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Abstract
In this paper, we will establish some existence results of positive stationary solutions
for a reaction-diffusion system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–u′′ + λu = p(t)ϕu + h(t)f (u,ϕ), 0 < t < 1,

–ϕ′′ = q(t)uα , 0 < t < 1,

u(0) = u(1) = 0,

ϕ(0) = ϕ(1) = 0.

The main method used here is the well-known fixed point theorem of cone
expansion and compression.

MSC: 34B10
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1 Introduction
The purpose of this work is to study the existence of positive solutions for the following
system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′ + λu = p(t)ϕu + h(t)f (u,ϕ),  < t < ,

–ϕ′′ = q(t)uα ,  < t < ,

u() = u() = ,

ϕ() = ϕ() = ,

()

where λ > –π, α >  are constants. By a positive solution, we mean a pair of functions
(u,ϕ) with u,ϕ ∈ C(, ) ∩ C[, ] is a positive solution of (), if (u,ϕ) satisfies (), and
u,ϕ ≥ , t ∈ [, ], u,ϕ �≡ .

During the last few decades, concerning local equations, the question of the exis-
tence of solutions is one of the important topics, and it therefore has attracted much
attention [–]. Usually, the proof is based on either topological methods or a varia-
tional approach. For example, in [], Gu and Wang applied an abstract fixed point the-
orem and the estimate of the weighted Lp norm to study a reaction-diffusion system as
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follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – �u = uu – bu, x ∈ �, t > ,

ut – �u = au, x ∈ �, t > ,

u = u = , x ∈ ∂�, t > ,

u(x, ) = u(x) ≥ , u(x, ) = u(x) ≥ , x ∈ �,

where � ∈ RN is a smooth bounded domain, a, b >  are constants and u, u are con-
tinuous nonnegative functions on �. In [], by using the fixed point theorem of cone
expansion and compression, Wang and An investigated the existence and multiplicity of
positive solutions for the following system:

⎧
⎪⎪⎨

⎪⎪⎩

–u′′ + λu = ϕu + h(t)f (u),  < t < ,

–ϕ′′ = μu,  < t < ,

u() = u() = , ϕ() = ϕ() = .

More recently, Chen and Ma obtained some existence results for () using the bi-
furcation techniques in [, ]. In addition, in [–], the authors used the variational
approach to study the existence, nonexistence, multiplicity, and qualitative behavior
of the solutions in the semiclassical limit for the Schrödinger-Poisson system as fol-
lows:

⎧
⎨

⎩

–�u + V (x)u = K(x)φu + up,

–�φ = K(x)u,

where  < p < .
We are mainly motivated by the recent nice works [, , ] and focus on the general local

equations (): (a) the first equation of () has an external force such as f (u,ϕ); (b) the second
equation of () has the nonlinearity of arbitrary growth uα . By employing the fixed point
theorem of cone expansion and compression, we will establish some existence results of
positive solutions for (), if the exponent α satisfies two cases: (i) α ≥ ; (ii)  < α < .

The remaining part of this paper is organized as follows. In Section , some preliminary
results are given. In Section , we show the main results. In Section , to illustrate the new
results, some applications are also given.

2 Preliminaries
Let us describe some known results established by Li in [].

Lemma . If λ > –π, then the linear boundary value problem

–u′′ + λu = , u() = u() = ,

has a nonnegative Green function G(t, s).

Lemma . The function G(t, s) has the following properties:
(i) G(t, s) > , ∀t, s ∈ (, );
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(ii) G(t, s) ≤ CG(s, s), ∀t, s ∈ [, ];
(iii) G(t, s) ≥ δG(t, t)G(s, s), ∀t, s ∈ [, ].

For convenience, we assume the following conditions hold throughout this paper:
(H) q(t), p(t) : [, ] → [, +∞) are continuous, and satisfy

C
∫ 



∫ 


G(s, s)K(s, τ )p(s)q(τ ) dτ ds <




,

where K(t, s) denotes the Green function G(t, s) when λ = ;
(H) h(t) : [, ] → [, +∞) is continuous, and

 <
∫ 


G(s, s)h(s) ds < ∞.

Using the idea in [], Lemma ., and Lemma ., it is easy to convert system () into a
fixed point equation as follows:

u(t) =
∫ 



∫ 


G(t, s)K(s, τ )p(s)q(τ )u(s)uα(τ ) dτ ds

+
∫ 


G(t, s)h(s)f

(

u(s),
∫ 


K(s, τ )q(τ )uα(τ ) dτ

)

ds.

Now define a mapping T : C[, ] → C[, ] by

Tu(t) =
∫ 



∫ 


G(t, s)K(s, τ )p(s)q(τ )u(s)uα(τ ) dτ ds

+
∫ 


G(t, s)h(s)f

(

u(s),
∫ 


K(s, τ )q(τ )uα(τ ) dτ

)

ds,

and define a positive cone P ⊂ C[, ] as

P =
{

u(t) ∈ C[, ] : min
t∈[θ ,–θ ]

u(t) ≥ σ‖u‖
}

,

where θ ∈ (, 
 ) is a fixed constant, σ ∈ (, ).

Through a standard proof process, we have the following.

Lemma . Assume that (H)-(H) hold. Then T(P) ⊂ P and T : P → P is completely
continuous.

The proofs of our main results are based on the following fixed point, which can be
found in [].

Lemma . Let E be a Banach space, and K ⊂ E be a cone in E. Assume �, � are open
subsets of E with  ∈ �, � ⊂ �, and let T : K ∩ (� \�) → K be a completely continuous
operator such that either:

(i) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂� and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂�; or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂� and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂�.

Then T has a fixed point in K ∩ (� \ �).
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3 Main result
Theorem . Assume (H)-(H) hold, and α ≥ . In addition, the following conditions
hold:

(H) q(t) satisfies

min
t∈[θ ,–θ ]

∫ –θ

θ

K(t, s)q(s) ds > ;

(H) h(t) satisfies

 <
∫ –θ

θ

G
(




, s
)

h(s) ds;

(H) f ∈ C[R+ × R+, R+], and f (u,ϕ) are nondecreasing in u and ϕ for u,ϕ > , moreover,

⎧
⎨

⎩

 < u ≤ u,

 < ϕ ≤ ϕ,
⇒ f (u,ϕ) ≤ f (u,ϕ),

in addition, f (u,ϕ) satisfies the following conditions:

lim
s→∞

f (s, ms)
s

= ∞, lim
s→

f (s, Ms)
s

= ,

where

m = σα– min
s∈[θ ,–θ ]

∫ –θ

θ

K(s, τ )q(τ ) dτ , M =
∫ 


K(τ , τ )q(τ ) dτ .

Then system () has at least one positive solution.

Proof On one hand, since lims→
f (s,Ms)

s = , there exists a η >  with η <  such that

f (s, Ms) ≤ εs, for  < s < η,

where ε satisfies

εC
∫ 


G(s, s)h(s) ds ≤ 


.

Taking r ∈ (,η) and setting �r = {u(t) ∈ C[, ] : ‖u‖ < r}, then, for any u(t) ∈ ∂�r ∩ P,
we have

Tu(t) =
∫ 



∫ 


G(t, s)K(s, τ )p(s)q(τ )u(s)uα(τ ) dτ ds

+
∫ 


G(t, s)h(s)f

(

u,
∫ 


K(s, τ )q(τ )uα(τ ) dτ

)

ds

= C
∫ 



∫ 


G(s, s)K(s, τ )p(s)q(τ ) dτ ds · r+α

+ C
∫ 


G(s, s)h(s)f

(

r,
∫ 


K(τ , τ )q(τ ) dτ · rα

)

ds
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<



r+α + C
∫ 


G(s, s)h(s)f

(
r, Mrα

)
ds

≤ 


r + C
∫ 


G(s, s)h(s)f (r, Mr) ds

≤ 


r + εrC
∫ 


G(s, s)h(s) ds

≤ r = ‖u‖.

Consequently,

‖Tu‖ < ‖u‖, ∀u ∈ ∂�r ∩ P.

On the other hand, since lims→∞ f (s,ms)
s = ∞, there exists a R >  such that

f (s, ms) ≥ ρs, ∀s ≥ R,

where ρ satisfies

ρσ

∫ –θ

θ

G
(




, s
)

h(s) ds > .

Choosing R > { R
σ

, }, and setting �R = {u ∈ C[, ] : ‖u‖ < R}, it is easy to verify that

min
t∈[θ ,–θ ]

u(t) ≥ σ‖u‖ = σR > R, ∀u(t) ∈ ∂�R ∩ P.

Then, for any u(t) ∈ ∂�R ∩ P, we have

Tu
(




)

=
∫ 



∫ 


G

(



, s
)

K(s, τ )p(s)q(τ )u(s)uα(τ ) dτ ds

+
∫ 


G

(



, s
)

h(s)f
(

u,
∫ 


K(s, τ )q(τ )uα(τ ) dτ

)

ds

≥
∫ 


G

(



, s
)

h(s)f
(

u,
∫ 


K(s, τ )q(τ )uα(τ ) dτ

)

ds

≥
∫ –θ

θ

G
(




, s
)

h(s)f
(

u,
∫ 


K(s, τ )q(τ )uα(τ ) dτ

)

ds

≥
∫ –θ

θ

G
(




, s
)

h(s)f
(

u,
∫ –θ

θ

K(s, τ )q(τ )uα(τ ) dτ

)

ds

≥
∫ –θ

θ

G
(




, s
)

h(s)f
(

σ‖u‖,σα‖u‖α min
s∈[θ ,–θ ]

∫ –θ

θ

K(s, τ )q(τ ) dτ

)

ds

≥
∫ –θ

θ

G
(




, s
)

h(s)f
(

σ‖u‖,σα– min
s∈[θ ,–θ ]

∫ –θ

θ

K(s, τ )q(τ ) dτ · σ‖u‖
)

ds

=
∫ –θ

θ

G
(




, s
)

h(s)f
(
σ‖u‖, mσ‖u‖)ds

≥
∫ –θ

θ

G
(




, s
)

h(s)ρσ‖u‖ds > ‖u‖.
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Consequently,

‖Tu‖ > ‖u‖, ∀u(t) ∈ ∂�R ∩ P.

Then by Lemma ., system () has a positive solution (u(t),
∫ 

 K(t, s)q(s)uα(s) ds). �

In the condition (H) of Theorem ., the function f (u,ϕ) is required to be nondecreas-
ing in u and ϕ for u,ϕ > . If the function f (u,ϕ) is mixed monotone in the condition
(H), we impose a stronger requirement on the function h(t) in the condition (H). Then,
similar to the proof of Theorem ., we can obtain the following theorem.

Theorem . Assume (H)-(H) hold, and α ≥ . In addition, the following conditions
hold:

(H) h(t) satisfies h(t) ≡  for t ∈ [, θ ] ∪ [ – θ , ], and

 <
∫ –θ

θ

G
(




, s
)

h(s) ds;

(H) f ∈ C[R+ × R+, R+], and f (u,ϕ) is nonincreasing in u and nondecreasing in ϕ for
u,ϕ > . In addition, f (u,ϕ) satisfies the following conditions:

lim
s→∞

f (s, ms)
s

= ∞, lim
s→

f (σ s, Ms)
s

= ,

where

m = σα min
s∈[θ ,–θ ]

∫ –θ

θ

K(s, τ )q(τ ) dτ , M =
∫ 


K(τ , τ )q(τ ) dτ .

Then system () has at least one positive solution.

Theorem . Assume (H)-(H), (H) hold and  < α < . In addition,
(H) f ∈ C[R+ × R+, R+], and f (u,ϕ) is nondecreasing in u and nonincreasing in ϕ for

u,ϕ > . In addition, f (u,ϕ) satisfies the following conditions:

lim
s→∞

f (σ s, Ms)
s

= ∞, lim
s→

f (s, ms)
s

= ,

where

m = σα min
s∈[θ ,–θ ]

∫ –θ

θ

K(s, τ )q(τ ) dτ , M =
∫ 


K(τ , τ )q(τ ) dτ .

Then system () has at least one positive solution.

Proof Since lims→
f (s,ms)

s = , there exists a η >  with η <  such that

f (s, ms) ≤ εs, for  < s < η,

where ε satisfies

εC
∫ 


G(s, s)h(s) ds ≤ 


.
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Taking r ∈ (,η) and setting �r = {u ∈ C[, ] : ‖u‖ < r}, then, for any u(t) ∈ ∂�r ∩ P, we
have

Tu(t) =
∫ 



∫ 


G(t, s)K(s, τ )p(s)q(τ )u(s)uα(τ ) dτ ds

+
∫ 


G(t, s)h(s)f

(

u,
∫ 


K(s, τ )q(τ )uα(τ ) dτ

)

ds

= C
∫ 



∫ 


G(s, s)K(s, τ )p(s)q(τ )(τ ) dτ ds · r+α

+ C
∫ 


G(s, s)h(s)f

(

r,
∫ 


K(s, τ )q(τ )u

(α
τ
)

dτ

)

ds

<



r+α + C
∫ 


G(s, s)h(s)f

(

r,
∫ –θ

θ

K(s, τ )q(τ )uα(τ ) dτ

)

ds

≤ 


r + C
∫ 


G(s, s)h(s)f

(

r,
∫ –θ

θ

K(s, τ )q(τ )σα‖u‖α dτ

)

ds

≤ 


r + C
∫ 


G(s, s)h(s)f

(

r, min
s∈[θ ,–θ ]

∫ –θ

θ

K(s, τ )q(τ )σα‖u‖α dτ

)

ds

≤ 


r + C
∫ 


G(s, s)h(s)f

(

r, min
s∈[θ ,–θ ]

∫ –θ

θ

K(s, τ )q(τ )σα dτ · r
)

ds

≤ r = ‖u‖.

Consequently,

‖Tu‖ ≤ ‖u‖, ∀u(t) ∈ ∂�r ∩ P.

On the other hand, since lims→∞ f (σ s,Ms)
s = ∞, there exists a R >  such that

f (σ s, Ms) ≥ ρs, ∀s ≥ R,

where ρ satisfies

ρ

∫ –θ

θ

G
(




, s
)

h(s) ds > .

Choosing R > { R
σ

, } and setting �R = {u ∈ C[, ] : ‖u‖ < R}, it is easy to see that

min
t∈[θ ,–θ ]

u(t) ≥ σ‖u‖ = σR > R, ∀u(t) ∈ ∂�R ∩ P.

Then, for all u(t) ∈ ∂�R ∩ P, we have

Tu
(




)

=
∫ 



∫ 


G

(



, s
)

K(s, τ )p(s)q(τ )u(s)uα(τ ) dτ ds

+
∫ 


G

(



, s
)

h(s)f
(

u,
∫ 


K(s, τ )q(τ )uα(τ ) dτ

)

ds

≥
∫ 


G

(



, s
)

h(s)f
(

u,
∫ 


K(s, τ )q(τ )uα(τ ) dτ

)

ds
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≥
∫ –θ

θ

G
(




, s
)

h(s)f
(

u,
∫ 


K(s, τ )q(τ )uα(τ ) dτ

)

ds

≥
∫ –θ

θ

G
(




, s
)

h(s)f
(

u,
∫ 


K(τ , τ )q(τ )uα(τ ) dτ

)

ds

≥
∫ –θ

θ

G
(




, s
)

h(s)f
(
σ‖u‖, M‖u‖α

)
ds

=
∫ –θ

θ

G
(




, s
)

h(s)f
(
σ‖u‖, M‖u‖)ds

≥
∫ –θ

θ

G
(




, s
)

h(s)ρ‖u‖ds > ‖u‖.

Consequently,

‖Tu‖ ≥ ‖u‖, ∀u(t) ∈ ∂�R ∩ P.

Therefore, by Lemma ., system () has at least one positive solution. �

4 Examples
In this section, we only give some examples to illustrate the main theorems when λ = 
and θ = 

 .

Example . Let us consider the following boundary value problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′ = tϕu + t(u + ϕ),  < t < ,

–ϕ′′ = u,  < t < ,

u() = u() = ,

ϕ() = ϕ() = ,

where α = , p(t) = t, q(t) = , h(t) = t, f (u,ϕ) = u + ϕ. Next via some simple computa-
tion, it is easy to see that h(t) : [, ] → [, +∞) is continuous, and

∫ 


G(s, s)h(s) ds =

∫ 


G(s, s)s ds =

∫ 


s( – s) ds =




< ∞,

∫ 





G
(




, s
)

h(s) ds =
∫ 






G
(




, s
)

s ds =



> .

Then (H) and (H) hold. Since p(t) = t and q(t) = , we obtain

C
∫ 



∫ 


G(s, s)K(s, τ )p(s)q(τ ) dτ ds ≤

∫ 



∫ 


G(s, s)K(τ , τ )p(s)q(τ ) dτ ds =




<



,

min
t∈[ 

 , 
 ]

∫ 





K(t, s)q(s) ds =



> .

So (H) and (H) hold. Finally, f (u,ϕ) are nondecreasing in u and ϕ for u,ϕ > , and

lim
s→∞

f (s, ms)
s

= ∞, lim
s→

f (s, Ms)
s

= ,
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where m = σα– mins∈[ 
 , 

 ]
∫ 





K(s, τ )q(τ ) dτ = 
 , M =

∫ 
 K(τ , τ )q(τ ) dτ = 

 . Thus (H)
holds. Therefore, from Theorem ., the above problem has at least one positive solution.

Example . Let us consider the following boundary value problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′ = tϕu + t ϕ

+u ,

–ϕ′′ = u,

u() = u() = ,

ϕ() = ϕ() = ,

where α = , p(t) = t, q(t) = , f (u,ϕ) = ϕ

+u , and

h(t) =

⎧
⎪⎪⎨

⎪⎪⎩

,  ≤ t < 
 ,

–(t – 
 ) + 

 , 
 ≤ t ≤ 

 ,

, 
 < t ≤ .

Therefore, from Theorem ., it is easy to see that the above problem has at least one
positive solution.

Example . Let us consider the following boundary value problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′ = tϕu + t u

+ϕ
,

–ϕ′′ = u 
 ,

u() = u() = ,

ϕ() = ϕ() = ,

where α = 
 , p(t) = t, q(t) = , h(t) = t, f (u,ϕ) = u

+ϕ
. Therefore, from Theorem ., it is

easy to see that the above problem has at least one positive solution.
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