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Abstract
In this paper, we study the existence of the positive solutions for a class of high-order
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applicability of our main results.
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1 Introduction
In this paper, we investigate the multi-point boundary value problem for the fractional
differential equation

cDα
+ u(t) = a(t)f

(
t, u(t)

)
,  < t < +∞, (.)

u() = , u(q)() = , cDα–
+ u(+∞) =

m–∑

i=

βiu(ξi), (.)

where cDα
+ and cDα–

+ are the Caputo fractional derivatives, n –  < α ≤ n (n > ), q =
, , . . . , n – ,  < ξ < ξ < · · · < ξm– < +∞, and βi > , i = , , . . . , m – , m ≥ , satisfy
 <

∑m–
i= βiξ

α–
i < �(α).

Recently, the theory on existence of positive solutions of fractional differential equations
is a rapidly growing area of research. For more details on the basic theory of fractional cal-
culus and fractional differential equations, one can see the monographs of [–] and the
references therein. However, the theory of the boundary value problem for nonlinear frac-
tional differential equations is still limited to the finite interval [–], and many aspects
of this theory need to be explored. In the near future, there has been a significant develop-
ment on boundary value problems for fractional differential equations on infinite intervals
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[–]. To the best of our knowledge, results as regards the boundary problem referring
to the differential equations involving the Caputo fractional derivative on infinite interval
are relatively scarce.

Liang et al. [] discussed the following nonlinear fractional differential equations with
multi-point boundary value problem on an unbounded domain:

Dα
+ u(t) + a(t)f

(
t, u(t)

)
= ,  < t < +∞, (.)

u() = u′() = , Dα–u(+∞) =
m–∑

i=

βiu(ξi), (.)

where Dα
+ and Dα– are the Riemann-Liouville fractional derivatives,  < α ≤ ,  < ξ <

ξ < · · · < ξm– < +∞, and βi > , i = , , . . . , m – , satisfy  <
∑m–

i= βiξ
α–
i < �(α). By using

a fixed point theorem on a cone, they obtained the existence of multiple positive solu-
tions.

Assia et al. [] considered the following fractional boundary value problem on the half-
line:

cDq
+ u(t) = f

(
t, u(t), u′(t)

)
, t > , (.)

u() = u′′() = , lim
t→∞

cDq–u(t) = αu(), (.)

where cDq
+ and cDq– are the Caputo fractional derivatives,  < q < . By using the non-

linear alternative of Leray-Schauder and the Guo-Krasnosel’skii fixed point theorem on a
cone, they obtained the existence of positive solutions.

Liang et al. [] investigated the following fractional boundary value problem on an in-
finite interval:

Dγ

+
(
φp

(
Dα

+ u(t)
))

+ a(t)f
(
t, u(t)

)
= ,  < t < +∞, (.)

u() = u′() = , Dα–u(+∞) =
m–∑

i=

βiu(ξi), Dα
+ u(t)|t= = , (.)

where Dα
+ is the standard Riemann-Liouville fractional derivatives,  < α ≤ ,  < γ ≤

, i = , , . . . , m – ,  < ξ < ξ < · · · < ξm– < +∞, φp(s) = |s|p–s, p > . They established
solvability of the above fractional boundary value problems by means of the properties of
the Green function and some fixed-point theorems.

Wang et al. [] also investigated the problem (.)-(.), the difference is in using mono-
tone iterative method to develop two computable explicit monotone iterative sequences
for approximating the minimal and maximal positive solutions.

Our main results of this paper are in extending the results in [] from the low order to
the high order case. In addition, our research topic involves the Caputo fractional deriva-
tive, which is different from []. We employ the monotone iterative method [–],
which is indeed an important and useful contribution to the ones used in relevant pa-
pers.

The plan of this paper is as follows. In Section , we shall give some definitions and
lemmas to prove our main results. In Section , we employ the monotone iterative method
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to establish the two computable explicit monotone iterative sequences for approximating
the minimal and maximal positive solutions of boundary value problems (.) and (.). In
Section , an example is presented to illustrate the main results.

In order to facilitate our study, we make the following assumptions:

(H) f ∈ C([, +∞) × [, +∞), [, +∞)), f (t, ) �≡  on any subinterval of [, +∞), and
f (t, ( + tα–)u) is bounded when u is bounded on [, +∞);

(H) a(·) : [, +∞) → [, +∞) does not identically vanish on any subinterval of [, +∞)
and  <

∫ +∞
 a(t) dt < ∞.

2 Preliminaries
For convenience of the reader, we present here some necessary definitions and lemmas
from the fractional calculus theory.

Definition . ([]) The fractional integral of order α (α > ) of a function f : (, +∞) →R

is given by

Iα
+ f (t) =


�(α)

∫ t



f (s)
(t – s)–α

ds,

where �(·) is the Gamma function, provided that the right side is point-wise defined on
(, +∞).

Definition . ([]) The Caputo fractional derivative of order α >  of a continuous func-
tion f : (, +∞) →R is given by

cDα
+ f (t) =


�(n – α)

∫ t



f (n)(s)
(t – s)α–n+ ds,

where �(·) is the Gamma function, provided that the right side is point-wise defined on
(, +∞), and n = 
α�, where 
α� is the ceiling function of α.

Definition . ([]) Let E be a real Banach space. A nonempty closed convex set K ⊂ E
is called cone if

() if x ∈ K and λ > , then λx ∈ K ;
() if x ∈ K and –x ∈ K , then x = .

Lemma . ([]) Let α,β >  and n = 
α�. Then

cDα
+ tβ– =

�(β)
�(β – α)

tβ–α–, β > n,

cDα
+ tk = , k = , , , . . . , n – .

Lemma . ([]) Let Reα, Reβ > , f ∈ Lp(a, b) ( ≤ p ≤ ∞). Then

Iα
a+ Iβ

a+ f (t) = Iα+β

a+ f (t) = Iβ

a+ Iα
a+ f (t),

for all t ∈ [a, b]. If α + β > , then the relation holds at any point of [a, b].
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Lemma . ([]) Let Reα >  and f ∈ Lp(a, b) ( ≤ p ≤ ∞). Then

cDα
a+ Iα

a+ f (t) = f (t),

for all t ∈ [a, b].

Lemma . ([]) For α > , g ∈ C([, +∞)), the homogeneous fractional differential equa-
tion cDα

+ g(t) =  has a solution

g(t) = c + ct + ct + · · · + cntn–,

where ci ∈R, i = , . . . , n, and n = 
α�.

Lemma . ([]) Assume that u(t) ∈ C[,∞) ∩ L[,∞) with the derivative of order n
that belongs to C[,∞) ∩ L[,∞), let the Caputo fractional derivative of order α > .
Then

Iα
+

cDα
+ u(t) = u(t) + c + ct + ct + · · · + cntn–,

where ci ∈R, i = , , . . . , n, and n = 
α�.

The following lemma is fundamental in the proofs of our main results.

Lemma . ([]) Let V = {u ∈ C∞,‖u‖ < l, where l > }, V (t) = { u(t)
+tα– , u ∈ V }. Then

V is relatively compact on C∞, if V (t) is equicontinuous on any finite subinterval of
[, +∞) and equiconvergent at infinity, that is, for any ε > , there exists N = N(ε) > 
such that

∣
∣∣∣

u(t)
 + tα–


–

u(t)
 + tα–



∣
∣∣∣ < ε,

where C∞ = {u ∈ C([, +∞),R) : supt∈[,+∞)
|u(t)|

+tα– < +∞} and for all u ∈ V , t, t ≥ N .

3 Main results
Lemma . Let h(t) ∈ L[,∞) be a nonnegative continuous function. Then the boundary
value problem of fractional differential equation

cDα
+ u(t) = h(t),  < t < +∞, (.)

u() = , u(q)() = , cDα–
+ u(+∞) =

m–∑

i=

βiu(ξi), (.)

has a unique solution

u(t) =
∫ ∞


G(t, s)h(s) ds,
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where

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t–s)α–

�(α) + t∑m–
i= βiξi

– t
∑m–

i= βi(ξi–s)α–

�(α)
∑m–

i= βiξi
,

 ≤ s ≤ min(t, ξ) < ∞,
(t–s)α–

�(α) + t∑m–
i= βiξi

,

 ≤ ξm– ≤ s ≤ t < ∞,
(t–s)α–

�(α) + t∑m–
i= βiξi

– t
∑m–

i=κ βi(ξi–s)α–

�(α)
∑m–

i=κ βiξi
,

 ≤ ξκ– < s ≤ ξκ ≤ t < ∞,κ = , , . . . , m – ,
t∑m–

i= βiξi
– t

∑m–
i= βi(ξi–s)α–

�(α)
∑m–

i= βiξi
,

 ≤ t ≤ s ≤ ξ < ∞,
t∑m–

i= βiξi
– t

∑m–
i=κ βi(ξi–s)α–

�(α)
∑m–

i=κ βiξi
,

 ≤ t ≤ ξκ– < s ≤ ξκ < ∞,κ = , , . . . , m – ,
t∑m–

i= βiξi
,

 ≤ max(t, ξm–) ≤ s < ∞.

Proof In view of Lemma ., it is clear that equation (.) is equivalent to the integral
form

u(t) = Iα
+ h(t) + c + ct + ct + · · · + cntn–,

for some ci ∈R, i = , , . . . , n, n = 
α�.
By the boundary value conditions u() = , u(q)() = , we imply that

c = , c = c = c = · · · = cn = 

and

u(t) = Iα
+ h(t) + ct.

Applying Lemma . and the boundary condition cDα–
+ u(+∞) =

∑m–
i= βiu(ξi), we ob-

tain

cDα–
+ u(+∞) = lim

t→+∞
(
I+ h(t) + cDα–

+ (ct)
)

= lim
t→+∞ I+ h(t) =

∫ ∞


h(s) ds,

u(ξi) = Iα
+ h(ξi) + cξi,

consequently

c =
∫ ∞

 h(s) ds
∑m–

i= βiξi
–

Iα
+

∑m–
i= βih(ξi)

∑m–
i= βiξi

.



Li et al. Boundary Value Problems  (2016) 2016:5 Page 6 of 16

Substituting c by its value, it yields

u(t) =


�(α)

∫ t


(t – s)α–h(s) ds +

t
∑m–

i= βiξi

∫ ∞


h(s) ds

–
t
∑m–

i= βi
∫ ξi

 (ξi – s)α–h(s) ds
�(α)

∑m–
i= βiξi

=
∫ ∞


G(t, s)h(s) ds.

The proof is completed. �

Define C∞ = {u ∈ C([, +∞),R) : supt∈[,+∞)
|u(t)|

+tα– < +∞} endowed with the norm

‖u‖C∞ = sup
t∈[,+∞)

|u(t)|
 + tα– .

Lemma . ([]) C∞ is a Banach space.

Define a cone K ⊂ C∞ by

K =
{

u ∈ C∞ : u(t) ≥ , t ∈ [, +∞)
}

.

Define an operator T : K → C∞ as follows:

Tu(t) =
∫ ∞


G(t, s)a(s)f

(
s, u(s)

)
ds.

Set h(t) = a(t)f (t, u(t)) in Lemma .. We deduce that u is a solution of the boundary
value problem (.)-(.) if and only if it is a fixed point of the operator T .

Lemma . The function G(t, s) in Lemma . satisfies the following properties:
(i) G(t, s) is continuous on [, +∞) × [, +∞);

(ii) G(t, s) > , for any t, s ∈ (, +∞);
(iii)  < G(t,s)

+tα– ≤ ∑m–
i= βi

, for any t, s ∈ (, +∞).

Proof It is easy to see that (i) holds. So we prove that the rest are true. Let

g(t, s) =
(t – s)α–

�(α)
+

t
∑m–

i= βiξi
–

t
∑m–

i= βi(ξi – s)α–

�(α)
∑m–

i= βiξi
,  ≤ s ≤ min(t, ξ) < ∞,

g(t, s) =
(t – s)α–

�(α)
+

t
∑m–

i= βiξi
,  ≤ ξm– ≤ s ≤ t < ∞,

g(t, s) =
(t – s)α–

�(α)
+

t
∑m–

i= βiξi
–

t
∑m–

i=κ βi(ξi – s)α–

�(α)
∑m–

i=κ βiξi
,

 ≤ ξκ– < s ≤ ξκ ≤ t < ∞,κ = , , . . . , m – ,

g(t, s) =
t

∑m–
i= βiξi

–
t
∑m–

i= βi(ξi – s)α–

�(α)
∑m–

i= βiξi
,  ≤ t ≤ s ≤ ξ < ∞,
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g(t, s) =
t

∑m–
i= βiξi

–
t
∑m–

i=κ βi(ξi – s)α–

�(α)
∑m–

i=κ βiξi
,

 ≤ t ≤ ξκ– < s ≤ ξκ < ∞,κ = , , . . . , m – ,

g(t, s) =
t

∑m–
i= βiξi

,  ≤ max(t, ξm–) ≤ s < ∞.

Let gk(t, s) (k = , , , , , ) be defined by the above formulas. We will show that

g(t, s) ≥ ,  ≤ t ≤ s ≤ ξ < ∞.

Since

g(t, s) =
t

∑m–
i= βiξi

–
t
∑m–

i= βi(ξi – s)α–

�(α)
∑m–

i= βiξi

≥ t
∑m–

i= βiξi
–

t
∑m–

i= βiξ
α–
i

�(α)
∑m–

i= βiξi

= t
(

�(α) –
∑m–

i= βiξ
α–
i

�(α)
∑m–

i= βiξi

)

≥ ,

we deduce

g(t, s) ≥ ,  ≤ t ≤ s ≤ ξ < ∞.

By using an analogous argument, we can conclude that

g(t, s) ≥ ,  ≤ s ≤ min(t, ξ) < ∞,

g(t, s) ≥ ,  ≤ ξm– ≤ s ≤ t < ∞,

g(t, s) ≥ ,  ≤ ξκ– < s ≤ ξκ ≤ t < ∞,

g(t, s) ≥ ,  ≤ t ≤ ξκ– < s ≤ ξκ < ∞,κ = , , . . . , m – ,

and

g(t, s) ≥ ,  ≤ max(t, ξm–) ≤ s < ∞.

Therefore, we get G(t, s) > , for any t, s ∈ (, +∞).
Next, we will prove (iii) is true. We will show that g(t,s)

+tα– ≤ ∑m–
i= βi

,  ≤ ξm– ≤ s ≤ t < ∞.

g(t, s)
 + tα– =

(t – s)α–

( + tα–)�(α)
+

t
∑m–

i= βiξi( + tα–)

=
(t – s)α– ∑m–

i= βiξi + t�(α)
∑m–

i= βiξi( + tα–)�(α)

≤ tα– ∑m–
i= βiξi + t�(α)

∑m–
i= βiξi( + tα–)�(α)

≤ tα– ∑m–
i= βiξi + t�(α)

∑m–
i= βiξi�(α)
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≤ tα–

�(α)
+

t
∑m–

i= βiξi
≤ tα–

∑m–
i= βiξ

α–
i

+
t

∑m–
i= βiξi

≤ 
∑m–

i= βi
( + ) =


∑m–

i= βi
,

so we have  ≤ g(t,s)
+tα– ≤ ∑m–

i= βi
,  ≤ ξm– ≤ s ≤ t < ∞.

By using an analogous argument, we can conclude that

 ≤ g(t, s)
 + tα– ≤ 

∑m–
i= βi

,  ≤ s ≤ min(t, ξ) < ∞,

 ≤ g(t, s)
 + tα– ≤ 

∑m–
i= βi

,  ≤ ξκ– < s ≤ ξκ ≤ t < ∞,

 ≤ g(t, s)
 + tα– ≤ 

∑m–
i= βi

,  ≤ t ≤ s ≤ ξ < ∞,

 ≤ g(t, s)
 + tα– ≤ 

∑m–
i= βi

,  ≤ t ≤ ξκ– < s ≤ ξκ < ∞,

κ = , , . . . , m – , and

 ≤ g(t, s)
 + tα– ≤ 

∑m–
i= βi

,  ≤ max(t, ξm–) ≤ s < ∞.

Therefore, we get  < G(t,s)
+tα– ≤ ∑m–

i= βi
, for any s, t ∈ (, +∞). The proof is completed. �

Lemma . If (H) and (H) hold, the operator T : K → K is completely continuous.

Proof We divide the proof into the following five steps.
Step : We show that T : K → K .
In view of the continuous and nonnegative of G(t, s), f ∈ C([, +∞) × [, +∞), [, +∞)),

and a(t) ∈ L[,∞) is nonnegative, it is easy to see that Tu(t) ≥  for t ∈ [, +∞).
By condition (H) and Lemma ., for any fixed u ∈ K , we have

u(t)
 + tα– ≤ ‖u‖C∞ , t ∈ [, +∞)

and there exists ϒu such that

sup
t∈[,+∞)

|(Tu)(t)|
 + tα– = sup

t∈[,+∞)

∫ ∞



G(t, s)
 + tα– a(s)f

(
s, u(s)

)
ds

≤ sup
t∈[,+∞)


∑m–

i= βi

∫ ∞


a(s)f

(
s,

(
 + sα–) u(s)

 + sα–

)
ds

≤ ϒu
∑m–

i= βi

∫ ∞


a(s) ds < ∞,

so T(K) ⊂ K .
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Step : We show that T : K → K is continuous.
Let un → u as n → +∞ in K . Then un(s)

+sα– ⇒ u(s)
+sα– as n → +∞ on [,∞). Hence

∣
∣∣
∣

Tun(t)
 + tα– –

Tu(t)
 + tα–

∣
∣∣
∣

=
∣∣
∣∣

∫ ∞



G(t, s)
 + tα– a(s)f

(
s, un(s)

)
ds –

∫ ∞



G(t, s)
 + tα– a(s)f

(
s, u(s)

)
ds

∣∣
∣∣

≤
∫ ∞



G(t, s)
 + tα– a(s)

∣∣f
(
s, un(s)

)
– f

(
s, u(s)

)∣∣ds

≤ 
∑m–

i= βi

∫ ∞


a(s)

∣
∣∣
∣f

(
s,

(
 + sα–) un(s)

 + sα–

)
– f

(
s,

(
 + sα–) u(s)

 + sα–

)∣
∣∣
∣ds.

With the help of Lebesgue’s dominated convergence theorem and the continuity of f , we
have

‖Tun – Tu‖C∞ = sup
t∈[,+∞)

∣∣∣
∣
(Tun)(t)
 + tα– –

(Tu)(t)
 + tα–

∣∣∣
∣ → , as n → ∞,

that is, T is continuous.
Now take � ⊂ K be bounded, i.e., there exists a positive constant l such that ‖u‖C∞ ≤ l

for all u ∈ �.
Step : T(�) is uniformly bounded.
By condition (H), let

ϒl = sup
{

f
(
t,

(
 + tα–)u

)
, (t, u) ∈ [, +∞) × [, l]

}
.

For any u ∈ �, by Lemma ., we have

‖Tu‖C∞ = sup
t∈[,+∞)

|(Tu)(t)|
 + tα–

= sup
t∈[,+∞)

∫ ∞



G(t, s)
 + tα– a(s)f

(
s, u(s)

)
ds

≤ sup
t∈[,+∞)


∑m–

i= βi

∫ ∞


a(s)f

(
s,

(
 + sα–) u(s)

 + sα–

)
ds

≤ ϒl
∑m–

i= βi

∫ ∞


a(s) ds < ∞,

therefore T(�) is uniformly bounded.
Step : We show that T(�) is locally equicontinuous on any finite subinterval of [, +∞).
For any θ > , t, t ∈ [, θ ] and u ∈ �, without loss of generality, we assume that t > t.

Then
∣∣
∣∣
(Tu)(t)
 + tα–


–

(Tu)(t)
 + tα–



∣∣
∣∣

=
∣∣
∣∣

∫ ∞



G(t, s)
 + tα–


a(s)f

(
s, u(s)

)
ds –

∫ ∞



G(t, s)
 + tα–


a(s)f

(
s, u(s)

)
ds

∣∣
∣∣
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=
∣∣
∣∣

∫ ∞



(
G(t, s)
 + tα–


–

G(t, s)
 + tα–



)
a(s)f

(
s, u(s)

)
ds

∣∣
∣∣

=
∫ ∞



∣
∣∣
∣

G(t, s)
 + tα–


–

G(t, s)
 + tα–


+

G(t, s)
 + tα–


–

G(t, s)
 + tα–



∣
∣∣
∣a(s)f

(
s, u(s)

)
ds

≤
∫ ∞



(∣
∣∣∣

G(t, s)
 + tα–


–

G(t, s)
 + tα–



∣
∣∣∣ +

∣
∣∣∣

G(t, s)
 + tα–


–

G(t, s)
 + tα–



∣
∣∣∣

)
a(s)f

(
s, u(s)

)
ds.

Furthermore, we deduce that

∫ ∞



∣
∣∣
∣

G(t, s)
 + tα–


–

G(t, s)
 + tα–



∣
∣∣
∣a(s)f

(
s, u(s)

)
ds

=


 + tα–


∣
∣∣
∣


�(α)

∫ t


(t – s)α–a(s)f

(
s, u(s)

)
ds +

t
∑m–

i= βiξi

∫ ∞


a(s)f

(
s, u(s)

)
ds

–
t

∑m–
i= βi

∫ ξi
 (ξi – s)α–a(s)f (s, u(s)) ds
�(α)

∑m–
i= βiξi

–


�(α)

∫ t


(t – s)α–a(s)f

(
s, u(s)

)
ds

–
t

∑m–
i= βiξi

∫ ∞


a(s)f

(
s, u(s)

)
ds +

t
∑m–

i= βi
∫ ξi

 (ξi – s)α–a(s)f (s, u(s)) ds
�(α)

∑m–
i= βiξi

∣∣
∣∣

≤ 
 + tα–



(∣
∣∣
∣


�(α)

∫ t


(t – s)α–a(s)f

(
s, u(s)

)
ds

–


�(α)

∫ t


(t – s)α–a(s)f

(
s, u(s)

)
ds

∣
∣∣
∣

+
∣
∣∣
∣

t
∑m–

i= βiξi

∫ ∞


a(s)f

(
s, u(s)

)
ds –

t
∑m–

i= βiξi

∫ ∞


a(s)f

(
s, u(s)

)
ds

∣
∣∣
∣

+
∣∣∣
∣
t

∑m–
i= βi

∫ ξi
 (ξi – s)α–a(s)f (s, u(s)) ds
�(α)

∑m–
i= βiξi

–
t

∑m–
i= βi

∫ ξi
 (ξi – s)α–a(s)f (s, u(s)) ds
�(α)

∑m–
i= βiξi

∣∣
∣∣

)

≤ 
 + tα–



(∣
∣∣
∣


�(α)

∫ t



(
(t – s)α– – (t – s)α–)a(s)f

(
s,

(
 + sα–) u(s)

 + sα–

)
ds

∣
∣∣
∣

+
∣
∣∣
∣


�(α)

∫ t

t

(t – s)α–a(s)f
(

s,
(
 + sα–) u(s)

 + sα–

)
ds

∣
∣∣
∣

+
∣∣
∣∣

(t – t)
∑m–

i= βiξi

∫ ∞


a(s)f

(
s,

(
 + sα–) u(s)

 + sα–

)
ds

∣∣
∣∣

+
∣∣
∣∣
(t – t)

∑m–
i= βi

∫ ξi
 (ξi – s)α–a(s)f (s, ( + sα–) u(s)

+sα– ) ds

�(α)
∑m–

i= βiξi

∣∣
∣∣

)

≤ ϒl

 + tα–


(
t – t

�(α)

∫ t


a(s) ds +

∣
∣∣
∣


�(α)

∫ t

t

(t – s)α–a(s) ds
∣
∣∣
∣

+
(t – t)

∑m–
i= βiξi

∫ ∞


a(s) ds +

(t – t)
∑m–

i= βi
∫ ξi

 (ξi – s)α–a(s) ds
�(α)

∑m–
i= βiξi

)
. (.)
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Since  <
∫ +∞

 a(s) ds < ∞, by the integration of Cauchy’s test for convergence, we can
get

∫ ∞



∣∣
∣∣

G(t, s)
 + tα–


–

G(t, s)
 + tα–



∣∣
∣∣a(s)f

(
s, u(s)

)
ds → ,

uniformly as t → t.
Similar to (.), we can deduce that

∫ ∞



∣∣∣
∣

G(t, s)
 + tα–


–

G(t, s)
 + tα–



∣∣∣
∣a(s)f

(
s, u(s)

)
ds → ,

uniformly as t → t.
Thus, we conclude that

∣∣∣
∣
(Tu)(t)
 + tα–


–

(Tu)(t)
 + tα–



∣∣∣
∣ → 

uniformly as t → t, and hence T(�) is locally equicontinuous on any finite subinterval
of [, +∞).

Step : We show that T : K → K is equiconvergent at ∞.
For convenience, we denote � =

∑m–
i= βi(ξi–s)α–

�(α)
∑m–

i= βiξi
and � =

∑m–
i= βiξi.

Since limt→∞ t
+tα– = , there exists N >  such that

∣
∣∣
∣

t

 + tα–


–
t

 + tα–


∣
∣∣
∣ ≤

∣
∣∣
∣ –

t

 + tα–


∣
∣∣
∣ +

∣
∣∣
∣ –

t

 + tα–


∣
∣∣
∣ < ε (.)

for any t > t > N, ε > .
Similarly, there exist M > , N >  such that limt→∞ (t–M)α–

+tα– =  and

∣
∣∣
∣
(t – s)α–

 + tα–


–
(t – s)α–

 + tα–


∣
∣∣
∣ ≤

∣
∣∣
∣ –

(t – s)α–

 + tα–


∣
∣∣
∣ +

∣
∣∣
∣ –

(t – s)α–

 + tα–


∣
∣∣
∣

≤
∣
∣∣∣ –

(t – M)α–

 + tα–


∣
∣∣∣ +

∣
∣∣∣ –

(t – M)α–

 + tα–


∣
∣∣∣ < ε (.)

for any t > t > N, ε >  and  ≤ s ≤ M.
Let N > max{N, N}. For any u ∈ �, by (.) and (.), we have

∣
∣∣
∣
(Tu)(t)
 + tα–


–

(Tu)(t)
 + tα–



∣
∣∣
∣

=
∣
∣∣
∣

∫ ∞



G(t, s)
 + tα–


a(s)f

(
s, u(s)

)
ds –

∫ ∞



G(t, s)
 + tα–


a(s)f

(
s, u(s)

)
ds

∣
∣∣
∣

=
∣
∣∣
∣

∫ ∞



(
G(t, s)
 + tα–


–

G(t, s)
 + tα–



)
a(s)f

(
s, u(s)

)
ds

∣
∣∣
∣

≤
∫ t



(∣∣
∣∣

(t – s)α–

�(α)( + tα–
 )

–
(t – s)α–

�(α)( + tα–
 )

∣∣
∣∣ +

∣∣
∣∣

t

�( + tα–
 )

–
t

�( + tα–
 )

∣∣
∣∣

+
∣∣
∣∣

t�

( + tα–
 )

–
t�

( + tα–
 )

∣∣
∣∣

)
a(s)f

(
s, u(s)

)
ds
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+
∫ t

t

(∣∣
∣∣

(t – s)α–

�(α)( + tα–
 )

∣∣
∣∣ +

∣∣
∣∣

t

�( + tα–
 )

–
t

�( + tα–
 )

∣∣
∣∣

+
∣
∣∣
∣

t�

( + tα–
 )

–
t�

( + tα–
 )

∣
∣∣
∣

)
a(s)f

(
s, u(s)

)
ds

+
∫ +∞

t

(∣
∣∣
∣

t

�( + tα–
 )

–
t

�( + tα–
 )

∣
∣∣
∣ +

∣
∣∣
∣

t�

( + tα–
 )

–
t�

( + tα–
 )

∣
∣∣
∣

)
a(s)f

(
s, u(s)

)
ds

≤
∫ t



(
ε

�(α)
+

ε

�
+ ε�

)
a(s)f

(
s,

(
 + sα–) u(s)

 + sα–

)
ds

+
∫ t

t

(
 +

ε

�
+ ε�

)
a(s)f

(
s,

(
 + sα–) u(s)

 + sα–

)
ds

+
∫ +∞

t

(
ε

�
+ ε�

)
a(s)f

(
s,

(
 + sα–) u(s)

 + sα–

)
ds

≤ ϒl

((
ε

�(α)
+

ε

�
+ ε�

)∫ t


a(s) ds +

(
 +

ε

�
+ ε�

)∫ t

t

a(s) ds

+
(

ε

�
+ ε�

)∫ +∞

t

a(s) ds
)

→ 

uniformly as t → t.
In conclusion, for any ε > , there exists a sufficiently large N >  such that for any u ∈ �,

∣∣
∣∣

u(t)
 + tα–


–

u(t)
 + tα–



∣∣
∣∣ < ε,

∀t, t > N .
This implies that T : K → K is equiconvergent at ∞.
By the Arzela-Ascoli theorem, we see that T : K → K is completely continuous. The

proof is completed. �

Now we will list the following condition in this section:

(H) f (t, ·) is nondecreasing for any t ∈ [, +∞), and there exists a constant b > , such that
f (t, ( + tα–)u) ≤ b

∑m–
i= βi


∫ +∞

 a(s) ds for (t, u) ∈ [, +∞) × [, b].

Theorem . Assume (H), (H), and (H) hold. Then the multi-point boundary value
problem (.)-(.) has the minimal and maximal positive solutions v∗, u∗ in (, b], which
can be obtained by the following two explicit monotone iterative sequences:

vn+ =
∫ +∞


G(t, s)a(s)f

(
s, vn(s)

)
ds

with initial value v(t) = ,

un+ =
∫ +∞


G(t, s)a(s)f

(
s, un(s)

)
ds
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with initial value u(t) = b. Moreover,

v ≤ v ≤ · · · ≤ vn ≤ · · · ≤ v∗ ≤ · · ·
≤ u∗ ≤ · · · ≤ un ≤ · · · ≤ u ≤ u.

Proof Denote � = {u ∈ K ,‖u‖C∞ ≤ b}. Then we have T(�) ⊂ �. In fact, let u ∈ �. Then
by (H), (H), and Lemma ., we get

‖Tu‖C∞ = sup
t∈[,+∞)

∣∣
∣∣

∫ +∞



G(t, s)
 + tα– a(s)f

(
s, u(s)

)
∣∣
∣∣ds

≤ 
∑m–

i= βi

∫ +∞


a(s)f

(
s,

(
 + sα–) u(s)

 + sα–

)
ds

≤ 
∑m–

i= βi

∫ +∞


a(s) ds

b
∑m–

i= βi


∫ +∞

 a(s) ds

= b.

So T(�) ⊂ �.
Denote that v(t) = , v = Tv, and v = Tv = Tv, for all t ∈ [, +∞). Since v(t) =  ∈

� and T : � → �, v ∈ T(�) ⊂ � and v ∈ T(�) ⊂ �. We have

v(t) = (Tv)(t) ≥  = v(t),

for all t ∈ [, +∞).
By (H), for u, v ∈ � and u ≥ v, we deduce

Tu(t) =
∫ +∞


G(t, s)a(s)f

(
s, u(s)

)
ds

≥
∫ +∞


G(t, s)a(s)f

(
s, v(s)

)
ds

= Tv(t).

We know that T is a nondecreasing operator.
So we have

v(t) = (Tv)(t) ≥ (Tv)(t) = v(t),

for all t ∈ [, +∞).
By the induction, define vn+ = Tvn, n = , , , . . . . The sequence {vn}∞n= ⊂ T(�) ⊂ � and

satisfies the following relation:

vn+(t) ≥ vn(t),

for all t ∈ [, +∞), n = , , , . . . .
In view of T is completely continuous and vn+ = Tvn, {vn}∞n= is relative compact. That

is to say, {vn}∞n= has a convergent subsequence {vnk }∞k= and there exists a v∗ ∈ � such that
vnk → v∗ as k → ∞.
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By the above part and vn+(t) ≥ vn(t), for all t ∈ [, +∞), n = , , , . . . , we can get
limn→∞ vn = v∗.

Since T is continuous and vn+ = Tvn, we have Tv∗ = v∗. That is to say, v∗ is a fixed point
of the operator T .

Denote u(t) = b, u = Tu, and u = Tu = Tu, for all t ∈ [, +∞). Since u(t) ∈ � and
T : � → �, u ∈ T(�) ⊂ �, and u ∈ T(�) ⊂ �.

By (H), we deduce

u(t) =
∫ +∞


G(t, s)a(s)f

(
s, u(s)

)
ds

≤ 
∑m–

i= βi

∫ +∞


a(s)f

(
s,

(
 + sα–)u(s)

)
ds

≤ 
∑m–

i= βi

∫ +∞


a(s) ds

b
∑m–

i= βi


∫ +∞

 a(s) ds

= b = u(t),

for all t ∈ [, +∞).
Since T is a nondecreasing operator, we have

u(t) = (Tu)(t) ≤ (Tu)(t) = u(t),

for all t ∈ [, +∞).
By the induction, define un+ = Tun, n = , , , . . . . The sequence {un}∞n= ⊂ T(�) ⊂ �

and satisfies the following relation:

un+(t) ≤ un(t),

for all t ∈ [, +∞), n = , , , . . . .
With an analysis exactly parallel to the proving process of limn→∞ vn = v∗, we see that

there exists a u∗ ∈ � such that limn→∞ un = u∗.
Since T is completely continuous and un+ = Tun, we have Tu∗ = u∗. That is to say, u∗ is

a fixed point of the operator T .
Now, we will show that u∗ and v∗ are the maximal and minimal positive solutions of the

boundary value problem (.)-(.) in (, b].
Let φ ∈ [, b] be any solution of the boundary value problem (.)-(.). That is, Tφ = φ.

Noting that T is nondecreasing and v(t) =  ≤ φ(t) ≤ b = u(t), we have v(t) = Tv(t) ≤
φ(t) ≤ Tu(t) = u(t), for all t ∈ [, +∞).

Similarly, we can obtain

vn(t) ≤ φ(t) ≤ un(t),

for all t ∈ [, +∞), n = , , , . . . .
Since limn→∞ un = u∗ and limn→∞ vn = v∗, by the above formulas we obtain

v ≤ v ≤ · · · ≤ vn ≤ · · · ≤ v∗ ≤ · · ·
≤ u∗ ≤ · · · ≤ un ≤ · · · ≤ u ≤ u.
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Since f (t, ) �≡ , for all t ∈ [, +∞),  is not a solution of the boundary value problem
(.)-(.). We know that u∗ and v∗ are the maximal and minimal positive solutions of the
boundary value problem (.)-(.) in (, b], which can be obtained by the corresponding
iterative sequences in

vn+ =
∫ +∞


G(t, s)a(s)f

(
s, vn(s)

)
ds

with initial value v(t) = ,

un+ =
∫ +∞


G(t, s)a(s)f

(
s, un(s)

)
ds

with initial value u(t) = b. The proof is completed. �

4 Examples
In this section, we will present an example to illustrate our main results.

Example . Consider the following boundary value problem:

cD


+ u(t) = e–t f

(
t, u(t)

)
,  < t < +∞, (.)

u() = u()() = , cD


+ u(+∞) =




u
(




)
+




u(), (.)

where a(t) = e–t and

f (t, u) =

⎧
⎪⎨

⎪⎩


(+t) + 

 ( u

+t



), u ∈ [, ],


(+t) + 
 ( 

+t



), u > .

Here α = 
 .

It is clear that f (t, ) �≡  on any subinterval of [, +∞) and f (t, ( + t 
 )u) ≤ 

 , so con-
dition (H) holds.

In view of
∫ +∞

 a(t) dt =
∫ +∞

 e–t dt = , so condition (H) holds.
Taking ω(t) = 

 t, ϕ(t) = e–t , b = , by a simple computation, we have

f
(
t,

(
 + t



)
u
) ≤ 


≤


 + 




∫ +∞

 e–t dt
=




,

so condition (H) holds.
By Theorem ., we see that the boundary value problem (.)-(.) has the minimal

and maximal positive solutions in (, ], which can be obtained by two explicit monotone
iterative sequences.
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