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Abstract
A kind of strongly degenerate parabolic equations,

du 0 i ou ab;(u, x, 1)
5 (@0 axj) + g De@x O,
is considered. The paper first shows that the solution of the equation may be free
from the limitation of the boundary value condition. The key is to determine the
portion of the boundary on which we can impose the homogeneous boundary
value. By introducing a new kind of entropy solution matching the partial boundary
condition, the existence of the solution is obtained by the parabolic regularization
method, and the stability of the solutions is obtained by Kruzkov's bi-variables
method combined with an elegant partition technique.
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1 Introduction
The author studies the boundary condition of a kind of degenerate parabolic equations

u 9 [, du\  biux,t)
2o At — )+ — 2 =Qx(0,7T), 11
3% = 9m <a (% )ij) + o, in Qr x (0, T) (1.1)

where Q C R is an open bounded smooth domain, (a”) is a symmetric matrix with non-
negative characteristic values, i.e. for any & € R,

a'=d',  d’&& >0,
and we specially assume that
a’(0,x,t)=0, ij,=1,2,...,N. 1.2)

Equation (1.1) arises in many applications, e.g. the porous medium equation
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the equation in the boundary layer theory,
wzw,m - wy —nUwe + Aw, + Bw =0, (1.4)

where A, B are two known functions derived from the Prandtl system, one may refer to [1]
for details. Clearly, equation (1.1) is of a hyperbolic-parabolic mixed type and might have
a discontinuous solution. For the Cauchy problem of equation (1.1), whether it is weakly
degenerate or strongly degenerate is a question that has been deeply investigated. For the
initial-boundary value problem of equation (1.1), we know that the initial value condition

is always necessary,
u(x,0) =up(x), xe€Q. (1.5)

But the question is whether can we impose the Dirichlet homogeneous boundary condi-
tion

ulx,t)=0, (xt)edQx(0,T)=X x(0,T), (1.6)

as usual. Is (1.6) overdetermined? Let us observe a special example. Consider

ou d o ou .
E = a_xl (d (xr t)a(u)a_xl)’ mn QT! (113)

where d(x) = dist(x, 92) is the distance function from the boundary, « > 0 is a constant.
Suppose equation (1.1a) has a classical solution. For any given positive integer 1, let g,,(s)
be an odd function. When s > 0, it is defined as

5|~

1, s>

gm(s) = { 5

2.2
msZel—ms’ s<

3=

If # and v are two classical solutions of equation (1.1a) with the initial values ug, vy, respec-

tively, denoting A’(s) = a(s), then we have
d
f Gn(AW) - AW)) 5 (- V) dx
Q
2
=_ /Q d“(x, t) [a(u)% - a(v)%} 2, (A(w) —A(v)) dx
ad ad
-] @ [a(u)a—z - a(v)a—;]n[gm (Aw) - A(v)) d=
ou v ]? ,
- _ /Q d®(x, £) [a(u)a—x - a(v)a—x:| 2, (A(u) —A(v)) dx <0,

where # = {#;} is the inner unit normal vector of Q. Let m1 — oo. Then we have

/‘u(x,t)—v(x,t)’dxf/|u0(x)—v0(x)’dx‘
Q Q
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It means that the classical solutions (if there are any) of equation (1.1a) are completely de-
termined by the initial value and free from the limitation of any boundary value condition.

Now, we will give a brief introduction of the related works on equation (1.1). Supposed
that a(u,x,t) = a(u), when the equation is weakly degenerate, it is well known that one
can impose the Dirichlet homogeneous boundary condition (1.6), one may refer to the
book [2] and the references therein. When the equation is strongly degenerate, there are
two ways to deal with the corresponding problem, we simply call them as the Chinese
way and the international way, respectively. The Chinese way is based on the BV analysis
technique, it directly answers whether (1.6) is overdetermined or not. In general, instead
of the whole boundary 92, only a portion of the boundary %, C 92 on which the trace of
u can be endowed in the traditional way,

ulx,t) =0, (1) eX,x(0,T). (1.7)

The representative works by Wu-Zhao [3, 4] were accomplished in the early 1980s, for
later work, one may refer to [5]. While in the international way, the boundary value condi-
tion is not directly shown in the traditional way as (1.6), it is elegantly implicitly contained
in family entropy inequalities. Moreover, the entropy solutions defined in the international
way are only in L* space, the existence of the traditional trace (which was called the strong
trace in [6]) on the boundary is not guaranteed, so the boundary value condition is sat-
isfied in a weaker sense than that of the traditional way; one may refer to [6—13] and the
references therein for details. A more explicit comment on the international way will be
supplemented in Appendix 1 of our paper.

The advantage of the Chinese way lies in the fact that one can figure out on which portion
of the boundary should be imposed the boundary value, whereas the rest of the boundary
is free from any limitation.

Very recently, if the domain © = RY is the half space of RV, in the Chinese way, we [14]
studied the initial-boundary value problem of the following equation:

%%:mum+mwmmy (x,£) e RY x (0, T). (1.8)

We have proved that if b,(0) < 0, we can impose the general Dirichlet boundary condition

u(x,t)=0, (x,t)e€dRY x(0,7)=2 x(0,7), (1.9)

which is satisfied in a particular weak sense. But if b};(0) > 0, then no boundary condi-
tion is necessary, the solution of the equation is free from any limitation of the boundary
condition.

In this paper, we continue to research how to impose a suitable homogeneous boundary
condition as (1.7) in the Chinese way. Let us give the explicit formula of X, in (1.7) first.
Let 72 = {n;} be the inner unit normal vector of 3Q. For any 1 > 0, Vk € R, for any given
t € (0,T), denote that

Sk = {x € 2,5,7(k)[bi(0,x, t) — b;(k,x, t)]ni(x) > 0}, (1.10)

Sk = (& € 2,8, (k) [B:(0, %, £) — bk, x, )] ni(x) < 0}. (1.11)
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Clearly, X = X,k U ok, and let

= U ik ¥y = T\ ;. (1.12)
Vn>0,VkeR

Now, we will show that we can choose the explicit displayed formula of %, in (1.7) as %,
and choose the suitable boundary condition as

ulx,t)=0, (xt)e€X; x(0,7T), (1.13)

and we will give a new kind of entropy solution to match (1.13) in a special weak sense.
Let S, (s) = fos hy(t)dr for small n > 0. Here /,(s) = %(1 - %)+. The purpose of S, is to
approximate the sign function sgn(s). Obviously /,(s) € C(R), and

hy(s) >0, ’sh,,(s)‘ <1, ’Sn(s)’ <1

(1.14)
lim S, (s) = sgns, lim s (s) = 0.
n—0 n—0

Definition 1.1 A function u is said to be the entropy solution of equation (1.1)-(1.5)-(1.13),
if
1. ue€BV(Qr)NL>®(Qr), and there exist functions g’ € L2(Q7),i=1,2,...,N, such
that

// g, o, t)dxdt = // 77 (u, %, ) (x, t)a—udxdt, (1.15)
Qr Qr 3o

where ¢(x, t) € L2(Qr), (y¥) is the square root of (a¥), and

1
79 (u,x,t) =/ v/ (sut + A= s)u”,x,t)ds.
0

2. Forany @1, ¢ € C2(Qr), ¢1 = 0, Vo |z = 0, ¢1laaxior] = @2laxior), and
supp g2, supp ¢ C Q x (0, T). For any k € R, any small 5 > 0, u satisfies

// |:Il7(u - k)@lt - Blr] (u} X, t, k)§01xi + AZ(M, x,t, k)‘/)lx,'x/
Qr

N
—S;(u—k)zyng(pl] dxdt

j=1
+ // / aZ.(s,x, £)S,(s — k) dsgry, dx dt
erJk 7

. 92
+ 8y (k) // |:”902t = (bi(u,x,1) = bi(0,%,)) o, + AV (u, %, 1) »
Qr

836,* ij

8b,»(0, X, t)

i

u
+ / af{i(s,x, t) dspoy, + (pz} dxdt
0

T
+ S,,(k)/ / [6:(0,x,8) — bi(k,x, t) |y dt do > 0. (1.16)
0 2:117k



Zhan Boundary Value Problems (2016) 2016:15 Page 5 of 36

3. The boundary value is satisfied in the sense of the trace,

Yuls,,ixo,1) = 0. (1.17)

4. The initial value is satisfied in the sense of the following equality:

}Ln}) /Q |u(x, t)— uo(x)| dx=0. (1.18)

Here the pairs of equal indices imply a summation from 1 up to N, and

u u-k
BfY(u, x%,t,k) = / bi(s,x,8)S,(s — k) ds, I(u—k) = / S,(s)ds,
k 0

u u
AZ(u, x,t,k) = / al(s,x, £)S,(s — k) ds, AV, x,t) = / a’(s,x,t) ds.
k 0
Letn — 0in (1.16). In Appendix 2 of our paper, we can see that if « is the entropy solution
in Definition 1.1, then it is an entropy solution as defined in [15-17].

We will prove the following theorems.
Theorem 1.2 Suppose uy(x) € L(Q2) N C3(Q), A¥(s,x,t) is C, by(s, x,t) is C?, and

aij(oyxy t) = 0’ (x! t) [S QT}

) NN , (1.19)
al(s,x, )& -8 Y Y (al (sx,0%)" > 0.

s=1 j=1

Then equation (1.1) with the initial-boundary condition (1.5)-(1.13) has an entropy solution
in the sense of Definition 1.1.

Theorem 1.3 Suppose A¥(s,x,t) is C* and b;(s,x, t) are C*. Let u, v be solutions of equation
(1.1) with the different initial values uo(x),vo(x) € L*°(R2), respectively. Suppose there is a
constant § such that

|y Ca ) =y ()| < el —y1P7. (1.20)
Suppose that
yuls,0) =f(x1),  yv=g), t)eXx(0,T), (1.21)

and in particular
yu=yv=0, x¢€ 3, (1.22)
suppose that the distance function d(x) = dist(x, X) satisfies

|dx,x,| =c X € Q)n (123)
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when A is small enough, and Q; = {x € Q,d(x,02) < A}. Then

/ |ulx, £) — v(x, £)| dx < / lup —voldx+ess  sup  |f(x,8) —g(x, 1)
Q Q

(x,£)eX2 %x(0,T)

, (1.24)

where (x,t) € RN*1, esssupq, ycx, o) [f (%, 1) — g, 2)| is in the sense of N-dimensional
Hausdor{f measure.

Remark 1.4 If the two solutions in Theorem 1.3 are the viscous solutions of (1.1), i.e.,

u = lim u,, v=1limv,,
e—0 e—0

and u,, v, is the solution of regularized problem

ow 0 i ow ob;(w,x,t) .

—=—\|ad’w,x,t)— | +eAw+ ———, inQr, (1.25)
dat 8x,» 8x]’ axi

with the homogeneous boundary value (1.6) and with the differential initial values u, vo,

respectively. Then f, g in (1.21) is identical to 0 too. So (1.24) can be simplified to

/ |u(x, t) — v(x, t)| dx < / lug — vol dx, (1.26)
Q Q

when # and v are two viscous solutions of equation (1.1).

If d¥(s,x,t) = a¥(s), bi(s,x,t) = b;(s), the above definition and the theorems had been
obtained by the author in [18]. Comparing with [18], the essential improvement lies in the
following two points. First, when we prove the existence of the entropy solution, we need
to add the condition (1.19), and the corresponding calculation becomes more difficult and
some special techniques are used. Second, due to a’(s,x, £) and b;(s, x, ) being dependent
on (x,¢) € Qr, when we discuss the stability of the entropy solution, to ensure Kruzkov
bi-variables the method still can be used successfully; not only does it take us much time
to find the additional condition (1.20), but also we fortunately find the following basic but
profound observation:

%ii% w),(s)s** = 0, (1.27)

where wy, is the usual mollifier function. Moreover, some elegant partition techniques are
ingeniously combined with Kruzkov bi-variables method, the corresponding calculation
is much more complicated than that of [18] too.

The paper is arranged as follows. In the first section, we give the basic definition and
the main results. In the second section, we give some basic concepts and properties of
BV function, some lemmas are introduced and the needed estimate of the gradient of
the approximate solutions is obtained, Theorem 1.2 is proved. In the third section, we
will prove the stability of the entropy solutions by the Kruzkov bi-variable method. In the
fourth section and the fifth section, we give a supplement to prove a lemma and a formula
used before. In Appendix 1, we give a reasonable explanation of the boundary condition
(1.13). In Appendix 2, we give some comments on Definition 1.1.
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2 BV solution of the equation
Let us first introduce the concept of BV function according to Ref. [19].

Definition 2.1 Let Q C R” be an open set and let f € L!(R2). Define

L|Df| :sup{/gfdivgdx:g:(gl,gz,...,gN)EC(I)(Q;R”’), g(x)| gl,xeﬂ}, (2.1)

where divg = Y7, %

i=1 3x;

Definition 2.2 A function of f € L!(Q) is said to have a bounded variation in € if

/Q IDf| < cc.

We define BV(S2) as the space of all functions in L'(2) with bounded variation.

This is equivalent to the idea that the generalized derivatives of every function in BV(£2)
are regular measures on Q. Under the norm

llsy = 11l + /Q DS,

BV(£2) is a Banach space.

Proposition 2.3 (Semicontinuity) Let Q@ C R"™ be an open set and {f;} a sequence of func-
tions in BV(Q2) which converge in L} () to a function f. Then

loc
/ IDf| < lim inf/ IDf.
Q j=oo Q
Proposition 2.4 (Integration by part) Let
Ci=8(0,R) x (0,R) = Br x (O,R)

and f € BV(C}). Then there exists a function f* € L'(Bg) such that for H,,_1-almost all
VAS c'BR,

lim p""/ [f(2) —f* ()| dz = 0.
p—0 C;(y)
Moreover, if Cg = Br x (=R, R), then for every g € Cy(Cg; R™),
fdivgdx = —/ (g,.DfY+ | f'gdH,1, (2.2)
c} c} 8z

where B, = {x € R™; |x| < p}.
Remark 2.5 The function f* is called the trace of f on 8By and obviously

1
IC: )]

£70) = lim fc e 2.3)
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In our paper, we consider the solution of equation (1.1) in BV(Qr), where Qr = Q x
(0, T), and the dimension of Q7 is m =N + 1.

Let I, be the set of all jump points of u € BV(Qr), v = (v1, V2, ..., VN, VN+1) be the normal
of 'y at X = (x,£), u*(X) and u~(X) be the approximate limits of u at X € I, with respect
to (1,Y —X)>0and (v,Y — X) <0, respectively. For the continuous function p(u, x, t) and
u € BV(Qr), define

1
DU, x,t) = / p(rbf +(1-1)u,x t) dr, (2.4)
0

which is called the composite mean value of p. For a given ¢, we denote by 'Y, H',
(,...,v4), and 4, all jump points of u(-,t), the Hausdorff measure of I'’, the unit nor-
mal vector of I'Y, and the asymptotic limit of u(-, ¢), respectively. Moreover, if f (s) € C'(R),
u € BV(Qr), then f(u) € BV(Qr) and

of ()

ax,«

S
:f/(u)a—;:, i=1,2,...,N. (2.5)

Lemma 2.6 ([20]) Assume that Q@ C RN is an open bounded set and let fi, f € L1(R), as
k — o0, fx — f weakly in L1(2),1 < q < co. Then

Jim inf|[fel ooy > 11 ooy
—00

The solution of our problem will be obtained as a limit point of the family {u.} of solu-

tions of the regularized problem

0 d y a ab;(u,x,t
B_Ltt = 8—9q(a"(u,x, t)a—u) +eAU+ %, in Qr, (2.6)

7

with the compatible initial-boundary values (1.5)-(1.6).

Lemma 2.7 ([3]) Let u, be the solution of equation (2.6) with initial-boundary values (1.5)-
(1.6). If the assumptions of Theorem 1.2 are true, then

, 2.7
8/2 Ll(sz)> 27)

with constants c;, i = 1,2 independent of .

o,

at

oug

do <c + cz(|Vug|L1(Q) +

Under the assumptions of A, b; and u( in Theorem 1.2, it is well known that there is a
classical solution #, of the initial-boundary values problem (2.6)-(1.5)-(1.6), e.g. one may
refer to Chapter 8 of [21].

We need to make some estimates for u,. First of all, by the maximum principle, we have

lue| < lluollze < c.

Second, let us make the BV estimates on u,.
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Theorem 2.8 Let u, be the solution of equation (2.6) with initial-boundary conditions
(1.5)-(1.6). If the assumptions of Theorem 1.2 are true, then

|gradu ;1) <c
where | gradu|? = YN | | 3% 2+ |%%12, ¢ is independent of ¢, and independent of t.

Proof Differentiate (2.6) with respect to x,,s=1,2,...,N,N + 1, xn41 = £, and sum up for s

after multiplying the resulting relation by u,,, %. In the following, we simply denote
u. by u. Integrating over < yields
duy, S d d
/ ey, Sileradul) 4 —/1,,(|gradu|)dx, (2.8)
q Ot | grad u| dt Jq

o[ o S, d
/ 2, ,t)_ w, Silgradud)
0X; Bx, 0x; | grad u|

a S d
=/ 3 (a (u,, L‘)ux]uxA + a” (u,x, t)uxi)uxSM dx
Q 0X;

)
— (47
+ L axi (ﬂ (uyx7 t)uxixs)uxs

| grad u|

S, (| grad ul)

2.9
| grad u| @9)

and, moreover, every term in the right-hand side of (2.9) can be handled as (2.10)-(2.12),

respectively,

S, (| grad u)

d .
— (@ (u, %, E)thy U, ) U,
/ani( ul ot )b | grad u|

0 , .
:/Qa(aﬁj(u,x,t)uxj)[lgradu|S,,(|gradul) —1I,(I grad ul) | dx

—/aZ(u,x,t)uxln, 2 (I gradul) do, (2.10)
b

d Sy(| gradu|)
/Q 8_xi(m (24, , t)uxj)uxs ~gradu] eradi]

., .
:/Qa—%(azs(u,x,t)ux,) ae. I,(I grad u|) dx
=— | al (u,x,t)ugn dul)d
/Euxs(ux )uln 83; (|gra u|) o
y 921 d
_/ ay (urx1t)ux'Muxpxi dx; (211)

Q s / 3§sa‘§p
S d
n(l grad u)) dx

d
ij
/ dx; (a7 (s, )1t )4, Igrad ul
0
= l]
.[Q 0x; ( (24, %, t)uxjxs) %. (l grad u|) dx

. d
=—/ a’(u,x, t)uxixsn/—l,,(lgradul) do
p) 85&

;) 921, d
—/ a"(u,x,t)Muxsxiuxpxj dx, (2.12)
Q 085 0y
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where {n;}¥¥, is the inner normal vector of Q, & = u,,. At the same time,

S d
8/ AuxsuxSde
Q

| grad u|
oI d 021 d
:—g/ 31,(| gradul) MDmda—s/ 974 (| graduf) u|)uxsxiuxpxidx (2.13)
b 3965 Q aés aép

and

S, (| grad u) dx

a
f — [bm(u,x, Dy, + bix, (1, %, t)]uxs
Q 0x; | grad u|

a(biu(u»x: t)uxs) Sn(| grad M|) 8bix5(u: X, t) Sn(| gradu“
= Uy, dx + ” dx
Q ax; | grad u| Q 0x; | grad u|

b (ux,t)
Jxg b

) iu(urx; t) = 3bilueel)

here we have b, (u,x,t) = 5o and

/ by, (u, %, t)uy,  Sy(| gradu|)
Uy dx
Q ox; | grad u|

a1, (| grad u|) dx

d
:/Qa—xi(bm(u,x,t))lgraduIS,7(|gradu|)dx+/Qbiu(u,x,t) ox,

= fg 3196; (b,-,,(u,x, t))[l gradulSﬂ(| gradu|) —1,7(| grad u|)] dx
- /2 b (u, %, )1, (| grad u|)n,' do. (2.14)
From (2.8)-(2.14), by the assumption a”(0,x, t) = 0, and so
al (0,x,6)=0, (xt)€Qr,
we have

/ | grad u|

/ v (al(u, %, t)u, )[ gradu|S, (| gradul) - I, (| grad u]) | dx

/ 821 (| grad u|) i /821,7(|gradu|) 4
U t)———— Ly oty o dx— | — =y Uy . dX
9L, a%_p x5 By o oL, agp s Uopix;
/ (b, x,1))[| grad ulS, (| grad ul) — 1, (| grad ul) | dx
~ S d
—/ al(u, %, uy,ml, (| grad u|) do — /az (u,x,t)ux.uxsniM
b s 4 | grad u|
—/ biu(u, x, )1, (| grad u|)n; do
z
; o1, d a1, d
—/a"(u,x,t)in('gra quda—s/ (gradu)) (2.15)
bl Bx, ) 8x,«
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Now, if we set

11 12

" " 4 - qa
vi e 7> Gonen
VN4 AR Gt GN=1N+1
where (g%) is the square root of ( ") then

9%, as

P
ﬂxs ux] ag—s 8%- xpxi

_ (0 ij
= (a | U Oy, U -

N N+1
=282 (@)
- st

j=1 s,p=1
By the assumption

N+1

Lt X, t)glé:] ) Z Z 0,

s=1 j=1

then

N 921, (| grad u B
f a’ (u, %, )y, Uiy M dx — / aj (u,x, t)uxj
Q Q

985 98
N+1 N

>——/ZZ qs”ux dx> cf|gradu| dx.

sp=1 j=1

We will use the fact that,on X, u =0,

on 0x;

0 0 .
-b;,,(0,x, t)—uni =eAu+ — <a“(u,x, t)

ou 0b;(u,x,t)
) e
39(31‘

Page 11 of 36

Mxlx,'

Uxyx;

uxN +1%i

xN+1 ux/) (qsp)

‘a ux]qsl’ p‘

i
VNi

. i:(qsﬁ”x/)z:|'

s,p:l

921,(| grad ul)

7 dx
08508,

(2.16)

217
o (2.17)

to calculate the surface integrals in (2.15). Equation (2.17) involves the derivatives on the

boundary; let us give some explanation in terms of the concept of the local coordinates.

Let § > 0 be small enough that

E% ={x e Qdist(x, Z) <8} C U Ve,
=1

where V7 is a region, on which one can introduce local coordinates

yk:Ff(x) (/(:1,2;“';]\[)1)/1\1'2:0

with FX appropriately smooth and FY = FY, such that the yy-axis coincides with the nor-

mal vector. Since the domain is bounded, there exists finite V;, 7 = 1,2,...

Ui, v:ox.

, 1, such that
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Using these local coordinates on V;, T = 1,2,...,n, by elementary computations (refer
to [3]), we obtainon X NV,

N N-1
_ N k N -k m
uxl‘xj - : :MJ’NJ’kFxL‘ Fx]‘ + : :uyNkuxi Fx, + uyminxj’ (218)
k=1 k=1

By this formula, what (2.17) means is clear.
Moreover, by (2.17), the surface integrals in (2.15) can be rewritten as

oI, (| grad ul)

n; do
8.76/'

S = —[/ biu(u, x, )1, (| grad u|)n; do +/ a¥(u, x,t)
T T

al, d B
8/ Mnido+/ aZ(u,x,t)uxindn(lgradu|)d0}
> b

396,‘
1, d a1, d 1, d
=/b;x,(0,x,t)wdo—s/[ (I gra ul)ni—Au n(lgra M|)}d0
s o ) ox; Su
n n
. o1 d 1 d
+/a”(0,x,t)|:7n(|gra MDn,-—uxix,—"('g;j u“}dc
b 0x; o
. I d ; S, d
+/az,(0,x,t)ux,Mda+/aZ (O,x,t)ux.uxSM ;
s / du s ! | grad u|

on

1 d a1, d 1 d
:/bixi(O;th)—n(|g;j u“do—e/[ n(lgra qu—Au n(lg;: uD}do.
T i T

on 89(3,' n
Since
uxN+1|E = ut|2 = 01
we have
ou ou
%irr(l)S = / bix;(0,%,1) sgn(a) do + 8/ sgn<£>(uxsxinins - Au)do.
- ) P
Noticing that
Zi\[:l MyNkuﬁFQFifFif i & N ”ymF;?x,FgPZ
ux,'xjn]'l’li = | gradFN|2 + ; u)’NJ/kinij + |grad—FN|2

in which F¥ = FX, by the fact that the normal vector is

R dFN FN
N= —eee, —
dx1 0xXN

) = gradFN,

we have

m NN
x,-x/ x} X m
Uy x. il — AU =1 ——— —F" ).
X" Ym |gradFN|2 XiX;

Using Lemma 2.7, one is able to deduce that lim,_, S can be estimated by | grad u|;,(q).
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Thus, letting n — 0 in (2.15), and noticing that
%iﬂ)[' gradul|S, (| grad u|) — I, (| gradu|)] = 0,

using the fact of that lim,_,¢ S can be estimated by | grad u|;, (), we have

d
—/ |gradu|dx§cl+cz/ | grad u| dx,

by the well-known Gronwall lemma, we have

/ | gradu|dxdt < c. (2.19)
Q

By (2.19), it is easy to show that

// a’(u,x, t)uxiuxj dxdt <c. (2.20)
QT D

Now we put back the solution of equation (2.6) as u,. Then by (2.19)-(2.20), there exist
a subsequence {u,,} of u, and a function u € BV(Q7) N L*(Qr) such that u,, — u a.e. on
Qr, we can simply denote this subsequence as {¢} itself; there exist functions g’ € L>(Qr)
and a subsequence of {¢}, such that, when ¢ — 0,

vy

Ue ;

—~g, inL*Qr).
ij

Proofof Theorem 1.2 We now prove that u is a generalized solution of (1.1)-(1.5)-(1.13). Let
0 € CX(Q7), o1 = 0, suppp C Q x (0,T), V| = 0, and {#;} be the inner normal vector
of Q. Multiply equation (2.6) by ¢S, (4, — k), and integrate over Qr, to obtain

9
/ / e 018, (e — k) dxdt
o, Ot

0 . ou
= — | a¥ () —= S, (ue —k)dxdt
//QT axi<a (u )ax,«>¢1 o (e — k) dx

abi 2, T
re / / Atter S, (s — k) dxdt + / f Mgpﬁn(us—k)dxdt. (2.21)
Qr Qr 0%;

Let us calculate every term in (2.21) by the partial integration method. We have

dute
/ f a—”twlsn(us-k)dxdt:— f / 1, (e — K)g, dxdit, (2.22)
Qr Qr

S// Au, 1Sy (ue — k) dxdt
Qr
T
:—8/ / Vu, - 1S, (ue — k) dt do
0 Jz

—¢ // Vi, [Sﬂ(ug —k)Vor + <plS;](u5 - k)Vug] dxdt
Qr

Page 13 of 36
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T
= sS,,(k)/ / Vu, - np dtdo — 8// Vu,S,(u; — k)Ve, dxdt
0 Jx Qr
—e // |VME|ZS;](M2 — k)i dxdt, (2.23)
Qr
// ( I (ug, %, t) )(plS (ue — k) dxdt
Qr ax,
i ou,
=S,,(k)/ /a’(ug,x,t)—n,-(pldtdo
0 ) 8.96]‘
y ou, ,
[ @m0 S5, - K + 1 Ry | el
0x; ! K !
Qr 7
T ; 9 - d
=5,k / / Ao, 2, 8) 2 oy dit dor — / / @ (1,2, ) S, (s — K)pr, e it
8xr Qr ax,

// Ity %, ) U, ugxlSn( — k), dx dt, (2.24)
Qr

and

/ / ’/(ug,x,n S, (s — K, dx dt
Qr

:// /4aZ,(s,x,t)Sn(s—k)dswlxidxdt
erdk 7

T
+// AZ(ug,x,t,k)galxixj dxdt+/ /AZ(uS,k)golxinjdth, (2.25)
Q 0o Jx

T
abi €1 ,t
// &@Sn(ug —k)dxdt
Qr 8xi

T
—/ / [bi(ug,x, t) — b(k,x, t)];/t,xpls,?(u8 - k)dtdo

3<ﬂ1 A,
3242 - /; )t e~ ' e~
//QT (g, x,t) — bi(k, x )][8x y(tte — k) + @1 S, (u k)a

i i

:| dxdt
- 5,0 / / 1 [B1(0,5,) = byl 3, )| o dt
0o Jx
_ / / B, (tte, %, t, k)1, dx dt. (2.26)
Qr
From (2.21)-(2.26), we have
// I,,(ug—k)q)ltdxdt+// Ag(ug,x,t,k)golxixj dxdt—// Bf?(us,x,t,k)wlxi dxdt
Qr
—8// Vu, - VS, (ue — k) dxdt - 8// |V, |? S (ue — k)pr dx dt
Qr

[, Ot 1~ o1
Q

T
/ / f s,x, — k) dspix; dx dt
Qr
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T 9, . T )
+ Sn(k)/ / — (a”(ug,x, t))niuexj(pl dtdo + S,,(k)/ / A’,;(O,x, t,k)ow,njdtdo
o Jxox; 0 Jx

T T
+ eS,,(k)/ / Vu, -neidtdo + S,](k)/ / [bi(O,x, t) - bi(k,x, t)]nigol dtdo
o Jz 0 I

T
+ 8, (k) / / [hi(O,x, t) — b;(k,x, t)]ni(pl dtdo = 0. (2.27)
2217/<

Taking ¢, € C2(Qr), ¢1laax(o,1] = ¢2laax(0,1], Suppe2 C Q x (0, T),

T . 9 T .
Sn(k)/ /ﬂ”(ug,x,t)niﬁgol dtdo +SS,7(/<)/ f Vu, - ng, dtdo
0 Jx 0x; 0o J=

s 0
=S,,(/<){—s// He 92 gy dt—// i (e, %, £) <p2xldxdt
Qr 896,‘ 896, Qr

0b;(0,x,t
+ f / 00050 | dedr - / (biter,2) — bi(0,%, 1) 22
Qr Bx Qr Bxl

4

T
+ /f Uy 3 dxdt - / / [b,-(O,x, t) - b;(0,x, L‘)]n,»q)z dtdo }, (2.28)
Qr 0 Jx

at

f/ al](us:x¢ t)§02xi& dxdt
Qr 0x;

T
—/ /A‘j(O,x,t)wzxinjdtdcf
0o Jx
—f/ Al(u,,x, t)<p2xl.x/. dxdt—ff f aZ,(s,x, t) dspoy, dx dt
Qr Qr !
// AV(ug, %, 1) Do dxdt—f/ / (8,2, ) dsgoy, dx dt. (2.29)
Qr Qr

For V¢i|x = 0, and by a?(0,x,£) = 0, from (2.27)-(2.29), we have

// I,(ue — K)o dxdt + // AZ(us,x, t, k)‘/)uix,- dxdt — // Bf)(ug,x, t, k) iy, dx dt
Qr Qr Qr

+ / / / saZ,(s,x, £)S,(s — k) dsguy,; dx dt
Qr Jo /
due 3y i
+ 8, (k)| —¢ // dxdt+// A u,, x, t)§02x,'xi dxdt
Qr 0x; 0x; Qr
+/f 7Bbi(0’x’t)(p2 dxdt
Qr Bxi
/ [bi(tte, 2,£) - bi(0, %, "’2 // ug—d dt]
Qr Qr
+8,(k) / / af{/_(s,x, t) dspoy, dx dt
Qr

—5// Vu, - VS, (e — dxdt—// ug,x,t)ugxlugx/Sn( — k)1 dxdt
Qr Qr

(2.30)

+5,0) / | [0:0)- b} dedo = o.
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By Lemma 2.6,

lim inf // S (ue —k)a’(ug,x,t)

e—0

> S (u - k)p1 dx dt. (2.31)
>

Let ¢ — 0 in (2.30). By (2.31), we get (1.16) and (1.17) is naturally concealed in the limiting
process.
The proof of (1.18) is similar to that in [15, 22], we omit the details here. O

3 Proof of Theorem 1.3
Lemma 3.1 Let u be a solution of equation (1.1). Then

+

u
/ Yi(s,x,t)ds-v;=0, ae (x,t)onT,,j=1,2,...,N,
u

is true in the sense of Hausdor(f measure Hy(I",).
The proof is given in Section 5 as follows.

Proof of Theorem 1.3 Let u, v be two entropy solutions of equation (1.1) with different

initial values
u(x> 0) =Uo (x), V(xr 0) =Vo (x)» (3'1)

and with the same homogeneous boundary value y u(x, t) = yv(x,t) = 0, (x,t) € £; x (0, T).

By Definition 11, for any ¢, ¢ € CZ(@), 1 > 0, ¢1|BQX[O,T] ¢2|BQX[0T Supp ¢s,
suppgr C 2 x (0,T), >0, k,[ € R, we have

// [117 (u - k)(pll - B;(u) x,t, k)‘Plxi + AZ(M) X, t, k)gplxixj
Qr

_S/ (u— k)Z|g (u,x, t | ¢1:| dxdt+// / s,x,t)S (s — k) dspry, dx dt
+S,,(k)[bi(0,x, t)—b,-(k,x,t)]/ / on;dtdo
2lr]k

+ 5,0 / /Q [wzt ,2,2) = bi(0, %, ) g,

Bbi(O,x,t

u
+ AV (u, x, 1)@, + > )goz + / aZ}(s,x, £) d5¢2xii| dxdt >0, (3.2)
Xi 0

/[ {In(v Dgre — B 031Dy, + AT, 7, Dy,
Qr

~Si(v- IZ‘ gyt }(p{|dydt+// / (5,9, T)Sy(s — ) dsgry, dx dt



Zhan Boundary Value Problems (2016) 2016:15

T
+S,7(l)[bi(0,y,r)—bi(l,y,r)]/o /): on;dt do

1nk

+ Sr](l) V@or — (bi(v)y) 7:) - bi(ory: "-'))‘/’2”
Q

ab;(0,y,71)

ij
a; @2+ /(‘) dy/.(s,y,‘r)dswzyi] dydt > 0.

+ Alj(V,J/, T)§02yiyj +

Especially, if ¢; € C3(Qr), 92 =0, we have

N

Page 17 of 36

(3.3)

// |:I77(M - k)(plt - B;(urx’ t’ k)‘plxi + AZ(I/!, X, t! k)(/)lxixj - S/r,(u - k) Z‘gi(u’xr t)‘zwl
Qr

i=1

+ // / aj{}_(s,x, £)S,(s — k) dsguy, dxdt:| dxdt >0,
Qr Jk

N
i ij / i|2
f / [zn(v— Dore — B (v,5,7, Dy, + AV,5,7, Dy — S, =D S &/ (1,9, 7)
Qr i=1

+ //Q /1 a%(s,y,t)Sn(s— D dspyy, dxdt:| dydr > 0.
T

Let ¥ (x,t,5,7) = (%, t)ju(x — y,t — 7). Here ¢(x,t) > 0, p(x,t) € C5°(Qr), and

N
jue =y, =) = ot — 7) [ [ onlwi — ),

i=1

onls) = %‘“(%) 0§ € CP®,  ls) =0,

w(s)=0 ifls|>1, / w(s)ds=1.

(o¢]

Moreover, for any given positive constant g,

lim &), (s)s**® = 0.
h—0 h( )

(3.4)

$1

(3.5)

(3.6)

(3.7)

Then we choose k = v(y,7), [ = u(x,£), o1 = ¥(x,t,,7) in (3.4), (3.5), integrate over Qr,

respectively, plus them together and get the following inequality:

//QT //QT [, = v) (W + V) = (B (14, %, £,v) s, + BL (v, 3, T, )V,
+ Ag(u’x’ L V)Wxixj + Af,j(V,)’, T, M)Wyiyj]

u v
+ / aZ}. (5,%,8)S, (s — v) dsifry, + / a% (5,9, 7)S, (s — u) dsp,
v u

N N
_S;(u -v) (Z‘gi(u,x, t)’2 + Z‘gi(v,y, t)|2>w dxdtdydr > 0.
i=1

i=1

(3.8)



Zhan Boundary Value Problems (2016) 2016:15

Clearly,
djp d dj 9]
ﬂ_',ﬂ_ ) ﬂ+ﬂ:0, izl,...,N;
at ot ox; 0y
oy v _ 99 oy 0
k. kA
T T T PR M YL
Noticing that

lim Bil(u, x,t,v) =sgn(u —v) (b,-(u, x,t) — bi(v,x, t))
n—0

and

lim Bi](v,y, 7, 1) = sgn(v — u)(b;(v,y,7) - bi(1,, 7))
n—0

as 1 — 0, we have
lim f/ // [B;(u,x, LYYy, +Bf7(v,y,r,u)wyi]dxdtdydr
=0JJor JJor
= // // sgn(u — V)[bi(u,x, t)-b;(v,y, r)]d)xl.jh dxdtdydr
QrJJQr
+ // // sgn(u — v)[bi(v,y, 7) = b;(v,x, t)]quijh dxdtdydr,
QrJJQr
and as & — 0, we have
lim lim // // [B;(u,x, L)Yy, +B£](v,y, t,u)lﬁyi] dxdtdydr
h—0n—0 or or
= // sgn(u —v) [b,-(u,x, t) - b;(v,x, t)]qﬁxi dxdt.
Qr

For simplicity, we denote

13:// // [AY (2, 8,V + AT, y, T, )Yy, | dxdt dy d,
QrJJQr

N
) _//Q //Q Sy (- (|¢wx | + |gwy, 1))y dxdtdydr,

n=1

Is - / f / / / @l S, (s —v) s dxdt dy dr,
QrJJQr Jv !
I - f / f / f a1 S, (s — w) dsyjn dxdt dyd,
orJJorJu 7
u
I- / / / / / ' S, (s — V) dsjs, dxdt dydr,
QrJJQrJv !
f/ /:/ / i S’ u) dsu,,pjpdxdtdydr.
QrJJQr Ju

(3.9)

Page 18 of 36
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Then we have

= // // [Az(uyxj t, V)(¢x,-xjjh + 2¢x,jhx1 + ¢jhx,x])
Qr J/JQr

+ AZ(V,y, T, u)¢jhyl.yj] dxdydrt dt

- // // [AY (2, 8,V) (P + Prin;) — AL (v, 9, T, )P
Qr Qr

_ axIAZ(u,x, LV)Pjny; — axlA,’](V,y, T, u)quhxj] dxdydtdr

[ ] A0+ i)~ A3, 7,001y
Qr Qr

Uu +(1-0)u” x,t)Sn(au++(1—o)u_—v do
ML )

/f s)S (s—ou -(1-0)u )dads] q&]hx/dxdtdydt
out+(1-o)u~

_ / / / / / &l (0,%,0)8,(0 - V)jin, do dxdydt dr
Qr Qr Jv

= 131 + 132 —17. (310)

Also we notice that

N
lefoT -//QT S;(M—V)(|gi(u,x,t)|2 + |gi(v,y,r)|2)1//dxdtdydr
N
) Z//Q /,/Q S;](u—v)(|gi(u’x’ t)| - }gi(vrer)Dzl/f dxdtdydr
i=1 T T
N
2 Z ,//Q -//Q S;(u ~)g'(u,x,0)g' (v, y, 7)Y dxdt dy dt
i=1 T T

=1y + . (3.11)
We are able to prove that (see the details in the next section)

lim lim (132 +147)
h—0n—

=2lim // // yy (u,9, 7 sgn(v—u)yik(u,x,t)uxi¢jhdxdtdydr
h=0JJor JJar

= 2// // yxkj(u,x, t)sgn(v — u)yik(u,x, Duy, ¢ dxdt, (3.12)
orJJor 7

and clearly

14
_/f ff /a;’j(s,y,r)S,,(s—u)dsuxi¢jhdxdtdydr
Qr Qr Ju
14
_ / /Q / /Q / (@ (5,3,7) — @l (1,9,7)]S, (s — ) dsu,¢jy dx dt dy d
T TJU
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_ / / // / ) (1,9, 1), (v — ) e,y dxcdt dy de
Qr Qr Ju

— - /Q //Q/a%(u,y,r)sgn(v—u)dsuxi(i)jhdxdtdydr (asnp— 0)
T T JU

=2 // // / yik(u,y,f)yy"_f(u,y,r)sgn(v— u) dsus, jy dx dt dy dt
Qr Qr Ju U
— -2 // / y*(u,x, t)J/,é.”(u,x, t)sgn(v—u)dsuy,pdxdt (ash— 0)
Qr Ju
= — 11m 1111’1(132 + 142). (313)
h—0n—0
Now, since
lim A7(u, %, ¢,v) = lim A (v, y, 7, u) = sgn(u — v)(A7(u, %, ) — A7(v,9, 7)),
n—0 7 70" 1
we have
,%gl})(AZ(u; X, L, V)(z)xijhxj — Ag(u,y, T, V)(z)xijhy/) =0. (3'14)

At the same time,

lLm [ by,(s,x, t)S;](s —v)ds
n—0 J,

u
= lin% [bixi (8,%,8) = bis, (v, x, t)]S;?(s —v)ds+ by, (v, x,t) sgn(u — v)
n—0J,

= by, (v, %, £) sgn(u — v). (3.15)

Likewise, we have
u

lin}) biy, (s, %, t)S;](s —u)ds = by, (v,x,t) sgn(v — u). (3.16)
n—0J,

Combing (3.3)-(3.16), and letting n — 0, &1 — 0, we get

f/ { ’u(x, £) —v(x, t)|¢t —sgn(u — V)(b,»(u,x, 1) = bi(v, %, 1)) s,

Qr
+sgn(u —v) (Ai’(u,x, t)—A¥(v,x, t))q&xl.x]. + /u aﬁ{j (s,%,t) sgn(s — v) dsepy,
+2 /Vaz; (s,%,8) sgn(t — u) dT s, — bi, (v, %, £) sgn(u — v)

— by, (u,x,t) sgn(v — u)¢} dxdt > 0. (3.17)

Let §, be the mollifier as usual. If y = (x3,...,xy), then

_1
s(y) = FebP1, iflyl <1,
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where

1
A= / eb?-1 dy.
B,(0)

For any given ¢ > 0, 8,(y) is defined as

5.(y) = 8%5(%)

Especially, we can choose ¢ in (3.17) by

d(x, 1) = e (X)0(2),

where 1(£) € C3°(0, T), w;(x) is defined as follows. Let w; (x) € C3(2) be a function satis-

fying, for any given small enough 0 < 1, 0 < w; <1, w|ye =0, and
wy(x) =1, ifd(x)=dist(x,dQ) > A,

when 0 <d(x) <A,

(d(x) = 2)?

w(d(x) =1- 2

Then we define

Wy = W, * 8(d),

2(d—s—A
{Is|<e}N{0<d—s<A} {Is]<&}N{0<d—s<1) A
Clearly,
, c
|}, (d)| < T
2 (3.18)
o (d) = __/ 8¢(s) ds.
. 22 Jijsi<einocd-s<a)
Now,
Priz; = N(E) (@2 (d(x)))xix, =n(t) (wj\g(d)dxi)xj
2
0 [——deidx,, / 5.(5) ds + wgg(d)dxix,}, (3.19)
A {Is|<e}N{0<d—s<r}

using the conditions |dxl.x/.| < ¢, and using the fact of that |Vd| = 1, noticing that

sgn(u —v) (Aij(u,x, ) — AV (v,x, t))dxidxj = |lu—v|d/(¢,x, t)dxidx}, >0, (3.20)
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where ¢ € (v,u). Then by (1.20), from (3.15), we have

T
f }u(x,t)—v(x,t)|¢tdxdt+c/ / n(t)|a)/m(d)||u—v|dxdt20, (3.21)
Qr 0o Jo
where Q; = {x € Q:d(x,0R) < A}.

According to the definition of the trace (2.3), let A — 0 in (3.21). By (3.18)-(3.21), we
have

cessupy, o, lf (& 1) — glx, )| + / |u(x, £) = v(x, 8)|n, dxdt > 0. (3.22)
Qr
Let0<1t<s<T,and

s—t
n(t):/ ae(0)do, &<min{t,T —s}.

—t

Here a,(t) is the kernel of the mollifier with «,(¢) = O for ¢ ¢ (-¢,¢). Then
T
CessuPs, (o, 7) [f(x, t)—glx, t)| + / [ozg(r — 1) — (s — t)]lu -Vl dt > 0.
0
Let ¢ — 0. Then

|u(x, 8) = v(x, s)|L1 <|ulx,7) - v(x, r)| |+ Cessups, . (o.7) [f(x,t) — g(x, 2)|
and the desired result follows by letting T — 0. d

4 The proof of (3.12)
To prove (3.12), we have to make some basic calculations. By the properties of the BV
functions (Lemma 3.1 and Lemma 3.7.8 of [2]),

/ru /F 9 x/ ‘@t / “(0,9,7)S, (0 ~ 8)dsdoy
‘/l"u \/l:v J’]/ 8 x’ / kj(a’y’T)S;(U —5)d5d01ﬁv,de = 0,

and likewise
Y(0,9,7)S,(0 —8)ds doyy =0,

[ L o [t
Qr\r#Jrv

/ / dy, x‘f ik(S,x,t)/ ykj(a,y,t)S;](o—(S)d(Sdaw:0.
r«JQr\rv v 5

So

f/oT//QT " y’/v @) / y¥(o,y,7)S,(0 - 8)do dsy dxdtdydr
fforf/@[“yzfo (o = (=5 1)
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. / yV(e.2.)8, (0 —su’ — (L= 9)u")uy, do ds

ut+(1-s)u~

+1/fayl./ yf(&x,t)/a yk/‘(a,y,r)s;(a-a)dada]dxdtdydf
14

) //Qr\w //QT\FV [way/ ./01 y"(sut = (L=s)u”,x0)

. / y(e.5.7)8, (0 —su’ ~ (L= 9)u")uy, do ds

ut+(1-s)u~
+1/fay]./ yf(&x,t)/a ykf(o,y,r)sg(a-a)dada]dxdtdydf
v

=Jis +Js.

Since in Q7 \ 'y, u* =u~,in Qr \ '}, v* =v~, we can deal with J;_5 as

1 12
dy; / y*(sut+ QA -s)u") / ykj(a)S;] (o —su* = (1-8)u" )uy, do ds
0 s

ut+(1-s)u™

=y, t>[ykf‘<v,y, 08,0ty + [ 10,0080 - do

zaxi/ yik(g,x,t)drS—/ yﬁ(é,x,t)d&[ay// yki(g,y,t)da

u

_/ yy’j/(o,y,r)da]S;](v —u) +y*(u,x, t)uxi/ yy']‘/(a,y,f)S;)(o - u)do

_o, / * (5,2 0) o, f " VH(o,3,1)do S, (v u)
—a, ] yik(8,%,1) d&/vyyf/(a,y,r)das;(v- u)
v u
_/u y,ff(&x,t)déayi/Vykj(a,y,r)doS;(V—u)
+/uy;jf(s,x,t)dsfvyyff(a,y,r)das;](v-u)
v p

+y*(u,x, t)ux,./ )/yll(,/((r,y, 1)S, (0 —u)do
=j1+j2+ 3+ 4 +J5,

Jis = // (1 +j2+js+ja+js)dxdtdydt =1+ +J3+]s+J5.
Qr

By (4.1),

u v
// // 8x,8y1./ &, x, t)/ yk"(a,y,r)S;(o —-8)do dsyr dxdtdydr
QrJJQr v 5

=h+h+3+Ja+)s5+].

Page 23 of 36

(4.1)

(4.2)
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At the same time,

// // ax,,ay,/ y”‘(é,x,t)/ y¥(0,9,7)S)(0 - 8)do dsyr dxdt dydt
Qr JJQr v )

L o 0o

. f y(e.5.)8, (0 —su’ — (L= )u")uy, do ds

ut +(1-s)u~

+1pay,f y;f(a,x,t)/ ¥9(0,5,1)S,(0 - 8)do da] dxdtdydt
v §

://QT //QT[@hxi/(;lyik(su*+(1—s)u‘,x,t)

. / Y¥(o,, t)S;] (o —siut—(1- sl)uf)uxi do ds
sut+(1-s)u~
+ Oy / y;f‘(é,x, t) [/ Vk/(sv+ +(1=-sv,y, ‘[)S:] (SV+ +(1 -8y — 8)1@, ds
v 0
+ / yy/;i(a,y, r)S;](a - 8)d0:|] dddxdtdydr =Js + J;. (4.3)
s
Comparing (4.2) to (4.3), one has
h=F—-a+B+]a+]s5). (4.4)
So
Iy + Iy
1 .e
= // // {/ a”(szf + (1 -98)u,x, t)S,7 (su+ +(1-s)u - v) ds
QrJJQr tJo
1 v
_ / / a’(o,y, 7)$, (a —sut - (1- s)u‘) ds da} dxdtdydt
0 Jsut+(1-s)u~
+ 2// // S;(u—v)éixi/ y*(8,%,6)ds - 8yl./ v¥(0,y,T)doy dxdtdydr
QrJJQr v u
1 .e
= // f/ {/ oz”(sz,fr +(1-9)u,x, t)S,, (Su+ + 1 -8)u - v) ds
QrJJQr LJo
1 v
_ / f a’(o,y, ‘L')S:] (0 —sut—-(1- S)u_) ds do} dxdtdydr +2];. (4.5)
0 Jsut+(1-s)u~
Substituting (4.4) into (4.5), we have

I3y + 1y

- //QT /LT{_./ol./s:q(l_s)u_ Y (suc" + (1= ), €)M (s + (1= )™, %,)

Sy (0 —su* —(1-s)u”) do ds
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1 v
—/ f yik(o,y,r)ykj(a,y,r)S;(a —sut —(1-s)u")do ds
0 Jsut+(1-s)u~
1

+2/ y*(su* +(1—s)u‘,x,t)/ y*(o,y,17)
0 s

ut +(1-s)u~

S, (0 —su"—(1- s)u*) do ds}ux,-jhx,¢ dxdtdydr

+2// {// 8xl./ y”‘(S,x,t)dS/ yy]f"(a,y,t)doS;](v—u)
Qr Qr v u /

u v
—SI,(V—M)[/ V,ﬁf(&x,t)d8~3y,/ YN¥(o,y,7)do
v u

“ ik ! ki
—/ Vi, (S,x,t)dS/ yy,’(a,y,r)da]

v u

v
— v *u,x, )y, f [yyll‘,/(a,y, T) - yy’;’(u,y, 1)]S) (0 — u)do
u
+y*(u,x, b)ity, yjf}‘/(u,y, 7)S,(v—u) }quh dxdtdydr. (4.6)

We have

Y (su + (L= )3 8) [y (0,3, 7) — y¥ (sut + (18,2, 8)]
- Sp (0 —su® = (1= 9)u )jny
+ 7Y, Oy  (su + L= 9)u™x,0) -y (0,3, 0)]S, (0 = su” = (L= 9"y
= [y (su” + A= 9),3,8) =y M o,2,0]8) (0 - su” = (1= 5)u")
(o) = Y (st + (L= )™, 5, 8) Jjns
+[Y9(o,3,0) =y + (= 5)u7,y,7) ]S} (0 —su™ = (1= s)ur”)
[ (st + (=) %,8) = 50,9, D))y
[P, T) - Y (sut + (-9, x,1)]
[y*(o, w0 - y™(su* + (=), 3,7)
Sy (0 —sut —(1-s)u”).

2 -0,as n — 0, h — 0, every

Now, by lim,.¢ 55, (s) = 0, by (1.20), and limj,¢ w),(s)s
term of the right-hand side of (4.6) approaches 0 except the last term. The last term ap-

proaches

2 / / / / vY (u,x,t) sgn(v — w)y * (u, %, uy, ¢ dx dt,
Qr or

so we have (3.12).

5 Proof of Lemma 3.1
Let u be a solution of equation (1.1) in the sense of Definition 1.1, we want to prove

+

./ y/(s,xt)ds-v;=0, ae (xt)onlyj=12,...,N. (5.1)
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Denote

Ty = {0 eTy,nb) =" =vyx1) =0},
Ty ={(xt) €Ty vi(x,8) + - + vy (x,8) > 0}.

First we prove H(I';) = 0. Since any measurable subset of I'; can be expressed as the

union of Borel sets and a set of measure zero, it suffices to prove
H(U) =0,

where U is a Borel subset of I';. We may suppose U is compact. By Lemma 3.7.8 in [2],

for any bounded function f (x, £), which is measurable with respect to the measure g—;, we

have

//uf(x,t)g_;‘i :/OTd,;/wf(x,t)g_Z, (5.2)

where U’ = {x: (x,t) € U}. By [15], for any Borel subset S C U, §* C U, fori=1,2,...,N,

2_;:(5) = /S(u+(x, t)—u (x, t))vi dH,
ab;(x,lt) (St) - /St (ui(x, t) — ut_(x’ t))V,- dH.

Equation (5.2) is equivalent to
// flx,t) (u*(x, t) —u (x, t))vi dH
u
T
i, / dt f Lo 0) (i (3, 2) — ! (x, )V dH.
0 ut
The definition of I'; implies that the left-hand side vanishes, so we have
T
f dt/ Sl 0)(ul (x, 0) — u (x,8)) Vi dH' = 0.
0 ut

Choose f(x, ) = xu(x,t) sgn(u’ (x,t) — u’ (x,¢)) sgnvi, where x,(x, ¢) denotes the character-
istic function of U, sum up for i from 1 up to N. Then we obtain

/dt/ (i (%, 1) — ul (s, ) (|| + -+ + [V |) dH = 0, (5.3)
¢ Ju

where G is the projection of U on the t-axis. Equation (5.3) implies, for almost all ¢ € G,
/ (o, 8) — ul (e, O) (|| + - + [V |) dH = 0,
ut

and hence, for almost all ¢ € G,
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H*-almost everywhere on U, which is impossible unless mes G = 0.
For any «, B with 0 <o < 8 < T, we choose (t) € C§°(0, T') such that

0<yy(t) <1, llilglo Yi(t) = Xap1(2), Vi[O, T].
By [2], we can choose ¢, € C5°(Qr) such that

ou
ot

n—00

)

Now, recalling that A¥(u, x,t) = [ a¥(s,x, £) ds, for any ¢ € C°(Qr),

|§0n(x; t)| =< 1’ lim On = XU in Ll (QT7

o d
f/ —a’(u,x, t)—uqb(x, t)dxdt
Qr axf

Z)x,»
. 0
:-// @ (1,5, ), dxdit
Qr axf
AT (1, x, wo
=_// [M_/ aZ,(S,x,t)ds¢xj:| dxdt
Qr dx; 0 '
:/f |:Ali(u,x,t)¢xix}.—/ azi(s,x,t)ds¢xii| dx dt,
Qr 0

f/ Mdexdt = —f/ bi(u,x, t)(px,' dxdt.
0X; Qr

Let ¢ = ¢, (x, t)Y;(¢). From the definition of the BV function, we have

/ /Q ot Do) 2

[ b0 .ot d
Qr ax,'
+ / / |:Al'1'(u,x, t)%x,-xj (o, )Yy (t) — / aj{t (s,%,8) dsgo,,xj (x, t)lm(t):| dxdt.
Qr 0
Let [ — o0o. Then
u
On(% ) X a1 () —
1, i
ad
=— // bi(u, %, £) — @y (%, t) X[a, 51 (£) dx dt
Qr Bx,'

- [A"f(u,x, O (50O~ [ (5,0) s t)x[a,m(r)} dudt.
Qr 0

Clearly, this equality also holds if [«, 8] is replaced by («, 8) and hence it holds even if
[, B] is replaced by any open set I with I C (0, T). Since G is a Borel set, by approximation
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we may conclude that

/ / oD X6(0) o

= —/ b;(u,x, t) 3%, On(x, £) xg(t) dx dt

//Q |: z} Lt X, t)@nxx (x, t)XG( ) — / l'/i(s,x, t) dsg)nxj(x, t)Xg(t):| dx dt.

Since mes G = 0, the three terms on the right-hand vanish and

/ / a5 D60 % =0,

Let n — 00. Then

I3[, roteonei -0
Uat_ QTXU 3 XGBt_

Hence
f (u*(x, t) —u (x, t))vt dH =0,
u
which implies H(U) = 0 and H(I';) = 0 by the arbitrariness of U.
Next, we prove that (5.1) is true in I'y. Let U be any Borel subset of I'; which is compact

in Q7. Since U is a set of N + 1-dimensional measure zero and A”(u x,t) € Llac(QT)’ we
have

0 .
// —AY(u,x,t)dxdt =0, i=1,...,N,
u 0%;

and hence
/ (A7 (u" (x, ) — AT (w” (x,0)))vidH =0, i=1,...,N.
u

By the arbitrariness of U, it follows by the definition of I' that

u
/ a’(s,x,t)dx-v; =0, a.e.onTy,
-

u
/ a’(s,x,t)dxvivj =0, a.e.onTly.
u
From this fact,

HCUA
/ yY(s,x,t)ds-v;=0, a.e.onl,.

u=(x,t)

Thus the lemma is proved.
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Appendix 1: The boundary condition on Definition 1.1

Clearly, if (1.2) and (1.6) are both true, equation (1.1) is not only degenerate in the interior
of ©, but also degenerate on the boundary X = 92 of Q. If equation (1.1) is weakly degen-
erate, we can impose the boundary condition (1.6) usually, one may refer to [2, 15-17, 23,
24]. But if equation (1.1) is strongly degenerate, it even is allowed to be completely degen-
erate, global solutions are in general discontinuous, the boundary condition (1.6) is not
necessarily satisfied in the classical sense that a trace of the solution exists and equals the
homogeneous value on X. Now, we give a very brief reviewing of the international way of
how to deal with this problem.

In the completely degenerate case, equation (1.1) becomes a first order hyperbolic equa-
tion and it is well known that a smooth solution of equation (1.1) is constant along the max-
imal segment of the characteristic line in Q7. Now suppose that this segment intersects
both {0} x € and . Then the problem (1.1)-(1.5)-(1.6) would be overdetermined if (1.6)
was assumed in the classical sense. Thus one needs to work within a suitable framework
of entropy solutions and entropy boundary conditions to obtain uniqueness and existence
results. In the BV setting, Bardos et al. [25] first gave an interpretation of the bound-
ary condition (1.6) as an ‘entropy’ inequality on X, which is the so-called BLN condition.
However, since the trace of solutions is involved in the formulation of the BLN condition,
it makes no sense if the solution is merely in L*°. Otto [26] extended the Dirichlet prob-
lem for hyperbolic equations to the L setting and proved a unique entropy solution by
introducing an integral formulation of the boundary condition.

For degenerate parabolic equations, the isotropic diffusion case, (a”) = a(u)I, first had
been developed around 2000. Besides the works in [8-11, 13], Carrillo [27] succeeded
in proving the uniqueness and existence of entropy solutions under the homogeneous
boundary condition, later Mascia et al. [12] and Michel and Vovelle [28] extended those
results to the case of a nonhomogeneous boundary condition. At the same time, Kobayasi
[29] proved the uniqueness by using the kinetic formulation introduced in [30, 31]. The
initial-boundary value problem of the anisotropic case is more delicate and has been
treated in more recent years. Bendahmane and Karlsen treated in [32] (also see [33, 34])
a class of doubly nonlinear degenerate parabolic equations with homogeneous Dirich-
let boundary conditions. Kobayashi and Ohwa treated in [6] the general anisotropic case
with nonhomogeneous boundary condition in the unit N-dimensional cube, while, Li and
Wang treat in [7] the isotropic case with homogeneous boundary condition in a general
bounded domain. In other words, in all these works, in the international way, the bound-
ary condition is not directly shown as (1.6) but is elegantly implicity contained in family
entropy inequalities (for example, [6]), or it is treated in a special weak sense such as [7].
The most characteristic feature lies in that the boundary condition can be treated in the
L setting, and the uniqueness of the entropy solutions can be obtained. So, if we consider
the Cauchy problem of equation (1.1), the international way has great superiority.

Unlike the international way, the Chinese way still treats the boundary condition in the
classical sense, so it requires that the solution is regular at least in the BV sense. If the
solution is only in the L setting, it cannot be treated in the Chinese way. Certainly, as we
have said before, the Chinese way has the advantages that it clearly shows the condition
(1.6) generally is overdetermined, and only a portion of the boundary should be given
the boundary value as we have shown in Theorem 1.2. In the following, we will give an
explanation of the reasonableness of homogeneous value condition (1.13).
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In the 1950-1960s, Fichera [35, 36] and Oleinik [37, 38] developed and perfected the
general theory of second order equations with nonnegative characteristic form, which,
in particular contain those degenerating on the boundary. We can call it Fichera-Oleinik

theory. By the theory, for a linear degenerate elliptic equation,

N+1 8214 N+1 u
Za”(x) + Z by(x)— +c(x)u =f(x), xeQCRNT, (A1)
pyurt 0X, 0Xs = 0X;

if one wants to consider the Dirichlet boundary value problem of equation (A.1), one only
needs to give a partial boundary condition. In detail, let {n;} be the unit inner normal

vector of 3$2 and denote

Y = {x €dQ:a nmn, =0, (b, —a;ss)n, < 0},

Y3 = {x €I :a nn, > O}.

Then, to ensure the well-posedness of equation (A.1), Fichera-Oleinik theory tells us that

the suitable boundary condition is

ul):zUEg :g(x) (A2)

In particular, if the matrix (a’) is positive definite, (A.2) is just the usual Dirichlet bound-
ary condition.
Now, for the porous medium equation (1.3), or the general reaction-diffusion equation

Ug = AA(M)’ (A3)

with the existence of A1, in other words, equation (A.3) is weakly degenerate, then let
v=A(u), u=A"(v). We have

Av— (A7), =0. (A.4)

According to Fichera-Oleinik theory, we know that we can impose the Dirichlet homo-
geneous boundary condition (1.6). For the boundary layer equation (1.4), if the domain
Q={0<1<T,0<&<X,0<n <1}, then comparing equation (1.4) with equation (A.1),
according to Fichera-Oleinik theory, the initial and the boundary conditions for w have

the form
W|r=0 = WO(S; 77), W|n=1 =0, (VWWn — VoW + C(T’ E)) |'I:0 =0, (AS)

where v is the viscous coefficient, vy and ¢(z, §) are known functions, one may refer to [1]
for the details.

But, if equation (1.1) is strongly degenerate, then the inverse matrix (ai,»)’1 is not-existent,
we cannot deal with it as (A.4). Rewrite equation (1.1) as

2 du  3bi(u,x,t)

ou ” ou du
— =a’(u,x,t +al(u,x,t)— — +a’l uy, + by, (U, x,t) — + ———; (A6
o 4 )8x,~ A ul )8x,~ dog il )ax,« dx; (A-6)




Zhan Boundary Value Problems (2016) 2016:15 Page 31 of 36

the domain is a cylinder  x (0, T). If we let ¢ = xy,1 and regard the degenerate parabolic

equation (A.6) as the form of a ‘linear’ degenerate elliptic equation as (A.1),

- al 0
(ars)(N+1)><(N+1) = (0 0)'

From this observation, according to Fichera-Oleinik theory, the initial value condition (1.5)
is always necessary, but on the lateral boundary 92 x (0, T), by a¥(0,x,t) = 0, equation
(A.6) is not only strongly degenerate in the interior of €2, but also on the boundary 9€2.
Then X3 is an empty set. While

) ij du i _
Zs(x,t): blu(u)x)t)-l—au(u?xlt)ax/ +6lxj(lxl,x,t), ISS—ZSNr
-1, s=N+1.

The portion of the boundary on which we can give the boundary value is

. 0 .
3, = {x €0 (b,-,,(O,x, t) +al(0,x, t)a—u + azj(O,x, t)
Xj
" . 0
—al(0,x,t) —a’(0,x, t)—u>ni < O}
U 8xj
= {x € 0Q2: bu(0,x,t)n;(x) < 0}, (A7)

where {#;} is the unit inner normal vector of 9K2.
However, due to the strongly degenerate property of (a’(u, x,t)), equation (A.6) gener-
ally only has a weak solution u, for example in our paper, # € BV, we cannot define the

trace of 3—91:, on 3L2. Fortunately, only if b;(s, x, £) is derivable, then
T, = {x € 9Q: b;,(0,x, )n;(x) < 0}, (A.8)

has a definite sense. In the following, we will show that X, of (A.8) is in accordance with
(1.13) in a special weak sense.

Recalling that, for any n > 0, Vk € R, i1 = {n;} is the inner unit normal vector of ¥ = 9,
and for any given ¢ € (0, T),

Sigk = {x €09, S,,(k)[b,»(O,x, t) — b;(k,x, t)]n,»(x) > O}, (A9)
Sonk = {x € 9Q, S, (K)[6:(0, %, ) — bi(k, x,t) | ni(x) < 0}. (A.10)
Let
= U ik Ty = T\ . (A.11)
Vn>0,YkeR

We know that the boundary condition of equation (1.1) used in our paper is

vulsx0,1) = 0. (A.12)
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In fact, by the definition of X;,x, we know that
0 < S, (K)[6:(0,%,8) = bi(k, x,8) | ni(x) = =kS, (K) B¢, %, t)m;(x),
where ¢ € (k,0), bi(¢,%,t) = biy(u, x, )| = . If we let n — 0, then
bi(¢,x,)n(x) <0
Let k — 0. We know that
b(0,%,t)n;(x) <0,

which is in accordance with (A.8).

Appendix 2: The comments on Definition 1.1

To explain the reasonableness of Definition 1.1, suppose that equation (1.1) has a classical
solution u. For any ¢; € C*(Qr1), ¢1 >0, Voi|s = 0, suppe; C 2 x (0,T), k € R, n > 0.
Multiplying (1.1) by ¢S, (u — k) and integrating over Qr, we have

// I,(u - k) dx dt + // AZ(u,x, t, /<)<P1xix, dxdt — // B;(u,x, L, k) g1y, dx dt
Qr Qr Qr

_ // a¥(u, x, t)uxiuij,’?(u —k)py dxdt + // / af{/,(s, x,8)Sy(s — k) dsgry, dx dt
Qr Qr Jk

T . 9 T .
+ S,,(k)/ / a’(u,x, t)—unigol dtdo + S,,(k)/ / AZ(O,x, L, K)pixnjdt do
0 Jx ax; 0o Jx
T
+S,(k) / / [bi(O,x, t) — bi(k,x, t)]nigol dtdo
z:lnk
T
+S, (k)/ / [bi(O,x, t) — bi(k,x, t)]n,q)l dtdo = 0. (B.1)
z:2nk

Taking @2 € C2(Q7), ¢1lsex(0,7] = P2laex(0,7), Supp@s C Q2 x (0,T),

k)/ / a¥(u,x,t) nwldtda
ij 0 abt » %,
k){—// a"(u,x,t)—u<p2xidxdt+// ngdxdt
Qr 0x; Qr 8xi
_// [bi(u’xrt)_bi(oyx: /f u—d dt
Qr Qr
T
_/ /[bi(oyx)t)_bi(0>x)t)]ni(p2dtda}i (B'Z)
0 Jx
) ou
/ / Wl ) g s
/ / AY(0,x, t)pox,n; dt do
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_// A, x, t)¢2x,'x; dxdt—// / az,(s,x,t)dsgoz,ci dxdt

Qr Qr Jo /

= —// AV(u, x, t)‘prixj dxdt - // / az_(s,x, t) dspay, dx dt. (B.3)
Qr Qr Jo /

For V¢i|x = 0, and by A7(0,x,t) = 0, from (B.1)-(B.3), we have

// I,(u - k) dx dt + // AZ(u,x, t, k)(/)lxixj dxdt — // B;(u,x, L, k) g1y, dx dt
Qr Qr Qr
+ // / az,(s,x, 1)S,(s — k) dsgry, dx dt
Qr Jo /
" 0b;(0,x,t
Sn(k)[// A (u,x, t)<p2xl.x/. dxdt + // ﬁ(pg dxdt
Qr Qr 0%;
-// (bi(u, %, ) — bi(0,, "’dedH// u—dxdt}
Qr Qr

+ 8, (k) f/ / af{,(s,x, t) dsp)y, dx dt — /f a’(u, x, t)uxl.uij;?(u —k)p, dx dt
erJo 7 Qr

T
k)// [b,-(O,x,t)—bi(k,x,t)]nigoldtda
E1)7k

T
= —S,,(k)/0 /); [bi(O,x, t) — b;(k,x, t)]nlxpl dtdo. (B.4)
2nk

Now, we give some comments.
(i) First, the classical solution u induces an integral equality (B.4), while the weak solu-

tion formula defined by (1.16) can be rewritten as

2

f/ [1 (1 = K)pre — B (1,5, 1, K) sy + AV (, 5,1, K) I
Qr 0x; 0x;

—S’(u k)Z|g’| (plj| dxdt+// / i (s,x,t)S (s — k) dsqry, dx dt

82
g f/ ["%t {10.2,0) = bi(0,5%,8)) g, + A7 (0,0, 8) 52
Qr 0x; 0x;

Bbi(O,x, lf)
+ —

T
g02:| dxdt + S, (k) / / [bi(O,x, t) — b;(k,x, t)]nlxpl dtdo
Bx,' Elryk

T
25,00 [ [ (00,50~ bk )i drdo (B.5)
):2)71(

which is just an inequality, this is due to the following weak convergence property: assum-
ing that / C RN is an open bounded set and as k — oo, f — f weakly in L(U),1 < q < oo,
then

. . q q
klggolnflmllm(u) = ”f”Lq(uy (B.6)

which has been quoted before as Lemma 2.7.
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Generally, inequality (B.6) cannot be an equality. This is why we can only define the
weak solution as (1.16) (i.e. (B.5)) instead of (B.4).
(ii) Second, Definition 1.1 is equivalent to the following.
Definition B.1 A function u is said to be the entropy solution of equation (1.1)-(1.5)-(1.13),
if:
1. u€BV(Qr) NL*®(Qr), and there exist functions g’ € L*(Qr),i=1,2,...,N, such
that

4 ) 9
/ / &', O, £) dx dt = f f P 2, £) (3, £) - dx i,
Qr Qr 0%

where ¢(x, t) € L2(Qr), (y7) is the square root of (a¥), and
.o 1 .
Y (u,x,t) = / yY (Su+ + (1 -8)u,x, t) ds.
0

2. Forany ¢ € C3(Qr), for any k € R, for any small n > 0, u satisfies

i ij 9%
//(2T [In(u—k)(pt =B, (u,x,t,K)gx; + A)(u, %, 8, k) o 9%,

S
-Su-kY |g| (p:| dxdt

j=1

u .
+ // / ajfj(s,x, £)S, (s — k) dsg,, dxdt > 0. (B.7)
Qr Jk

3. The boundary value is satisfied in the sense of the trace,

YUlzyx©,1) = 0.

4. The initial value is satisfied in the sense of the following equality:

t—0

lim/ |u(x, t) — uo(x)| dx=0.
Q

Comparing with Definition 1.1, Definition B.1 seems simpler; the reason we choose to
adopt Definition 1.1 is that the inequality (2.3) clearly shows the partial-boundary condi-
tion, and the definition can be used to deal with the corresponding problem if we have
equation (1.1) with no homogeneous boundary value condition.

(iii) By (B.7), we have
3%
x; 0%;

dxdt

// [In(u - kK)o — Bg(u,x, t, ks, +Af7j(u,x, t, k)]
Qr

u
+ // f ozj{/,(s,x, 1)S, (s — k) dsg,, dxdt > 0. (B.8)
Qr Jk
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Let n — 0 in this inequality. We have

9%

/ / { = Klp: — sen(u — k) [bius) — bi(k)] + |AT (1,3, £) — AT (K, x, £)|
Qr Bxl Bx,»

} dxdt
+ // / azj(s,x, t)sgn(s — k) dsg,, dxdt > 0. (B.9)
Qr Jk

Inequality (B.9) is the entropy solution defined in [15-17]. In other words, there was a
time that the term -§; (- k) Zﬁl |¢/|? dx dt was regarded as ‘redundant’ and was drawn
away. Actually, we have seen that the term implies very important information on the
uniqueness.

(iv) If considering the equation

du 03%A(u) 0B(u)
— = 4
ot 0x? ox

, () eRx(0,7), (B.10)

Vol'pert and Hudjaev in [39] defined u € BV(Qr) N L*(Q7) is said to be a weak solution
of (B.10), if 244 ¢ I! (Qr), and for any 0 < ¢ € C(Qr), any k € R,

dx loc
¢ 0A(u) dgp
‘//QT sgn(u—k)[(u—k)a—t— ™ £:| dxdt
— // sgn(u — k) |:(B(u) - B(k)) 8_<p:| dxdt > 0. (B.11)
Qr ox

We know that only under the condition %EC“) € L*(Qr) N BV,(Qr) the uniqueness of the
solutions in the sense of (B.11) is true.
However, in the present case of strong degeneration, since for the limit function u of

certain subsequence of {u,}, a¥(u,x, t)% cannot be defined by the trace y (a¥(u,x, t)%)

] — ]

on ¥, we have to make a detour to avoid y (a¥(u, x, t)%) in defining the entropy solution.
/)

So, an essential improvement of our paper (also [5-13]) is to get the uniqueness of the
A (u)

solutions without any bounded restrictions in = =.
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