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Abstract

In this paper, our boundary value problem is a Dirac system with transmission
conditions at several points of discontinuity. The main purpose of this paper is to
derive the sampling theorems of this boundary value problem. To derive the
sampling theorems including the construction of the Green's matrix as well as the
vector-valued eigenfunction expansion theorem, we briefly study the spectral
analysis of the problem as in Levitan and Sargsjan (Introduction to Spectral Theory:
Selfadjoint Ordinary Differential Operators, Translations of Mathematical Monographs,
vol. 39, 1975; Sturm-Liouville and Dirac Operators, 1991) in a way similar to that of
Fulton (Proc. R. Soc. Edinb,, Sect. A 77:293-308, 1977). We derive sampling
representations for transforms whose kernels are either solutions or the Green's
matrices of the problem. In the special case when our problem has one point of
discontinuity, the obtained results coincide with the corresponding results in Tharwat
etal. (Numer. Funct. Anal. Optim. 34:323-348, 2013).
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1 Introduction

Let H(D) be a class of complex-valued functions defined on D, where D is a subset of C,
which may coincide with C. We say that a sampling theorem holds for the class $(D) if
there are two sequences {A;}22, C D and {Si(1)}22, C $H(D), such that

F(\) =Y F(u)Sk(), 1 €D,FeHD), 1)
k=1

where series (1.1) satisfies some sort of convergence. The points {Ax}7°;, which are for
practical reasons preferred to be real, will be called the sampling points and the functions
{Sk(A)}72, are called the sampling (reconstructing) functions. The name sampling comes
about since the elements of {Sx(1)}72;, when a sampling theorem holds, can be recovered
from their values at {A¢}72;. When a sampling theorem holds for a class {Sx(A)}72;, this
may have many applications when the discrete (digital) state is preferable, like the role
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played by the Whittaker-Shannon-Kotel'nikov (WSK) sampling theorem [5-9] in signal
processing.

The point now concerns the classes (D), for which sampling theorems are guaranteed.
In most of the known cases in sampling theory the classes of the sampled functions are
integral transforms defined on a L?-space. Now, in the following, we give an example.

Example 1.1 Let $(C) be the space of all bandlimited functions, i.e., functions of the form

of finite Fourier transforms,
1 T .

F(A) = — x)e* dx, f(-)eLl*(-m,m),reC. 1.2

0)=—= [ 1o £O) e (o, m) (12)

Thus, $(C) is the Paley-Wiener space PW? of entire functions of exponential type at most
7, which belong to L?(R) when restricted to R, cf. [5,10, 11]. Elements of $(C), in this case,
have sampling expansions of the form (1.1) with

i A=k
r=k; Sk(A) = %,

keZ, 1.3)
where the sampling expansions converge absolutely on C and uniformly on both R and
compact subsets of C, [12], p.262. This result is the well-known WSK sampling theorem
[5-9] which has many applications in signal processing.

The above example is a special case of a generalized sampling theorem for generalized
integral transforms. It is known as Kramer’s sampling theorem [5, 13-16] and reads as
follows.

Theorem 1.1 Let {Ai}32_ . beasequence of real numbers. Let] C Rand K(-,1):IxC — C
be a function such that

1. K(, 1) e L2(I) forall » € C,

2. the sequence {K(-, Ai)}32_,, forms a complete orthogonal set in L* ().
Let H(C) be the set of integral transforms

F(A) = /1 F@K@x ) dx,  f(-) e L*(I). (L.4)

Then elements of $(C) admit the sampling expansions

R [ K, MK G, ) e
FO)= ) F(i) Km0

k=—00

Fe ). (1.5)

Series (1.4) converges uniformly wherever || K(-, M| 12 is bounded.

We can see that Example 1.1 above is a special case of Theorem 1.1. There are many prob-
lems motivated by Kramer’s theorem. The first concerns the situation for which we can ob-
tain the kernel and the sampling points such that the theorem holds. The second concerns
the relationship between Kramer’s sampling expansions and Lagrange-type interpolation
ones. Notice that the sampling series in Example 1.1 is in the form of a Lagrange-type
interpolation expansion. A partial answer to the first question was given by Weiss [17],



Tharwat Boundary Value Problems (2016) 2016:4 Page 3 of 27

before the existence of Kramer’s theorem. In this short note [17], the kernel is extracted
from the second order boundary value problem

—y"(x) + g(x)y(x) = Ay(x), -oco<a<x<b<oo, (1.6)
cosay(a) +sinay'(a) = 0, 1.7)
cos By(b) + sin By’ (b) = 0, (1.8)

where ¢(-) is continuous and real valued on [a, 5] and «, 8 € [0, ). If we take u(-, 1) to be
the solution of (1.6) determined by the initial conditions

u(a, ) = sina, u'(a,\) =—cosa, AeC, (1.9)

then u(-, 1) satisfies Kramer’s theorem with respect to the sequence of the eigenvalues, i.e.,
the sequence of the eigenvalues, {1}, will be taken as the sampling points. For the sec-
ond question, it is shown in many articles that Kramer’s expansions are nothing more than
Lagrange-type interpolation ones when the kernels of the sampled integral transforms are
solutions of certain self adjoint eigenvalue problems or are to be expressed in terms of the
Green’s functions of these problems; see [18—20]. Using the connection between Kramer’s
theorem and the eigenvalue problems most of the known sampling expansions can easily
be obtained.

In [21, 22], the authors discussed sampling theorems of regular one-dimensional contin-
uous Dirac systems; see also [23]. In the case of boundary value problems with one point
of discontinuity, Tharwat et al. [4], discussed sampling theorems of Dirac systems; see also
[24, 25]. In the present paper we derive sampling theorems associated with Dirac systems
with transmission conditions at several points of discontinuity. That is, we define classes
of transforms associated with these problems and derive sampling expansions for these
classes. We use both solutions and the Green’s matrices to define the sampled transforms.
In all cases the obtained sampling expansions are written in the form of a Lagrange inter-
polation series. The uniform convergence of the obtained sampling expansion as well as
the analytic and growth properties of the sampled transforms are given. However, sam-
pling theories associated with Dirac systems, which have several points of discontinuity,
do not exist as far as we know. An illustrative example is given in detail in the last section.

2 Preliminaries
In this section we introduce some of the notations and relations that will be used in the
sequel; then we prove some useful lemmas and theorems. We consider the Dirac system

r(x)uy (%) — qu(%)ur (%) = duy (%),

H@, () + 4o (W1t (3) = — 1t (), } x € la,c1)U(ct,c) U(co,c3)U---U(cm,b], (2.1)

Ui (1) := sinauq(a) + cosauy(a) = 0, (2.2)

Uy (u) := sin Buy (b) + cos Buy(b) = 0, (2.3)

and the transmission conditions

L) i= [ykul(ck)} - [‘Sk”l(cz)} -0, k=1,2,...,m, (2.4)

Yiua(cy) Sua(ci)
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where A € C;

11, RS [ﬂ, cl)’
r(x):={ rt, x € (ce1ycx) (k=2,3,...,m),
Pmsl, X € (Cm, D),

re >0 (k=1,2,...,m + 1) are real numbers; the real-valued functions ¢(-) and g,(-) are
continuous in [a, c1), (ck-1,ck), and (¢, b] (k = 2,3,...,m), and have finite limits ql(c,f) =
lim, & g1 (%), g2(ci0) := lim, & q2(x) (K = 1,2,....,m); Vi 86 (8 € R, Y4 81, 1,8 # 0 and
o, B €[0,7); see [26, 27].

Let H be the Hilbert space

m+1
H = {u(x) = (Z:g;) s ur(x), usr(x) € g:?Lz(ck_l,ck),a =co,b = cm+1} . (2.5)

The inner product of H is defined by

51 m k-1 1. ¢
() vy = f uT(x)T/(x)dx+kz=2:l—L+kD’ /kk T (1)) dx

n

m o b
+M/ u! (x)(x) dx, (2.6)

Tm+l

8;8) . .
where D; = #, D;>0,i=1,2,...,m,and T denotes the matrix transpose,
iV

m+1
u(x) = (Z:E’;;) (%) = (Vl(x)) eH,  w()vil)e @Lz(ck_l,ck), i=1,2.

vy (x)

For vector-valued functions u(x), which are defined on [a,c;) U (c1,¢2) U (ca,¢3) U -+ U
(¢, b] and have a finite limit u(c,f) = limx_wz: u(x) (k =1,2,...,m), by up(x) (k =

1,2,...,m + 1) we denote the functions

M(C;Ll), X =Ci-1,
up(x) = { ulx), x € (ci1,¢), i=2,3,...,m,

uey), x=ay, ulcy), x=c¢, (2.7)

{M@» x€lac),
uy(x) =

ulx), x€(cmbl,
u(c,), x=cp,

which are defined on 7; := [a, 1], Zy := [cx_1, k] (k=2,3,...,m) and T, := [c;n, b], respec-
tively.
In the following lemma, we will prove that the eigenvalues of the problem (2.1)-(2.4) are

real.
Lemma 2.1 The eigenvalues of the problem (2.1)-(2.4) are real.

Proof Assume to the contrary that Ao is a non-real eigenvalue of problem (2.1)-(2.4).

Let ( (x)) be a corresponding (non-trivial) vector-valued eigenfunction. By (2.1), we

ui
ug (x)
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have

) {1 0 0) ~ s )

= (o - 2| @) + [m@[*),  xela,e)Ule,ca) Ulea,es) U+ U (e bl.

Integrating the above equation through [a, 1), (ck-1,¢k) (k = 2,3,...,m), and (¢, b], we

obtain
)»0;1)»0 [/ﬂ 1(|u1(x)|2 + |u2(x)|2) dx:|
=u (cf)ﬁz (cl_) -u (cl_)uz (cl_) - [ul(a)ﬁz(a) - ﬁl(a)uz(a)], (2.8)
do—Ao[ [ 2 2
. [‘/;k_l(‘ul(xﬂ + {uz(x){ )dx]
= (c;)ﬁz (c,:) —u (c,:)ug (c,:) - [u1 (c,’;_l)ﬁg (c,t_l) —u (62_1)142 (c,’;_l)], (2.9)

fork=2,3,...,m,and

T b
to =0 U (|u1(x)|2+|u2(x)|2)dx}
1 Cm

T+

=U (b)ﬁz (b) - El(b)uz(b) - [I/ll (C:n)ﬁz (C:n) — ﬁl (C;l)uz (C:n)] (210)
Then from (2.2), (2.3), and the transmission conditions, we have, respectively,

ui(a)uy(a) — U1 (@)uy(a) = 0,

uy (b)u2(b) — uy (b)uy(b) = 0,

and

(¢ )2 (cic) = ()2 (<)

35/
K [ul(ck)uz(ck) ﬁl(c,t)uz(c,t)], k=1,2,...,m
Vk)’k

Since Ao # Ao, it follows from the last three equations and (2.8), (2.9), (2.10) that

=
_/ |u1(x |u2(x)| dx+ZH D/ |u1(x)|2+|uz(x)|2)dx

Ck-1

D
+h/ (‘ul(x)’2+ ‘uz(x)‘z)dxzo. (2.11)
Vil cm
Then u;(x) = 0, i =1,2, and this is a contradiction. Consequently, 1o must be real. O

Lemma 2.2 Let A and Ly be two different eigenvalues of the problem (2.1)-(2.4). Then the
corresponding vector-valued eigenfunctions u(x, 1) and v(x, Ay) of this problem satisfy the
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following equality:

1 c1 m /f*l Di [
— / u! (o, ) V(x, Ao) dx + Z L / u! (o6, A)(x, Ao) dx
" Ja Tk

k=2 Ck-1

" D [P
+ H’:—l/ u! (x, A)v(x, Ay) dx = 0. (2.12)

Vm+l cm

Proof By (2.1) we obtain

d
r(x)d_x {1106, 1), Aa) — ua (%, Aa)va (%, ) }

= (A2 = A {ua (6, A)vi(x, Aa) + 2, ) va(w, A2) .

Integrating the above equation through [a,c1), (ck-1,¢k) (k =2,3,...,m), and (¢, b], and
taking into account that u(x,1;) and v(x, 1,) satisfy (2.2)-(2.4), we obtain (2.12), where
A F Ao O

Now we will construct a special fundamental system of solutions of (2.1) for A not being
an eigenvalue. By virtue of Theorem 1.1 in [1], we will define the two solutions of (2.1)

_ 901(1)") . _ Xl(")‘)
o 1) = <¢2<~, k)), X(0) = (Xz . x))’

where
P11, 1), x € [co, 1),
X, A), x € (c1,0),
o1, = P12(x, 1) (c1,¢2)
(/)l,m+1(x: )\): RS (Cm: Cm+1],
(2.13)
(PZ,I(x; )\,), PAS [COr Cl)y
X, M), x € (c1,¢2),
02(x,3) = @22(%, M) (c1,¢2)
¢2,m+1(xy}\); x € (cym> Cmn1 )
x1,1(% 1), x € [co, 1),
’)\‘ ) e ) )
a0 = x264),  xe(a,c)
Xl,m+l(x’ A, x € (e Cmal,
(2.14)
X2,1(%, 1), x € [co, 1),
’)\' ’ e ) )
o (2, 4) = X2,2(x ) x € (c1,¢2)
X2,m+1(xr}\)’ X € (Cm;cm+1]r

as follows, where ¢y = a and c¢;,,41 = b. By virtue of Theorem 1.1 in [1] the initial-value
problem

r(x)uy (%) — qu () (%) = Aua (%), o)
r(x)u; (%) + g2 (X)us (%) = —Aus (%),  x € (a,¢1), .
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u1(a) = cosa, uy(a) = —sina, (2.16)
has a unique solution u = (:;zligg ), which is an entire function of A € C for each fixed
x € [a, ¢1]. Similarly, employing the same method as in proof of Theorem 1.1 in [1], we see
that the problem

r(x)uy (%) — qu(¥)ua (x) = Ay (%),

(2.17)

r(x)uy (%) + ga(®)ua(x) = —Auz(x),  x € (¢ D),

u1(b) = cos B, uy(b) = —sin B, (2.18)

XLm+1(%A)

e x))’ which is an entire function of the parameter A for

has a unique solution u = (
each fixed x € [c,,, b].
Now the functions ¢;j1(x,A) and yx;i(x,A) are defined in terms of ¢;x(x,A) and

Xiknn(% 1), i=1,2,k=1,2,...,m, respectively, as follows. The initial-value problem

r(x)uy(x) — qi(%)u (%) = A (%),

(2.19)
r(@)u) (%) + q2(Nuz(x) = ~Auz(x), % € (Cior Creu)s
k _ i _
Lil(C]() = )5/_(pl,k(ck7)")r MZ(C/() = 8_{(¢2,k(ck7)‘f)) k = 1,2,...,}’}’1, (220)
k k
. . _( PLks1(0))
has a unique solution u = (m 1(m)) for each A € C.
Similarly, the following problem also has a unique solution u« = ( ;;:((zi;)
1)y (x) = g1 (x)u (x) = Ao (%),
(2.21)
r()uy (%) + g2 (uz(x) = —Auz (%), x € (c1, ¢)s
8k ; 8 "
ui(ce) = ;Xl,kﬂ (i 1), us(c) = 7}(2,10,1 (ctoh), k=12,...,m. (2.22)
k

By virtue of equations (2.20) and (2.22) these solutions satisfy both transmission condi-
tions (2.4). These functions are entire in A for all x € [a, ¢;) U (c1,¢2) U (ca,c3) U+ - - U (C, b].
Let W (¢, x)(-,A) denote the Wronskian of ¢(-,1) and x (-, A) defined in [2], p.194, i.e.,

(pl(”)‘-) (/)2(':)\)
Xl(")‘-) X2(',)‘-)

W((ﬂ, X)(r)\) =

It is obvious that the Wronskians

wr(2) == W(p, x)(x, 1)
= o1 M) X2,k (%, A) = 02k (6, M) 1k (%, 4),  x € Lpk=1,2,...,m+1, (2.23)

are independent of x € 7; and are entire functions. Taking into account (2.20) and (2.22),
a short calculation gives

@1(1) = Dyon(V) = -+ = [ [ Dicomnr (1),
i=1

for each A € C.
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Corollary 2.3 The zeros of the functions wi(A) (k=1,2,...,m + 1) coincide.

Then we may introduce into the consideration the characteristic function w()) as

@(1) = o1(A) = Din(3) = - = [ [ Diwomn (). (2:24)
i=1

Lemma 2.4 All eigenvalues of problem (2.1)-(2.4) are just zeros of the function w()).

Proof Since the functions ¢; (x, 1) and ¢, (x, A) satisfy the boundary condition (2.2) and the
transmission conditions (2.4), to find the eigenvalues of the (2.1)-(2.4) we have to insert
the functions ¢; (x, 1) and @, (x, A) in the boundary condition (2.3) and find the roots of this
equation. a

In the following lemma, we show that all eigenvalues of the problem (2.1)-(2.4) are sim-
ple.

Lemma 2.5 The eigenvalues of the boundary value problem (2.1)-(2.4) form an at most
countable set without finite limit points. All eigenvalues of the boundary value problem
(2.1)-(2.4) (of w(1)) are simple.

Proof The eigenvalues are the zeros of the entire function occurring on the left-hand side,
see equation (2.24), in

m

[ [Di[sin Borma (B, 1) + cos Bpa,mer (b, 1)] = 0.

i=1

We have shown (see Lemma 2.1) that this function does not vanish for non-real A. In
particular, it does not vanish identically. Therefore, its zeros form an at most countable
set without finite limit points.

By (2.1) we obtain for A, u € C, A # ,

d
re) { @10, M a (%, 1) — 01 (%, 2, 1)} = (=2 {1 (%, M) or (3, 1) + 02 (%, M) (o, 1) }.

Integrating the above equation through [a, 1), (ck-1,¢k) (k=2,3,...,m) and (¢, b], we ob-

tain

nw—A
n

[ / (01106 W) ona (5 1) + 9 (6 W) oo () dx]

= @u1(c, M) @2 (e, ) = ora(er, )2 (i, i)

- (o11(@ Vg2.1(a, 1) - ora(a, Vo (a, 1)), (2.25)

p=A[ [*
” [ / (01 M1, 1) + @24(% V@2 k(% 1)) dx}
Ck-1

= o1i(ci, M) oo (e 1) — ori (i M) oo (i )

= [e1x (i V) @2 (ci_y 1) — pra(ci_y V) @2 (ci_y 1) ] (2.26)
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for k=2,3,...,m, and

AT r?
- |:/ ((pl,m+1 (x: )V)(pl,mﬂ (x, /’L) + 902,m+1(xr )\)(pZ,m+1 (x: M)) dx:|

Tm+1 cm
= P1,m+1 (b, )\)§02,m+1 (b, M) — QLm+1 (b, )L)(/)Z,mﬂ (b, ,u)

- [‘pl,m+1 (C:n’ )") ©2,m+1 (C:nr //L) — P1,m+1 (C:,p )\)‘Pz,mﬂ (C:nr /'L)] (227)

Then from (2.16) and the transmission conditions (2.20), we have

n—A [/ 1 (01105 )11 (2, 1) + 92,0 (%, M) 21 (%, 1)) dx]
r a
“p,
+(u—A) Z H [/ (@1 V)1, 1) + @2, M@ k(% 1)) dx:|
Ck-1
+ (- K)[I_L—ll / (‘pl,mﬂ(x,)h)(pl,mﬂ(x, ) + ©2,mi1 (%, )‘)¢2,m+1(9€,u)) dx]
H [ 01m1 (B, ) @,mi1 (By 1) = P11 (B, V)2, mar (b 1) ] (2.28)

i=1
Dividing both sides of (2.28) by (A — ) and by letting i — X, we arrive at the relation

1

‘71[ / (le@ )| + |¢2,1(x,x>|2)dx]
k— 1D
Zn [/ (|<o1,k(x,x>|2+|¢z,k(x,x>|2)dx]

Ck-1

"D
- L |:/ (|(pl,m+l(xr)\){2 + |¢72,m+1(x; )\,)|2) dx:|
T'm+1 cm
a 0@1me1(b, 1) 002,m+1(b, A)
1Dy A) ———— — 1 1 (D, A) ———= ). 2.29
1:1[(s021>aA (b 1) =" (2.29)
We show that the equation

w()\) == nDi(Sin,B(pl,erl(br)\) + COSﬁ@Z,erl(b; )‘-)) =0 (230)

i=1

has only simple roots. Assume the converse, i.e., equation (2.30) has a double root A*, say.
Then the following two equations hold:

sin ,3<p1,m+1(b, A*) +¢08 Bami1 (b, 1%) =0, (2.31)
0 b, \* 0 b, \*
Sinlg(pl'L() n cosﬂm() =0. (2.32)
oA oA

Equations (2.31) and (2.32) imply that

a(pl,erl(b: )\*)
oA

31 (B, 1
— @ (b,2Y) 32 b,2T) (2.33)

P2,m+1 (br )\*) Ix
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Combining (2.33) and (2.29), with A = 1*, we obtain

1 [/ 1(|901,1(x,k)|2 + a6, W)[%) dx}

rn
k-1
+ Z H b [/ (|<P1,k(x,?»)|2 + |€02,k(x,?»)|2) dx}
Ck-1

" Di[ P
+ Hl:l [/ (’(pl,mﬂ(x’)”)‘z + |(/)2,m+1(x,)\)|2) dx:| =0. (2.34)

Tmi1

It follows that ¢; (x, 1*) = @5 (x, 1*) = 0, which is impossible. This proves the lemma. O

Here {¢(-, 1,)}52_., will be a sequence of vector-valued eigenfunctions of (2.1)-(2.4) cor-
responding to the eigenvalues {1,}5°_ . Since x(,A) satisfies (2.3) and (2.4), then the

eigenvalues are also determined via
sina x11(a, A) + cosa xa1(a, A) = w(R). (2.35)

Therefore {x (-, 1,,)}52_. is another set of vector-valued eigenfunctions which is related by
{p( A} with

X(xr )"n) = Tn(ﬂ(x» )"n); X € [6{, Cl) ) (Cl: C2) ) (CZ: CS) u---u (Cm’b]’n € Zr (236)

where 7, # 0 are non-zero constants, since all eigenvalues are simple. Since the eigenvalues

are all real, we can take the vector-valued eigenfunctions to be real valued.

3 Asymptotic formulas of eigenvalues and eigenvector functions

In this section, we derive the asymptotic formulas of the eigenvalues {1,}7°_ and the
vector-valued eigenfunctions {¢(-,1,)}50_,. We shall transform equations (2.1), (2.13),
(2.16), and (2.20) into the integral equations, see [2],

@11(x,A) = cos[k(x_ﬂ) —a] 1 /x sin[)\(x_ t)}h(t)%,l(t»)»)dt

" n n
_ l xCOS[)\'(x— t):|q2(t)(ﬂ2,1(t,)») dt, (3'1)
" Ja I3
@21(x,A) = sin[/\(xrl_ il —ozi| + rlI/ cos[)‘(xrl— t)i|%(t)§01,1(t,)») 5
- }"ll xSin|:)"(x_ t)]qz(t)¢2 1(t ) dt, (3.2)
P (1) = —<ﬂ1/< (¢ [)»(x Ck):| Vk(ka(ckr)\) sin[m]
Tk+1 k Tkl
T ra |: :|41 D1t 1) dt
Vk 1 |: ]q2 (BO)p2k(t, 1) dt, (3.3)
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Yk v [AMr—a)] - A —cx)
P2 (% A) = =@k (Ck, )») s1n|:7 + —f(pg,k (ck, A) cos| —
Sk Tkel 3y Tiel

+ ! fx COS|:)L(x_ t)i|%(t)(ﬂ1,k+1(t:)\) dt

Tk+1 ck Tk+1

1 [*  [Alx-—t
- / sm[ w )]qz(t)wz,k+1(t,/\)dt, (3.4)
Tk+1 Tks1

Ck

where k=1,2,...,m.
For |A| = oo the following estimates hold uniformly with respect to x, x € [a,c1) U
(Cl’ CZ) U (CZ; C3) U---u (Cm; b]r Cf [1]; P55~

@1,1(x, A) =COS[Mx_a) —a} +O<l), (3.5)
r A
[ Ax—a) 1
@2,1(x, ) = sin —a|+0( =), (3.6)
r A
AMx — / A —
o1 @ 0) = gy (e, 1) COS[M} - y—/sz,k(c;,?») sin[M]
Sk Tkl 8 kel
+O(%), k=1,2,...,m, (3.7)

Yk oL [AMr=e)] _ Ax—cx)
P21 (% 1) = =i, A) sm[i + —f(pg,k(ck,k) cos| ————
Sk T+l Oy Tkl

1
+O(X), k=12,...,m. (3.8)
Now we will find an asymptotic formula for the eigenvalues. Let yi8; — ¥(6r = 0, k =

1,2,...,m. Since the eigenvalues of the boundary value problem (2.1)-(2.4) coincide with
the roots of the equation

m
1_[ Dk [Sin ﬁ(pl,m+l(b7 )V) + COs ,3<p2,m+1(by )\)] =0, (39)
k=1

then from the estimates (3.7) and (3.8) (with k = m) in (3.9) we get

S e Ll I PR e el |

m Tm+1 5;/,,/, "'m+1

* Cosﬂ[g_mwl’m(c;")\) sin[m] + QQOZ,m(C;nr)L) COS[M:H

Tm+1 8;,1 Tm+1
1
+ (9(—) =0,
A
which can be written as

y_m‘plvM(C;n’)“) sin[m + ,3] + QQOZ,m(C;m)M) COS[M + ,3}

Sm Tm+1 8}/," T'm+1

+ (’)(l) =0. (3.10)
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Then, from (3.5), (3.6), (3.7), (3.8), and yx8;, — ¥{8« = 0, equation (3.10) has the form

. |:)\(Cl —a) Mea—a) Az —c) Mem = cm1)  Mb—cp) }
sin + + +eet + -a+p

rn %) r3 Tm Ym+l
1
+ (9(—) =0, (3.11)
A
which can be rewritten as
1 i (crs1—¢
sin[@3. — o + B + 0(—) =0, ©:= Z o= ) (3.12)
A o Tk+1

For large |1| equation (3.12) obviously has solutions which, as is not hard to see, have the
form, ¢f. [1], p.57,

Ory—a+B=nm+38,, n=0,%1,+£2,.... (3.13)

Inserting these values in (3.12), we find that sin§, = (9(%), ie,8, = (9(%). Thus we obtain
the following asymptotic formula for the eigenvalues:

- 1
An:wug(_), n=0,+1,42,.... (3.14)
= n

Using equations (3.14), we obtain the following asymptotic formulas for the vector-valued
eigenfunctions ¢(-, 1), where y8; — y,8; = 0:

P11(0hn)= cos[*” ) _al+O(1)
( ) x € [co, 1),
A ©2,1(% ) =sin[ 22 ) o+ ol 315
ol hn) = (W1k+1 (XAn)= ]'[l 15 cos[xn Y&, (ej=¢;1) Ct 1) An(:;lik) —u]+0(%)) ( ) (3.15)
. y X € (ChkrChks1)s
A
211 (D)= 1‘[51(s sinfi, K %ll’ %—a]m(%)

where k=1,2,...,m

4 Green's matrix and expansion theorem

Letf(:) = (f1 ) be a continuous vector-valued function. Now, we derive the Green’s matrix
of problem (2 1)-(2.4). Consider the inhomogeneous eigenvalue problem consisting of the
differential system

r(@)us (%) — {q1(x) + Ayui(x) = fi(x),
r()u; (%) + {q2(x) + Aua(x) = —fo(x),

x € [a,c1) U (c1,¢2) U (e, c3) U=+ U (e, bl, (4.1)

and the boundary conditions (2.2)-(2.4) with A is not an eigenvalue of problem (2.1)-(2.4).
Now, we can represent the general solution of (4.1) in the following form:

A () 1 By, i) (), xelaa),

$2,1(x1) x2,1(x1) /7
) (%1
A 2) () o) + B, (ko) *€ () (k=2,3,...,m),
u(x, }\‘) = @1,m+1(%1) , (42)
Am+1 (x’ )\') ( ©2,m+1(x, k))
i+ A
+ B (2, 1)( gmi(zxi) % € (Cm» b).
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We applied the standard method of variation of the constants to (4.2), thus, the functions
Ai(x, 1) and By (x,A) (k=1,2,...,m + 1) satisfy the linear system of equations

AL, 1)1 (36, 1) + B (3, 1) X1 (3, 1) = A2,

x€la,a), (4.3)
'Ai (x’ )‘«)(/71,1 (x’ )") + Bi(xr )V)Xl,l(xr )\,) = _'%lx): ] !

A6 1) 1) + By, 2) xox(, 2) = 12, » 23 o
X € (Ck_1,Ck =2,3,...,m), .
Ak(x’ )‘-)‘pl k(x;)‘-) + B, (x) }‘-)Xl k(xr)\) rk), A

and
‘A,rnﬂ(x: }»)(ﬂz m1 (%, A) + B;er(x’ )\)XZ m1 (1) = {l”ffl (C b] (4 5)
m+1 (xv )»)901 m+1(x’ )‘) + Bm+1 (x’ )”)Xl m+1(x’ )\) = i”m+3

Since X is not an eigenvalue and w()) # 0, each of the linear system in (4.3), (4.4), and (4.5)
has a unique solution which leads to

(4.6)

A 4) = o [ x TEAf(6) dE + A,
1 1 . x € [a,c)
Bi(x, 1) = 5oy Jo 0T (Ef(€) dE + By,

-Ak(xr)‘) = ’kwt()h) f:k XT(%_’ )“)f(g) ds + Ak:

1 k=2,3,...,m), 4.7
Bk(x'”=mﬁiﬂ(s,xy(admsk,} * € e m,  (47)

— L [P XT(E A E) dE + Ay
fcm (pT(‘i: )‘-)f(g d%_ + Bm+11

Am+1 (x7 )") =
Bm+1 (x, )‘-)

Vm+1wm+1

} x € (¢, b], (4.8)

Vm+1wm+1

where Ay and By, k=1,2,...,m + 1, are arbitrary constants, and

(fﬁiiiiii) £ €la,cr),

96,2 = (gzlzfgi; ,  Eelcnen) (k=2,3,...,m),
(miER), € € omb)
(fiiﬁiii) £ elac),

x@.4)= (leffgfi;)’ £ elana) (k=2,3,...,m),
(&), &€ (cmbl.

Substituting equations (4.6), (4.7), and (4.8) into (4.2), we obtain the solution of (4.1),

SR [0 XT(E A () dE + K5 (YT (5, 0)f (§) dE
+ .Alqo(x,k) +Bixx, 1), x¢€la,c),
O [ X T E)dE + EE [ 0T (5, 0f(€) dE

M(x, )\') - rka)k rka)k
+ A/Ap(x,)») + Bex(x,A), x€(cr1,cx) (k=2,3,...,m),
et 0T (e, () dE + LR 1 T (e, ) (6) de

+ Ammp(x,k) + Buix (1), x€(cm bl
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Then from (2.2), (2.3), and (2.4), we get

A= o o x Tsxys)d5+,3w3 2 %7€ () de
oot e [0 X T(E () dE,

A2 = o ”3xT(€ WO + o I3 X6 A€
510 T &N (E) d,

+ -0+

Vm+1wm+l

ceey

Ay = e [7 X T (€N (€) e,

"m+1®m+1

Am+l = O;

B, -0,
By = o Jo 0 (6,2)f(§) d,
Bs= Lo [T (&N E) de + L5 [2 07 (6,0 (6) dE,

Bt = 5oy Ju 0 TG ©)dE + s [ 0T (6, 2)f(€) ds
+---+m f,,:"_l o' (6,1 (E)dE.

Equations (4.10) and (4.11) can be rewritten as follows:

Ag = i Zly:k ri+1wt+1()n) fCiM XT(S’)L)f(E)ds’ k=12,....m,

0, k=m+1
and
. k=1,
T S s [ 0T E ) s, k=23, m ],

respectively. Then, from (4.12) and (4.13), (4.9) can be written as

L) [T (g, ) (E) dE + L [T T (6, )f () dE
+ Zl 1 rH(f((j:ﬁ()L ./.CH-I T(E )")_f( )dév X € [61 Cl)
e it xT<s W@)ds BT (E A)f(E) de

1
u(x,\) = + Zl " fc”l TN (&) dE

"lezﬂ

rmffif‘mﬁl S2 TR ©)dE + L [ (e ) (E) d
# 00 R [0 QT (6, ) (§)dE,  x € (Cuy b,

Ci-1

which can be written as

1 m ]»(_lDl‘ Ck
s )= [ G(x,s,xy@)d&Z“l% | cwenseas
a k=2

k1
m D, [P
+Hr—11 | e
where
Gt 1) = X" (€,2), a<é<x<bxtFc,k=12,...,m,
7 () e, )xT(E, L), a<x<E<bux&EHc,k=12,...,m.

g A fm ENf(E)dE, xe(Gona) k=23,...,

Page 14 of 27

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
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Expanding (4.16) we obtain the concrete form

G(x, &, 1)
P1(EM) 1 (1) 92(8,0) x1(x2) _
_ 1 Gehnen mennwn ) ¢S§sxsbxnidok=12..,m, 417)
- o1 (%) x1(E1) @1(xA) x2(8,1) _ :
Q) L (anaen mammen) aG<¥=E<bxEfak=12.m.

The matrix G(x,&,1) is called the Green’s matrix of problem (2.1)-(2.4). Obviously
G(x,&,1) is a meromorphic function of A, for every (x,£) € ([a,c1) U (c1,¢2) U (c2,¢3) U
-+ U (¢, b])?, which has simple poles only at the eigenvalues. Although the Green’s func-
tion looks as simple as that of Dirac systems, ¢f. e.g. [1, 2], it is rather complicated because
of the transmission conditions; see the example at the end of this paper.
The next theorem is a vector-valued eigenfunction expansion theorem. The proof is
exactly similar to that of Levitan and Sargsjan derived in [1], pp.67-77; see also [2].

Theorem 4.1
(i) Foru(-)eH,

[ZOIE S (ZORAOI M (418)

n=-00

(ii) For u(-) € H,

oo

w@) = Y (), V() Yn), (4.19)

n=-00

where Y, (-) = \I(/;f(—)\)l)\ is the normalized vector-valued eigenfunction of the problem
(2.1)-(2.4). The series is absolutely and uniformly convergent on

[a,c1) U (c1,¢2) U (ca,c3) U - - U (c, B

5 The sampling theorems

In this section we introduce two sampling theorems associated with problem (2.1)-(2.4)
above. In the first one we define an integral transform whose kernel is ¢(-, 1), while in the
second one the sampled transform will be defined in terms of the Green’s matrix. The first
sampling theorem of this section associated with the boundary value problem (2.1)-(2.4)
is the following theorem.

Theorem 5.1 Let f(x) = ( JC)G’H For A € C let

x

/fT o(x, A dx+ZHle/ fT(x (%, A
Hle

Tm+l

/fMWmMM, 5.1

where ¢(-, \) is the solution defined in (2.13). Then F () is an entire function of exponen-
tial type that can be reconstructed from its values at the points {1, }52_. via the sampling
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formula

w()\)
g (“’Zf (=)’ .

The series (5.2) converges absolutely on C and uniformly on any compact subset of C. Here
()) is the entire function defined in (2.24).

Proof Equation (5.1) can be rewritten in the form

k- 1
——/ T x)ex, A dx+ZH D/ FTx)ex, A
/f x)px, A )dx, AreC. (5.3)

Tm+1

Since both f(-) and ¢(-, 1) are in H, they have the Fourier expansions

7)5 o2 = Y {p(2), 0, xn)),{“(x%), (5.4)

f) = Zf( )
Al

n=-00

where A € C and f (n) are the Fourier coefficients
Fon) ={FO), 0 0),
k-1
D;
L / FT ()0, hr) dx + Z H / FT ()0, ) dx

Hz}D/fT(x (1 (5.5)

T+l

Applying Parseval’s identity to (5.3), we obtain

> (w(r)\)7(p(r)\n)>7'[
F(A) = Fr,)——————, xreC. 5.6
()= 2 FOu) oG aml1% © 56)

n=—00

Now we calculate (¢(-,A), (-, A,))% and ||@(-, A,) |l of A € C, n € Z. To prove expansion
(5.2) we need to show that

(‘P(J\):‘P(Jn))?—t _ a)()‘)
[ICY 5] ¥ (r = A’ (W)’

neZ,,eC. (5.7)

Indeed, let 1 € C and # € Z be fixed. By the definition of the inner product of , we have

B " [4p, [
(@A) 0 Ay, = V—I/a @ (x,)\)w(x,kn)dw;T/ @' (% M)e(x, 1) dx

Ck-1

m o b
+M/ ng(x,A)w(x,k,,)dx. (5.8)

T+l
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From the Green’s identity, see [1], p.51, we have

Ck-1

1 [a “ ]r(ilDi k
(M—M(— / 07w gl h) dx s 3 i Dt [ ot as
" Ja k=2 Tk

m . b
Al / o (5 Vo, xn)dx)
V1 cm

= ou1 (e, M) @21 (crs An) = @1a(crs A)@21(c1s An)

= [o11(a, V@21 (a 1) — @r(a, 21 (a, 1) ]

Di[ @1 (s M) @2k (¢ An) — 1k (¢ 1) 02,6 (s n) ]

- l_[ Di [‘pl,mﬂ (C;rnv }‘-) ©2,m+1 (C:,,; )\n) — PLm+1 (C;rn; )‘-) ©2,m+1 (C:nr )\n)]

i=1

Then from the initial conditions (2.16) and (2.20), equation (5.9) becomes

Ck-1

1 [a " 11D, [
Go-2(+ [ wmptmrndne 3 L [ g, as
" Ja Py Tk

m o b
, 4D / (pT(x,)»)(D(x’)‘”)dx)

T'm+1 Cm

= [ [ D[ @1me1 (5, )2 me1 (B, hn) = @11 (B 1) @201 (b, 1))
i=1

From (2.36) and (2.18), we have

1,115, 1) @211 (B, M) = 92,41 (D5 X) 1,141 (D5 X))
= tn_l [‘pl,m+1 (b, ) x2,m1(bs hn) = 92,m41 (D, A) X1,m41 (D, )&n)]
= r;;l [_ $in B@1m1 (b, 1) - cos Boamn (b, )")]

= Tn_lwmﬂ ().
Substituting from (5.10), (5.11) into (5.8), we get

R | l_[l‘mleime()") -1 w()‘-)
L s 2 W

Letting A — A, in (5.12) and since the zeros of w(A) are simple, we get

(0, @A)y, = @G A5, = ~T e ().

Page 17 of 27

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)
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Since A € C and n € Z are arbitrary, (5.12) and (5.13) hold forall A € C and all # € Z. There-
fore from (5.12) and (5.13) we get (5.7). Hence (5.2) is proved with a pointwise convergence
on C. Now we investigate the convergence of (5.2). First we prove that it is absolutely con-
vergent on C. Using Cauchy-Schwarz’ inequality for A € C,

- w(3)

X |reos i

e T ARTR NS TR .
QA=A IR v O A -

Since f(-), ¢(-,A) € H, the two series in the right-hand side of (5.14) converge. Thus series
(5.2) converges absolutely on C. As for uniform convergence, let M C C be compact. Let
A€M and N > 0. Define vy ()) to be

N
w()\)
vy (A) = | F(A) - Fg)————1|. (5.15
v ‘ -3 Ao )
Using the same method as developed above
N N2/ N \ 12
‘) ‘,)‘- ")‘- ) ';)‘-
(i) < (Z 10) so(A ) ) (Z I Wx( ) ) . 5.16)
G0l T el
Therefore
N 1/2
|<f()1(p())\'k)>?'[|2
() < o2 | ( — ] . (5.17)
" k;\, o, A3,
Since [a,b] x M is compact, cf e.g. [28], p.225, we can find a positive constant Cy; such
that
o M), < Cu,  forall 1 € M. (5.18)
Then
OGN wl?)
() < CM(Z #> (5.19)
P (> Ai)l13,

uniformly on M. In view of Parseval’s equality,

1/2
1), 00 M) 2
<Z—”§0(‘:)\k)”7.[ > —0 asN — oo.

k=—N

Thus vy (A) — 0 uniformly on M. Hence (5.2) converges uniformly on M. Thus F (1) is an

entire function. From the relation

Fol < rifllﬁ(x)|y¢1,1<x,x>|dx+}/ 15021061 | dx
kl
D/ @) o145, 2) | d
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m

/ If2 ()] | o2 (3, 1 Idx+ 5D /lﬁx)llfplmu(x,k)ldx

" D; [P
+ h / sz(x)| |(/72,m+1(x’)‘-)| dx’ re (C’
Vil m

and the fact that ¢; (-, 1) and ¢ (-, A), k = 1,2,...,m+1, are entire functions of exponential
type, see Lemma 7.2.1 in [2], we conclude that F (1) is of exponential type. (|

Remark 5.2 If we replace w()) by the canonical product

o0

o) = (A —xo)]_[<1 - %) (1 - ;ﬁ ) (5.20)

n=1

then expansion (5.2) is a Lagrange-type interpolation. Indeed, from Hadamard’s factor-
ization theorem, see [10], there is an entire function with no zeros, %(A), such that

w(}) = hW)B().

Thus,

00)  h)B()
@' (An) - h()\n)a)/()"n)

and (5.1), (5.2) remain valid for the function F(1)/k()). Hence

i
Z P @ =) (>:21

We may redefine (5.1) by taking the kernel ‘p =@(-,A) to get

oo

F _F® w(A)
) Zf (A =21)&' (0, (522)

For more details as regards the argument of Remark 5.2, see [9], p.110.

The next theorem is devoted to vector-type interpolation sampling expansions asso-
ciated with problem (2.1)-(2.4) for vector-valued integral transforms whose kernels are
defined in terms of the Green’s matrix. As we see in (4.16), the Green’s matrix G(x, &, )
of problem (2.1)-(2.4) has simple poles at {As}7°_ . Define the function G(x,1) to be
G(x, 1) := w(A)G(x, &, 1), where & € [a,c1) U (c1,¢2) U (€, ¢3) U=+ - U (¢, b] is a fixed point
and w(A) is the function defined in (2.24) or it is the canonical product (5.20).

Theorem 5.3 Let f(x) = ( 1) ) H. Let F(A) = ( Bk ; ) be the vector-valued transform

x

e e 11
S = r—I/ G(x,)»)f(x)dx+k2=2:#/ Glx, M)f (x) dx

a k-1

m o b
+M/ G(x, A)f (x) dx. (5.23)

T+l cm
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Then §(L) is a vector-valued entire function of exponential type that admits the vector-

valued sampling expansion

> o)
S = n;O S(hn) m (5.24)

The vector-valued series (5.24) converges absolutely on C and uniformly on compact subsets
of C. Here (5.24) means

()
Z& oA )’
(5.25)
w w(})
F2(1) = n:Z—oo Sz(kn)m,

where both series converge absolutely on C and uniformly on compact sets of C.

Proof Let 1 € C such that A # A, for n € Z. Since §(1) is nothing but the unique solution
(multiplied by w(1)) of the inhomogeneous Dirac system (4.1), (2.2)-(2.4) when & = &, see
[1], p.77, §(X) has the expansion

5= Y 2y ),

L A
kl
——/ fT(anx)dmzn D/ ST @)Y (5.26)
nle

/ TP (x) da

and {¥,(-)}52_, is a complete orthonormal set of vector-valued eigenfunctions. Thus

_ = anw()“) (p(‘i:()x)‘n)
0= 2 5 ety >:27)

n=—00
Now, we calculate ||¢(-, A,,) ||,2H using the Green’s identity [1], p. 51. Let A, i € C be different
and u # A, # A; then, from (2.20) and (2.22),

5t k— lD
(x—u)<}l [ o i dx+ZH fk 0T (5 W 1) dix

m ) b
. [T, D: / (pT(x,A)Y(x,M)dx)

Tm+1

m

l_[ 901 m+l b )" X2m+1(b :u) ¥2, m+1(b )‘)Xl m+1(b M)]

= (pr1(a VX0 (@ 1) = @21(a, M1, (@ 1), (5.28)
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where ¢(x,A) and x(x, 1) are the solutions defined above. By the initial conditions (2.16)
and (2.18), we have

1 = I D [ _
(k—u)<r—1/a wT(x,k)x(x,u)dMZr—lk/ @7 (0 ) (x, 1) dx

k=2 k-1

m o b
+M / (pT(x,A)Y(x,u)dx)

Tm+1l

m

= — [ [ Di(sin Bprma (B, 1) + cos B mia (b, 1))

i=1

— (cosaxyy(a, u) +sinaXxy,(a, 1)). (5.29)

Letting 4 = X, for some #, and noting that x(x,%,) is a real-valued eigenfunction, from
(2.16) and (2.36), equation (5.29) becomes

1 c1 m k;l Di ck
w-t) (- [T e dre Y He D | T wnetsn)as
" Ja k=2 Tk Ck-1
m D, P
o U [ o ot kn)dx>
V1 cm

== HDi(Sin ,3¢1,m+1(b, )\) + COs :8§02,m+1(b: )\)) (5'30)

i=1

Then from (2.24), we obtain

1 1 m If—l Di [
o RISy it [ ot ds
" Ja k=2 Tk

k-1

m D: b -1 A
AL G gt e 2 531

Vil Cm A= )\'Vl

Taking the limit in (5.31) when A — A,

1 1 m k:l Di ck
lotaly =+ [ oTwapr)dre Y i B [ ot as
" Ja k=2 Tk

Ck-1

m ) b
a2 [ o Rotm rr = (5.32)

V1 Cm

Substituting in (5.27), we get the following series, which holds if A is not an eigenvalue:

= . ﬂ”r"w(}") (P(So;)»n)
S(A)_n;o A=k @A) (5.33)

To prove (5.24), it suffices to prove that §(,) = a,t,¢(§0, A,). Indeed, from (4.16) and
(5.23), we have

_ Sl ()\n)
Shy) = (82 (m) , (5.34)
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where
EO ) fcl xT(x, ,,)f(x)dx+ x10,An) Eo An) f%o T(x An)f(x) d
vy PO T )@ dx, & € ),
—W(EO'A",)kH’:l x (% An)f (%) dx
k=1,
v ARl [ T(x,)»n)f(x) dx
m P1E0.rn) l_[, 1D; c+1
+ ! dx
Boa=f T T Lo v (5.35)
_1 x10.n) [Ti2; Dja Ci
+ Y R [ goT(x,An)f(x) dsx,
~§o € (ck100) (k=2,3,...,m),Dy =1,
o) [174 Di
el DIR[0 o 1) )
¢ DO TIELDBE 150 T () e
by DO e T W, 6o € (6]
and
%;M) CIXT(x, n)_f(x )dx + X260kn) Eo An) ffo T(x, )f(x)dx
by, 2D e " W dx, & € lac),
k=1 .
Pt TP [ 5T (5, 1) ()
k-1p.
4 2002 Ll 20 %0 T (1, )f ()
m 92 (%o, )‘”)]_[]1 i rcivl T
+ - %, An)f (%) dx
Fa2(hy) = 2tk e ;”fnf f (o, A lf () (5.36)
— 2\80:An j= i
X0 T o e e ha)f (x) dx,
SOG(C/( 1’Ck) (k:2 3 rm)’DO— )
(&o0.2n) [ 172 Di
= rm+11_[ ; ff() f(x dx
4 2ot [T Di i:’n}:["lDl ffn? QDT(x,M)f(x dx
m x2@A) I Dic1 e
$ Y BT 14 QT () () dx, o € (e .
Now we prove that §1(A,) = a,T,¢1(0, ) and F2(X,) = a4, 7,92(E0, A). From (2.36), (5.35),
and (5.36), we get
S1(An) = 11 (£0s Ay ( / An)f (x) dx
m
)f (x) dx

—

+

Tm+1

ZlDi/ T(x’ ,,)f(x)dx)

= Tn<ﬂ1(§0;)»n)<r11/ lfT(x)(p(x:)‘n) dx

D

E1§

Tk

T
)

L /fo)sv(x, ) dx
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m . b
Tm+1 cm

= a,Ty01(E0, An)s

forx, & € [a,c1)U(cy, c2)U(co, c3)U- - - U(cyy, b]. The same for §2(1,,) and the proof of (5.24)
is complete. The convergence properties as well as the analytic and growth properties can
be established as in Theorem 5.1 above. O

6 Examples
Example 6.1 The boundary value problem

1 1
—q(xX)uy = Ay, u; +qxX)uy = -dupy, x€[-1,0)U (0, 5) U (5,1:|, (6.1)

u(-1) =i (1) = 0, (6.2)

U (0‘) -2 (0*) =0, Uy (0_) —2uy (0*) =0, (6.3)

2 L L’ =0 2 L L =0 6.4
a3 )z )0 25 ) ) o oy

is a special case of problem (2.1)-(2.4) when m =2, ri=ry=rs=1, =y =8 =8, =1,

Y2=V¥y=081=081=2,a=p=7and q1(x) = g2(x) = (%),
-1, -1<x<0,
q(x) =10, O<x<%,
1, %<x§1.

Then 46}, = y,éBk, k =1,2.In the notations of Section 2, the solutions ¢(-, 1) and x (-, 1) are

[‘/’l,l(x:)»;] _ [ sin[(A-1)(x+1)] ], x€[-1,0),

©2,1 (.1 Los[k 1)(x+1)]
er2@M)7 _ sin[1-A(x+1)] 1
plxA) = [wzz(x?»)] B [—zws A+l ]]’ x<(0, E)’ (6.5)
o1,3(A)7 _ sm[i—)» (A+1)x] 1
[fpzs(ﬂ)] - [ cos[§ - (A+1)x]]’ xe (31,

[Xl,l(x’)‘;] _ [—sin[)\+§+(l—k)x]]’ x € [-1,0),

x2,1 (x4 —cos[k+%+(1—k)x]

x,\) = x2xA)y sin[k+7—kx] 1 6.6
X( ) [XZZXA)]_[ 2cos[k+ —Ax]] xe(O’Z)’ ( )
x,3®A)7 _r sin[(A+1)(x-1)] 1
[Xz 506, A)] = [—cos[()wrl)(x—l)]]’ x € (3,1

The eigenvalues are the solutions of the equation
.1
() = sm[i - 2)»} =0. (6.7)

Hence the eigenvalues are

1-2
Ay = 4"”, nez, (6.8)




Tharwat Boundary Value Problems (2016) 2016:4 Page 24 of 27

YRR
AV IVEY

-6 -4 -2 0 2 4 6

Figure 1 The eigenvalues of w(X).

which is illustrated in Figure 1. The Green’s matrix of problem (6.1)-(6.4) is given by

G §,4), -1=<§=x<0,
Gy(x,6,4), -1<x<&<0,
Gs(x,&,4), -1<£<0,0<x<i,
Ga(x, &, 1), —1§x<0,0<$<%,
Gs(x,6,1), -1<£<0,3<x<1,
1 Ge(x, &, 1), —1§x<0,%<$§1,

Gl8.2) = sin[% =-2A] | Go(x,E,)), O0<é&<x< %, (69)
Gs(x,8,2), O<x=<&<jy,
Go(x,&,1), 0<E<i,icx<l,
Gio(x, &, 1), 0<x<%,%<$§1,
Gulx§14), j<E<x<l,
G 1), j<x<&<l,

where
Gi(x,&,2)
—sin[(A —1)(€ + D]sin[r + 2 + @ =A)x]  cos[(A —1)(& + 1)]sin[A + % + (1 — A)x]
- <— sin[(A —1)(§ + D)]cos[A + 5 + (L= A)x] cos[(A —1)(§ +1)] cos[A + 2% +(1- A)x])’

GZ(x’ér)")

_ (=sin[(A = 1)(x + 1)] sin[A + % + (1 -A)E] —sin[(A —1)(x +1)] cos[A + % + (1 -A)E]
“\ cos[(A =1)(x + 1)] sin[x + % + (@ -A)E]  cos[(A—1)(x+1)]cos[r + % +(1=-2)E] )

GB(x’ gr)")

1 (—sin[(A —1)(& +1)] sin[A + % —xx]  cos[(A —1)(& +1)]sin[A + % - kx])

T2 —sin[(A —=1)(£ + 1)] cos[A + & —Ax] cos[(A —1)(€ +1)]cos[A + L — Ax]

2 2

G4(x1‘§7)")

1 (_ sin[(h—1)(c+ D] sin[A + 3 — 28] —sin[(A = 1)(x+ D] cos[x + & - AE])

) cos[(A —1)(x +1)] sin[A + % - X1 cos[(A—1)(x +1)]cos[A + % - AE]
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G5 (%5 )\)

sin[(A =1)(& + 1)]sin[(A +1)(x =1)] —cos[(A =1)(§ +1)]sin[(A +1)(x —1)]
—sin[(A = 1)(& +1)]cos[(A +1)(x—1)] cos[(A —1)(& +1)]cos[(A +1)(x —1)]
G6(x"§ )\)
sin[(A —1)(x + 1)]sin[(A +1)(§ —=1)]  —sin[(A —1)(x + )] cos[(A + 1)(§ —1)]
—cos[(A —=1)(x +1)]sin[(A + 1)(§ =1)]  cos[(A —1)(x +1)] cos[(A +1)(&§ —1)]

G7(x,$ }L

2 2

4 \sin[1 = A(€ + )] cos[A + £ —ax] cos[1—A(€ +1)]cos[r + % —ax] )’

1 <sin[1 —AME+D]sin[A + 2 —Ax]  cos[l—A(€ + D)]sin[A + % — Ax])
2

2

GS(x: ;;_; )‘«)

_1<sm[1 Alx +1)]si [A+%—k$] sin[l—A(x+1)]cos[A+%—AS])
T4

cos[1—A(x+1)]sin[A + L —A&]  cos[l—A(x+1)]cos[r + 2 —2g])’

2 2

G9(x)§r )\)

_ l —sin[1 = A(& + 1)]sin[(A + 1)(x —1)] —cos[1 —A(& +1)]sin[(A +1)(x —1)]
~ 2\ sin[1- AE +1)]cos[(A+1)(x—1)]  cos[l—A(€ +1)]cos[(A+1)(x-1)] |’

GIO (xr E! )‘)

1 (—sin[l e+ D]sin[(A + 1)(E —1)]  sin[l = A(x + 1)] cos[(r + 1)(E — 1)])

“ 2 \—cos[l—A(x+D)]sin[(A +1)(E =1)] cos[l-A(x+1D)]cos[(x +1)(E -1])’
Gu(xf:k)

B —sin[%—k—(k+1)$]sin[(k+1)(x—1)] —cos[%—A—(A+l)$]sin[()»+1)(x—1)]
- sin[%—k—(A+1)§]cos[(A+1)(x—1)] cos[%—A—(A+1)$]cos[(k+1)(x—1)] ’

G12 (xr E! )‘)

B —sin[2 = A — (A + Da]sin[(x +1)(E =1)]  sin[2 — & — (A + D)x] cos[(A + 1)(€ —1)]
- —cos[5 —A — (A +L)x]sin[(A + 1)(§ =1)] cos[5 =1 — (A + L)x]cos[(A + 1)(§ —1)] )7

By Theorem 5.1, the transform
0
F) = /1 [ﬁ(x) sin[()» —D(x+ 1)] .y e cos[(}» —1)(x + 1)]] dx
-2 f ' [/i(x) sin[1 - A(x + 1)] + fo(x) cos[1 — A(x +1)]] dx
0
/1 .13 3
A [fl(’“) Sm[i “A-O 1)’“] +h(®) cos[5 ~h=0+ l)xﬂ dx  (6.10)

has the following expansion:

o) - i }_<1—2nn)sin[%+nn—21]’ 610

4 L _um -2

n=—00 2

where o' (=27 = 2(-1)"*.
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In view of Theorem 5.3, the vector-valued transform

_si lia- .
[ s1n[A+2+(1 k)&o]]T + [ ng([(k £0+1)] ](75 +T5 + 7;) “1<& <0,

—cos[)wr +(1 Mol 1)(&0+1)]

—91n[A+ —A&p] _gin[1=A 1
F0 =3 T+ To) + 5[ e [T+ Ta), 0<o<3,
—cos[h+5-1&o] [1-1(80
sin[(A+1)(x-1)] sm[——k (A+1)x]
[ coq[k+1x1)]](775+7§+7—9)+[ [3 —=(+1)a] ]TO, O<§0§1;
where

o0
T = / [sin[ (A - D(x + D]f1(x) — cos[ (A = 1)(x + 1) |f2(x)] dx,
1

T, = 0'Al(l Ax [filx) Al(l Mx | fo(x) | d
2-—/50[s1n|: +§+ - x:|f1x +cos[ +§+ - x]jzx} X,
Ts = —% /.07 |:sin|:k + % —Axi|f1(x) + cos|:k + % —Ax:|j2(x):| dx,

1
Ta= ﬁ [sin[ (A + D)(x - D)]f1(x) — cos[ (% + 1)(x = 1) ]fo(x)] dx,

2

0
Ts = / [sin[(k —1)(x+ 1)]f1(x) - cos[()L —1)(x+ 1)]f2(x)] dx,
-1

)
Te = _% / [sin[1 - A(x + D]fi(x) + cos[1 - A(x + 1) ]fo(x)] dx,
0

T - _/: [sin[k ; % + (1 —A)x]jl(x) + cos[x N % + (l—k)x}/z(x)} dx,
|

1
To = /g [sin[(k +1)(x - 1)1ﬂ(x) - cos[(k +1)(x— 1)]f2(x)] dx

(]

The vector-valued transform (6.12) has the following vector-valued expansion:

SIOEDDWINEICS SO l[%_;:ﬂziﬂ
g(k) = 50 2 si 2[l+mr—2)n]
SZ()”) = Zn: 82(1 ”77) %z—nrr—Z)\
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