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Abstract

We establish new results on the existence of positive solutions for the multi-point
boundary value problem at resonance on the half-line. Our results are based on the
Leggett-Williams norm-type theorem due to O’'Regan and Zima, which requires
appropriate Banach spaces and proper operators. An example is given to illustrate the
main results.
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1 Introduction
In this paper, we will discuss the existence of positive solutions for the multi-point bound-
ary value problem

u'(t) +f(t,u(t) =0, ¢e][0,+00),

(11)
w(0)=0,  u(+00) = X7 it (€),
where f € C([0,+00) x R — R), f(¢,0) is not always equal to 0, ¢t € [0,+00), a; > O,
St ai=1,i=1,2..,m=1,0=§ < <&y, 1 <00.

Boundary value problems of differential equations are applied to more and more disci-
plines, and the existence of one or multiple positive solutions for multi-point BVPs has
been attracting more and more authors, for details see [1-16]. Generally speaking, the
boundary value problems of differential equations can be roughly divided into two parts.
One is boundary value problems on the finite interval; Infante and Zima [17] obtained the
existence of positive solutions for the problem

x'(t) +f(t,x(2)) =0, t€(0,1),
X0)=0,  x(1) =" aux(n),

withO<n << - <nuao<l,a >0, Z:’Sz a; = 1. The other is boundary value prob-

lems on the infinite interval, for details see [18—22]; [20] obtained the existence of positive
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solutions for the problem

x'(t) =f(t,x(t),x'(¢)), ¢€(0,+00),
x(0) = x(n), limy_, .00 %' (£) = 0,

and

x'(t) =f(t,x(t),x'(2)) +e(t), te€(0,+00),
x(0) = x(n), lim;_, 00 %' (£) = 0,

where f: [0,+00) x R — R, e: [0, +00) — R are continuous and 75 € (0, +00).
To the best of our knowledge, only few authors studied the existence of positive solutions
for boundary value problems at resonance on the half-line. In [21], the authors dealt with

the second order boundary value problem with integral boundary conditions on a half-line

(p(O)x' () +gt)f(¢,x(2)) =0, a.e.in (0, +00),
x(0) = [y x(s)g(s)ds,  limy o0 p(£)x' (£) = p(0)x'(0).

n [22], the authors investigated the existence of positive solutions for the two-point
problem at resonance on the half line,

D§ u(t) =f(t,u(t)), tel0,+00),
u(0)=u/(0)=u"(0)=0, D 'u(0) = lim,_, ;o0 D& u(t),

where Df, is the standard Riemann-Liouville fractional derivative.
Inspired by the works above, we will study the existence of positive solutions for the
problem (1.1).

Define 1.1 We call « is a positive solution of the boundary value problem (1.1), if # > 0,
u # 0, and satisfies the problem (1.1).

2 Preliminaries
Let us recall some standard facts and the Leggett-Williams norm-type theorem due to
O’Regan and Zima.

Let X, Y be real Banach spaces. A linear mapping L : domL C X — Y is called a Fred-
holm operator of index zero if Im L is closed and dimKer L = codimIm L < 0o, which im-
plies that there exist continuous projectors P: X — X and Q: Y — Y such that ImP =
KerL and Ker Q = Im L. Moreover, since dimIm Q = codimIm L, there exists an isomor-
phism J : ImQ — KerL. Denote by Lp the restriction of L to Ker? N dom L — Im L and
its inverse by Kp. So Kp : ImL — Ker P N'dom L and the coincidence equation Lx = Nx is
equivalent to x = (P + JQN)x + Kp(I — Q)Nx.

A nonempty convex closed set C C X is said to be a cone provided that

(i) AsveC,forxe C,A>0;

(i) »,—x € C implies x = 0.
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Note that every cone C C X induces a partial order in X by x < y ifand only if y—x € C.
Let y : X — C be aretraction, i.e. y is a continuous mapping such that y(x) =x, x € C.
Let W:=P+JQN + Kp(I - Q)N and W, := W o y.

Theorem 2.1 ([12]) Let C be a cone in X and 1, Q2 be open bounded subsets of X with
Q1 C Qyand CN (2 \ Q) #9. Assume that L :dom L C X — Y is a Fredholm operator of
index zero and the following conditions are satisfied.
(C1) QN : X — Y is continuous and bounded and Kp(I — Q)N : X — X is compact on
every bounded subset of X;
(C2) Lx #ANx forallx € CN 32 NdomL and A € (0,1);
(C3) y maps subsets of 2, into bounded subsets of C;
(C4) dp([I = (P+JQN)y] |kerr, KerL N ©,,0) # 0, where dg stands for the Brouwer
degree;
(C5) there exists ug € C\{0} such that ||x|| < o (uo)||Vx| for x € C(uo) N 3, where
C(uo) = {x € C: puy < x for some p > 0} and o (ug) is such that
I + o | = o (u0) ]| for every x € C:;
(C6) (P+JQN)y(0€) C C;
(C7) ¥, (Q\1) C C.

Then the equation Lx = Nx has a solution in the set C N (Q5\Q1).

Lemma 2.1 ([23]) AssumethatV C X is bounded. V is compact if { % :u € V}isequicon-

tinuous on [0, T], VT < 0o, and equiconvergent at infinity.

In this paper, we will always suppose that the following condition holds.

(A1) f:[0,+00) x R — Ris continuous and f (¢, 0) is not always equal to 0. For any r > 0,
there exists /,(¢) € L[0, +00), h,(t) > 0 satisfying |[f (¢, (1 + t)u)| < h,(¢), t € [0, +00), |u| <r,
>0, Y7 =1

3 Main result
Let

t
X= {u:ueC[O,+oo),u(0)=0, sup ()] <oo},
te[0,+00) 1+¢

[z(2)]

1+t and

with the norm |[|u|| = sup,(g , )

Y= {y:ye C[0, +00) N L[0, +00), sup ‘y(t)’ < +oo},

te(0,+00)
with the norm ||y||; = 0+°° V()] dt + sup,e(o, 400y V(D]

It is easy to prove that (X, || - ||) and (Y, || - ||1) are Banach spaces.
Define L:domL C X — Y and N: X — Y as follows:

(Lu)(t) = —u"(t), (Nu)(t) = f (t, u(?)), u(t) € X, t € [0, +00),
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where

m-1
domL = {u(t) e X|u'(t) e Y, u (+00) = Zaiu/(&)

i=1

Then the boundary value problem (1.1) can be written
(Lu)(t) = (Nu)(t), u(t) edomL.

For convenience, denote the function G(t, s) as follows:

0, t=0,
%_%S-}-e‘s, s<t&1 <s<épk=2,...,m-1,
Glt,s) = %M‘ﬂ 0<t<s,by<s<bk=2,..,m-1,
%—ttﬁ+e’s, Em1 <5 <1,
%Jre—s, 0<t<s, &y <s.
Clearly, G(¢,s) < W +1,fort,s € [0, +00).

Lemma 3.1 L is a Fredholm operator of index zero.
Proof 1t is easy to get
KerL = {uedomL|u(t):ct,tzo,ceR}, (3.1)

and

m-1 +00
ImL:{ye Y’Z%‘/ y(s)ds:O}. (3.2)
i1 i

Define Q:Y — Y by

m-1 +00
(@)= &;al [0 yev (3.3

Clearly, KerQ=ImL, ImQ={y|y=ce*,t > 0,c € R},and Q: Y — Y is a linear projec-
tor. In fact, for y(¢) € Y, we have

1 +00
2 _ - -t . =
(@)= Q)0 = Ae) gmr XHZ% / ¥(6)ds = (Q)(@).

Forye Y,wehavey=(y—-Qy) + Qy, Qy e ImQ, (I - Q)y € KerQ =ImL. So we obtain
Y =ImQ +ImL. Take yo € InQ NImL. yy € Im Q means that y, can be written y, = ce™,

¢ € R. At the same time, by ¥y € Im L and (3.2), we get

Za,/ ce*ds=0
i=1
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i.e. ¢ = 0. This implies that yo = 0. Thus, Y =ImQ & Im L and dimKerL = codimImL =1 <
+00. Observing that Im L is closed in Y, L is a Fredholm operator of index zero. O

Define P: X — X as
+00
(Pu)(t) =t / e‘u(t)dt, u(t)eX. (3.4)
0
Clearly, P: X — X is a linear continuous projector and
ImP = {u | u(t) =ct,t >0,ce R} =KerlL.

Thus, X =ImP @ KerP =KerL @ Ker P.
Define Kp : Im L — Ker PN dom L by

(Kpy)(t) = — /Ot(t —8)y(s)ds + t/‘0+00 e’y(s)ds, yelmlL. (3.5)

By simple calculations, we have (KpLp)u = u, Yu € dom L N KerP, and (LpKp)y =y, Vy €
ImL.So Kp = (Lp)™, where Lp = L |4om nkerp: dom L N Ker P — Im L.
Define the linear isomorphism J : Im Q — KerL as

J(ce™)=ct, t>0,ceR.

Thus, JON + Kp(I — Q)N : X — X is given by
[JON + Kp(I - QN |u(t) = ¢ / G(t,s)f (s, u(s)) ds. (3.6)
0

Lemma 3.2 QN : X — Y is continuous and bounded and Kp(I - Q)N : Q@ — X is compact,
where Q2 C X is bounded.

fo hy(t)dt
Y e
We will prove that QN : X — Y is continuous and bounded.

Proof For convenience, denote M, :=

Since Q2 C X is bounded, for u € £, there exists a constant > 0, such that ||«|| < . By
the condition (A;), we have

jonu = [ |t S Za,/ ) dr
-1
S ae—fz Za,/ ‘L' u(r)) dr
i=1 i=1

es m-1 +

Za, oo[f(r,u(r))|dr ds

ds

+ sup
te[0,+00)

m-1 +00
+ sup Zalf If (v, u(r))| dv
i=1 &i

t€[0+oo)2 -1 ae i

I h(vydr [ h(r)dT

—Zml E+ m-1 £
=1 i€ Doy et
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So QN : X — Y is bounded. By (A;) and the Lebesgue dominated convergence theorem,
we see that QN : X — Y is continuous.

Now, we will prove that Kp(I — Q)N : Q— Xis compact.

First of all, by the condition (A;) and u € Q, we have

‘[(p(l — Q)Nu(t)
1+¢

br—s
=‘—/0 1—+t(1—Q)Nu ds+—/ (I — Q)Nu(s) ds
5/0 \(I—Q)Nu(s)|0ls+/0 |(I—Q)Nu(s)|ds
52/0 |Nu(s)|ds+2/(; ‘QNu(s)|ds

52/ h,(s)ds + 2M, < 4M, < +00,
0

i.e. Kp(I - Q)N : © — X is bounded.

Second, foru e Q,0<t <ty < T < 00,

Kp(I — Q)Nu(t;)  Kp( — QQNu(t)
1+ t 1+ t

= ‘_/0 ’ ? (I — Q)Nu(s)ds + j—tz /0+0<> e*(I — Q)Nu(s) ds

f +00 B
0 /0 e *(I — Q)Nu(s) ds)

_ <_/.t1 b~ (I Q)Nu(s) ds+
0

f tz—S t — toy p—
= I - N d I — Ni d
_/0 1+6 1+a |( Q)Nu(s)| s+/;1 t2|( Q)Nu(s)| ds

1) I
+ —
1+ 1+4

/0+00 e‘s|(1 - Q)Nu(s)| ds

t—s Uty —s

t1 t
< h s)ds + IN1(s)| ds
_[) 1+t2 1+t1 () /0 1+t2 1+t1 |Q M( |
tzt t2t
+/ 2= h(s)ds+/ 2 )’ds
u 1+¢ 4
ty +00 t +00
N - / by (s)ds + - / |QNu(s)| ds
1+4 1+4 1+14 1+4 0
g, — t alg, — t
5/ 2 s)ds+M/ 275 _ 47 e’ds
0 1+t2 1+t1 1+t2 1+t1

t
+/ h(s)ds+M/ _Sds+2‘ L M
t 1+ 1+t1

re

By the uniform continuity of ﬁ in [0,T] x [0,T] and 1+,: in [0, T], and the absolute
continuity of the integral, we see that Kp(I — Q)N : Q@ — X is equicontinuous on [0, T],
VT > 0.
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Third, for & > 0, there exists a constant [ > 0, such that

+00 e +00 e
/ h.(s)ds < —, / e’ds< .
f 12 f 12M,

Since lim;_, ;o0 f—:i =1, limy_s 400 ILH =1, there exists a constant T > [ such that

< , t>T.
12M,

1+¢

< )
1+t 12M,

‘ t—1 € ‘ t ‘ £

ForueQ, T <t <t, we have

Kp(I = Q)Nu(t;)  Kp(I — Q)Nu(t)
1+ tr 1+ t

:‘_ / 2h- (1 QNis)ds + - i / " s - QNu(s) ds
0 1+ Jo

2

_ (-/ 2 (I Q)Nu(s) ds + ! /+0<> e*(I — Q)Nu(s) ds)
0 1+t Jo

1
1
S/

t +00
[( 1+t2) <1_1+t1>i|/0\ ‘(I_Q)NM(S)’dS
h-1 +00 w00
[( 1+t2) <1 ml)}”””f hr(s>ds+2Mr/l e ds
(NS
I\ +(1- 2M, <.
L+, 1+t

Thus, Kp(I - QN : Q — X is equiconvergent at infinity.
By Lemma 2.1, we see that Kp(/ - Q)N : @ — X is compact. O

2 ty—s
1+t2

hh—-s hL-—-
1+t2 1+t1

|(I Q)Nu(s )| ds +/1 |(1 - Q)Nu(s)‘ ds

h
1+ t2 1+t1

tz—l) <1 tl—l):|/+Oo|(1_Q)Nu(s)|ds+2/+oo|(]—Q)NM(S)|dS
0 !

1+l’2 1+t1

/0+0<> e‘s|(1 - Q)Nu(s)| ds

Theorem 3.1 Assume that (A1) and the following conditions hold.
(Az) For u > 0, there exist three nonnegative functions u(t), Bi(t), i = 1,2, such that

—ut)ue™t <f(t,u) < -Pi(t)ue* + Ba(2), G(t,8)f (s, u) > —e’u, t,s€[0,+00),

where pu(t)ue™, By (t), Bi(t)ue™" € L[O +00), infie[o,4+00) B1(£) 1= Po > 0 and (t) satisfying

. 231 Lojeti
(i) SUP;efo,4o0) H(E) 1= 1 < W

(ii) there exists ty € [0, +00), such that dy :=
G(tO’ S) = 0.
(A3) There exists R > 11+1forl fooo Ba(s) ds, such that f (¢, Rt) < 0, t € [0, +00).

a1fo
Then the problem (1.1) has at least one positive solution.

C[1 = Glto, s)(s)]1 + s)e S ds > 1,

1+t
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Proof Take a cone

C= {M(t) € Xlu(t)>0,te [0,+oo)}.

Set
o )
ueX d_” ul| < t <R, te€[0,+00)¢, Qg:{ueX|||u||<R},
where dy is given by the condition (A;) and R > % fooo Ba(s)ds. Clearly, 4,
Q, are open and bounded sets of X, Q; = {u € X|d1 [lu| < "ff)‘ <r <R} C 2, and
CN(Qy\ Q) #0.

In view of Lemmas 3.1 and 3.2, L is a Fredholm operator of index zero and the condition
(C1) of Theorem 2.1 is fulfilled.

Suppose that there exist u;(t) € CN 3dQ2; Ndom L and A € (0,1) such that Lu; = AoNuyy,
ie. uf(t) + Aof (t, u1(2)) = 0. By u1(t) € dom L, we have

m-1

U (+00) - Y ety (£) = 0,

i=1

m-1 &

ie —\o /0+oof(s, ul(s)) ds + Zaiko /0 f(s, ul(s)) ds=0.

i=1

It follows from (A,) that

+00 m-1 +00
0-Y /g Fon)ds =Y o /E [-Am(s)e™ + Ba(s)] ds

So

oq/o Bi(s)ui(s)e™ ds < /0 Ba(s) ds. (3.7)
Considering (A;), (3.7), and

uy(t) = ([ = P)uy (t) + Puy(¢) = KpL(I — P)uy(t) + Puy(¢) = KpLuy (£) + Puy (2)

=—Xo /0 (t - 9)f (s, u1(s)) ds + Aotfo e f (s, u1(s)) ds + t/ e*uy(s) ds,

0

we obtain
u1 ()
1_ - _1_”/ (t - s)f (s, u1(s)) ds
1Aitt e f (s,u1(s)) ds + ﬁ i e"ui(s)ds
<o (1;),u(s)u1(s)e
o 1+t
[T e laome s g dss 1 [ e
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Br(s)e*u 0 Bi(s)e™us(s)
/ ﬂls) Pl s / P+ |- =gy

Lraborl
- 0[1,30
4@ 2o (% 0 (s.n(s)) ds

1+t 1+t 0

Mol [ o) ds+ —— [ eunis)d
+ — e S, U1\S S+ — e "u\s S
1+t 0 ! 1 t !

/ Bo(s)ds < R,
0

> Ao fo % (B (s)e™ - Ba(s)] ds

, Rt Y

1 P e’s [—/L(s)ul(s)e_s] ds + s ; e*uy(s)ds
0 Bis)u(s)e ™ ua(s)
_/ Pals)ds - 0 Bi(s) ds
_afo+in

/ Ba(s)ds > —R.

a1Bo

These contradict #; () € CN 32y, Ndom L. So (C2) is satisfied.

Let (yu)(t) = |u(t)|, u(t) € X. Then y : X — C is a retraction and maps subsets of Q, into
bounded subsets of C, i.e. (C3) holds.

Let u(t) € Ker L N 02, then u(t) = ct, t > 0. Define

H(ct,A) = [I = AP +JQN)y](ct)

+00
= ct—kt/ ete|tdt - ———
0

Zal/ t |c|t

e

where ¢ € {-R,R} and A € [0,1]. Suppose H(ct, 1) = 0, by (A3), we obtain

c=Allel+ =) o t c|t) dt
< Zl =1 aie Z / ) )
m-1 +00
z)\|c|<1 > ae_a Za/ M(t)m‘dt)

i=1

m-1 +00
>Ale||1- a/ tet dt
( > aeStZ "Jo

i=1

=,\|c|(1— %) > 0.
2ty wes

Hence H(ct, 1) = 0 implies ¢ > 0. Furthermore, if H(R¢, 1) = 0, we have

RI-2) = w [ feRO)dE>o0,
Zz 1 %e Z /l

which is a contradiction to the condition (A3).
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Thus, H(u, 1) # 0, for u € Ker L N 925, and A € [0,1]. Therefore

dp([1- (P +JQN)y] Ikerz, Ker L N 25,0)
=dp(H(-,1),KerL N Q,0)

=dp(H(,0),KerL N Q,,0) = dp(I,KerL N 2,,0) =1 0.

Thus, (C4) holds.

Let ug(t) = t, t € [0,+00), then ug € C \ {0}, C(up) = {u € Clu(t) > ut for some p >
0,¢ € [0, +00)}, and we take o (uo) = 1. Let u € C(up) N 32, we have 2 o lu| < ";(?‘ <r,
t € [0, +00).

For u € C(up) N 92, by (Ay), we get

“pu(t()) _ to +oo s to +00
1+t 1+t /0 eu(s)ds + 1+ /0 G(toys)f(s,u(s)) ds

= /+OO (efsu(s) - G(to,S),u(s)u(s)e’s) ds
0

1+ to
) e _s u(s)
= 1 - Glto, 1 s 22
Tt /(; [ G(to s)u(s)]( +s)e T+ ds
tO +00 » 1 ~
> 0 fo [1- Gt (o)1 + ) ds- sl =

Thus, || u|| < o (ug)||Yu|, for u € C(ug) N 32;. So (C5) holds.
For u(t) € 0€2,, t € [0, +00), by the condition (A;), we have

(P+JQN)y (u) = t/o e‘s|u(s)| s+ ———

u(s)|) ds

m-1 +00
“ X[ st
le oie i=1 i

1

Zt/o e*5|u(s)’ds S I popars Za,f u(s) |u(s |e

+00 B ~ t +00 B
zt/o e }u(s)|ds —Zm_laie‘ft/o ;L(s)}u(s){e ds

i=1

e u(s)
:t‘/o e |u(s)|(1—m)ds20,

i=1

which means that (P + JQN)y (3€2;) C C. Hence, (C6) holds.
For u(t) € Qy \ Q1, t € [0, +00), by the condition (A;), we have

(W, u)(¢t) = t/(;ﬂ)o e-S|u(3)| ds + t/0+00 G(t,s)f(s, u(s)|)ds
Zt/+oo e’s|u(s)|ds—t/+O<J e’s|u(s)|ds
0 0

=0.

So W, (2 \ Q1) C C, i.e (C7) is satisfied.
By Theorem 2.1, we confirm that the equation Lu = Nu has a positive solution #, i.e. the
problem (1.1) has at least one positive solution. O
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4 Examples
Let us consider the following boundary value problem:

u'(t) +te™t - %u(t)e" =0, tel0,+00),

u(0) =0, U/ (+00) = 0.682/(0) + 0.018%'(0.5) + 0.3024/(0.95).

(4.1)

Here, f(¢, u(t)) = te™* - %u(t)e‘t, a; = 0.68, ay = 0.018, a3 = 0.302, & =0, & = 0.5, & =
0.95. Take i,(t) = te™ + g5 (1 +t)e™", u(t) = %, Bi(t) = %, Ba(t) = te™!, t € [0, +00), ty = 1.05,
R =160, r =150.

Obviously, |f(¢, (1 + £)u)| < h,(¢), t € [0,+00), r > 0, |u| < r. By our calculations, we can
get 0.0029 < G(¢,s) < 2.8571 and

—ut)ue™ <f(t,u) < -Pi(t)ue* + Ba(0),

G(t,s)f (s,u) >—e*u, u=>0,tel0,+00),

Mn1 = Supte[0,+oo) /‘L(t) = %; /30 = inft€[0,+oo) ﬁl(t) = ﬁ: :BZ(t) € L[O! +OO); f(t’Rt) < Oy t e
[0, +00). By simple calculations, we can get that 0.348 < G(1.05,s) < 1.478, so

1.05

G(1.05,5) >0, doi= — >
(1.05,5) > 0T 17 1.05

/ . [1-G(1.05,9)u(s)]1 +s)e* ds > 1.005 > 1.
0

So the conditions (A;)-(A3z) hold. By Theorem 3.1, we can conclude that the problem
(4.1) has at least one positive solution.
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