN
h(x)|un|q dx

) q–
q

→ . (.)

Then (.) and (.) show that as n → ∞

on() = Pn – Qn

=
∫
RN

((|�un|p–�un – |�v|p–�v
)
�(un – v)

+
(|∇un|p–∇un – |∇v|p–∇v

)∇(un – v)

+ V (x)
(|un|p–un – |v|p–v

)
(un – v)

)
dx. (.)

Then we have ‖un – v‖E →  as n → ∞. Thus J(u) satisfies the (PS) condition on E and
the proof is completed. �

3 Proof of Theorem 1.1
In this section, we will give the proof of Theorem .. We assume that all conditions in the
theorem hold. The proof mainly relies on the mountain pass theorem.

Lemma . ([]) Let E be an infinite dimensional real Banach space, J ∈ C(E,R) be even
and satisfies the (PS) condition and J() = . Assume E = Y ⊕ Z, Y is finite dimensional,
and J satisfies:

(J) There exist constants ρ,α >  such that J(u) ≤ α on ∂Bρ ∩ Z.
(J) For each finite dimensional subspace E ⊂ E, there is an R = R(E) such that J(u) ≤ 

on E \ BR , where Br = {u ∈ E : ‖u‖E < r}.

Then J possesses an unbounded sequence of critical values.

Proof of Theorem . Clearly, the functional J defined by (.) is even in E. By Lemma .
in Section , the functional satisfies the (PS) condition. Next, we prove that J satisfies (J)
and (J). From (.) and (.), it follows that

J(u) ≥ 
p
‖u‖p

E – λ
a

m
‖u‖m

E –
a

q
‖u‖q

E , u ∈ E.

Denote

φ(z) = zp
(


p

– λ
a

m
zm–p –

a

q
zq–p

)
, z > .
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Then, there exist λ, z,α >  such that φ(z) ≥ α for any λ ∈ [,λ]. Let ρ = z, we have
J(u) ≥ α with ‖u‖E = ρ and λ ∈ [,λ]. So the condition (J) is satisfied.

We now verify (J). For any finite dimensional subspace E ⊂ E, we assert that there is a
constant R > ρ such that J <  on E \ BR . Otherwise, there exists a sequence {un} ⊂ E

such that ‖u‖n → ∞ and J(un) ≥ . Hence


p
‖un‖p

E ≥ λ

m

∫
RN

h|un|m dx +

q

∫
RN

h‖un‖q dx. (.)

Set ωn = un
‖un‖E

. Then up to a sequence, we can assume ωn ⇀ ω in E, ωn → ω a.e. in R
N .

Denote � = {x ∈ R
N : ω(x) 	= }. Assume |�| > . Clearly, un(x) → ∞ in �. It follows from

(.) and (.) that

‖u‖–p
E

∫
�

|h||un|m dx ≤ a‖un‖m–p
E →  as n → ∞.

On the other hand, we derive

‖u‖–p
E

∫
�

|h||un|q dx ≤ a‖un‖q–p
E → ∞ as n → ∞.

Therefore, multiplying (.) by ‖u‖–p
E and passing to the limit as n → ∞ show that 

p ≥ ∞.
This is impossible. So |�| =  and ω(x) =  a.e. on R

N . By the equivalence of all norms in
E, there exists a constant β >  such that

∫
RN

|h||u|q dx ≥ βq‖u‖q
E , ∀u ∈ E and

∫
RN

|h||un|q dx ≥ βq‖un‖q
E , ∀n ∈N.

Hence

 < βq ≤ lim sup
n→∞

∫
RN

|h||ωn|q dx ≤
∫
RN

lim sup
n→∞

(|h||ωn|q
)

dx =
∫
RN

(|h||ω|q)dx = .

This is a contradiction. So there exists a constant R such that J <  on E \BR . Therefore,
the existence of infinitely many solutions {un} for problem (.) follows from Lemma .
and we finish the proof of Theorem .. �
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