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Abstract
This paper deals with the global existence and boundedness of solutions to the
following quasilinear attraction-repulsion chemotaxis system:

⎧
⎨

⎩

ut =∇ · (D(u)∇u) –∇ · (χu∇v) +∇ · (ξu∇w), x ∈ �, t > 0,
0 =�v + αu – βv, x ∈ �, t > 0,
0 =�w + γ u – δw, x ∈ �, t > 0,

under homogeneous Neumann boundary conditions in a bounded domain � ⊂ R
n

(n ≥ 2) with smooth boundary, where D(u) ≥ cDum–1 withm ≥ 1 and some constant
cD > 0. It is proved that if ξγ –χα > 0 orm > 2 – 2

n , then for any sufficiently regular
initial data, this system possesses a unique global bounded classical solution for the
case of nondegenerate diffusion (i.e., D(u) > 0 for all u≥ 0), whereas for the case of
degenerate diffusion (i.e., D(u) ≥ 0 for all u≥ 0), it is shown that there exists a global
bounded weak solution under the same assumptions.
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1 Introduction
Chemotaxis is widespread in nature. It describes the oriented migration of cells or bacteria
toward the concentration gradient of a chemical substance. In , Keller and Segel []
derived the well-known and widely studied Keller-Segel attractive model. The most obvi-
ous feature of this system is that the solution may blow up in finite time (see [–] and
references therein). Hillen and Painter [] suggested the chemotaxis model with nonlin-
ear diffusion and aggregation by considering the volume-filling effect. Therefore, there are
many papers on the global existence or finite time blow-up of solutions (e.g., see [–]).

In many biological processes, the migration of cells or bacteria is generally influenced
by a combination of attractive and repulsive chemicals [, ]. The scholars in [, ]
have proposed the corresponding attraction-repulsion chemotaxis model

⎧
⎪⎨

⎪⎩

ut = �u – ∇ · (χu∇v) + ∇ · (ξu∇w), x ∈ �, t > ,
τvt = �v + αu – βv, x ∈ �, t > ,
τwt = �w + γ u – δw, x ∈ �, t > ,

(.)
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under no-flux boundary conditions, where � ⊂ R
n is a bounded domain with smooth

boundary. Here χ ≥ , ξ ≥ , α > , β > , γ > , δ > , and τ = ,  are parameters. The
unknown functions u(x, t), v(x, t), and w(x, t) denote the cell density, the concentration
of an attractive signal, and the concentration of a repulsive chemical, respectively. If we
take ξ = , then model (.) is the classical attractive Keller-Segel model. The first cross-
diffusive term and the second in the first equation of (.) mean that the movement of the
bacteria is directed toward the increasing concentration of an attractive substance and
away from the increasing concentration of a repulsive chemical, respectively. The second
and third equations in model (.) indicate that chemoattractant and chemorepellent are
produced by cells and have attenuation. There are fewer results for (.) than the classical
attractive Keller-Segel model, mainly since the latter possesses a useful Lyapunov func-
tional whereas the former does not admit such a functional. When n =  and τ = , the
global existence and asymptotic dynamics of solutions of (.) were studied by [, ].
When n = , τ = , and ξγ – χα > , the model (.) possesses a unique global bounded
classical solution with any sufficient regular initial data (see [, ]). When n =  or ,
τ = , and ξγ = χα, Lin et al. [] proved that (.) admits a unique global bounded clas-
sical solution, and large time-behavior is considered. When τ = , the global solvability,
critical mass phenomenon, blow-up, and asymptotic behavior were studied in [, ].
Recently, Jin and Wang [] studied the boundedness, blow-up, and critical mass phe-
nomenon of solutions to a variant of (.) for n = . Liu et al. [] also studied the pattern
formation of model (.) with τ =  from both analytical and numerical aspects.

To the best of our knowledge, presently, there is no rigorous result on the attraction-
repulsion chemotaxis model with nonlinear diffusion. Thus, this paper mainly aims to
understand the competition among the repulsion, the attraction, and the nonlinear diffu-
sion. Precisely, we will consider the global existence and boundedness of solutions to the
following quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (D(u)∇u) – ∇ · (χu∇v) + ∇ · (ξu∇w), x ∈ �, t > ,
 = �v + αu – βv, x ∈ �, t > ,
 = �w + γ u – δw, x ∈ �, t > ,
∂u
∂ν

= ∂v
∂ν

= ∂w
∂ν

= , x ∈ ∂�, t > ,
u(x, ) = u(x), x ∈ �,

(.)

where � ⊂ R
n (n ≥ ) is a bounded domain with smooth boundary ∂�, and ∂/∂ν rep-

resents the derivative with respect to the outer normal of ∂�. As usual, we assume that
χ , ξ ≥  and that α, β , γ , and δ are positive parameters. For the diffusion coefficient D, we
assume that

D ∈ C([,∞)
)

(.)

and there exist some constants cD >  and m ≥  such that

D(u) ≥ cDum– for all u ≥ . (.)

In addition to (.) and (.), we will require that D(u) satisfy

D(u) >  for all u ≥  (.)
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in some places. In particular, when D(u) does not satisfy (.) (i.e., D(u) ≥  for all u ≥ ),
equation (.) may be degenerate at u = .

We will show that we can allow for the case of attraction dominating the repulsion (i.e.,
ξγ – χα < ) and still obtain global existence results due to the nonlinear diffusion. Thus,
our results confirm that the attraction-repulsion system with nonlinear diffusion can pre-
vent blow-up of solutions in higher dimensions as mentioned before.

We now state the main results of this paper.

Theorem . Let � ⊂ R
n (n ≥ ) be a bounded domain with smooth boundary. Assume

that u ∈ W ,∞(�) is a nonnegative function and D(u) satisfies (.), (.), and (.). Sup-
pose that

ξγ – χα >  or ξγ – χα ≤  and m >  –

n

.

Then there exists a unique nonnegative bounded solution (u, v, w) belonging to C(� ×
[,∞)) ∩ C,(� × (,∞)) that solves system (.) classically.

Remark . Theorem . shows that the solution is still global, provided that the diffusion
is strong enough even if the attraction prevails over the repulsion, which provides a sup-
plement to the dichotomy boundedness vs. blow-up in attraction-repulsion chemotaxis
equations of parabolic-elliptic type with nonlinear diffusion.

Remark . For n = , Theorem . also shows that both the attraction and repulsion
cannot result in blow-up when the linear diffusion is replaced by a nonlinear one.

For the case of D(u) only fulfilling (.) and (.), since equation (.) with m >  may be
degenerate at u = , system (.) does not admit classical solutions in general as the porous
medium equation does. However, we can prove that system (.) in this case possesses at
least one nonnegative global bounded solution (u, v, w) in the following weak sense.

Definition . Let T > . Then a triple of nonnegative functions (u, v, w) defined on � ×
(, T) is called a weak solution to (.) if

() u ∈ L∞((, T); L∞(�)) and D(u)∇u ∈ L
loc((, T); L(�)),

() v ∈ L∞((, T); W ,∞(�)) and w ∈ L∞((, T); W ,∞(�)),
() (u, v, w) satisfies (.) in the distributional sense, that is, for every

ϕ ∈ C∞
 (� × [, T)),

∫ T



∫

�

(
D(u)∇u · ∇ϕ – χu∇v · ∇ϕ + ξu∇w · ∇ϕ – uϕt

)
dx dt

=
∫

�

u(x)ϕ(x, ) dx,

∫ T



∫

�

(∇v · ∇ϕ + βvϕ) dx dt =
∫ T



∫

�

αuϕ dx dt,

∫ T



∫

�

(∇w · ∇ϕ + δwϕ) dx dt =
∫ T



∫

�

γ uϕ dx dt.
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If (u, v, w) is a weak solution to (.) on � × (, T) for all T ∈ (,∞), then (u, v, w) is called
a global weak solution to (.).

Theorem . Let � ⊂ R
n (n ≥ ) be a bounded domain with smooth boundary. Assume

that u ∈ W ,∞(�) is a nonnegative function and that D(u) satisfies (.) and (.). Suppose
that

ξγ – χα >  or ξγ – χα ≤  and m >  –

n

.

Then there exists at least one nonnegative global weak solution (u, v, w) to system (.).
Moreover, (u, v, w) satisfies

∥
∥u(·, t)

∥
∥

L∞(�) +
∥
∥v(·, t)

∥
∥

L∞(�) +
∥
∥w(·, t)

∥
∥

L∞(�) ≤ C for all t > ,

where C >  is a constant independent of t.

The rest of this paper is organized as follows. In Section , we first prove the local exis-
tence and uniqueness of a solution to system (.) and then give mass estimates. In Sec-
tion , we give some fundamental estimates for the solution (u, v, w) to system (.) and
then prove Theorem .. In Section , we establish the existence of global bounded weak
solutions to system (.).

2 Preliminaries
In this section, we first state the local well-posedness of system (.) and then give the
mass estimates.

Lemma . Assume that u ∈ W ,∞(�) is a nonnegative function and D satisfies (.),
(.), and (.). Then there exist Tmax ∈ (,∞] and a unique triple (u, v, w) of nonneg-
ative functions from C(� × [, Tmax)) ∩ C,(� × (, Tmax)) solving (.) classically in
� × (, Tmax). Moreover,

if Tmax < ∞, then
∥
∥u(·, t)

∥
∥

L∞(�) → ∞ as t → Tmax. (.)

Proof (i) Existence. Let T ∈ (, ), which is specified below. We define

ST :=
{

u ∈X |∥∥u(·, t)
∥
∥

L∞(�) ≤ ‖u‖L∞(�) +  =: R for all t ∈ [, T]
}

,

which is a bounded closed convex subset of space X := C(�̄ × [, T]).
For any given ũ ∈ ST , there exists a unique (v, w) such that v and w solve the following

elliptic equations

{
–�v + βv = αũ, x ∈ �, t ∈ (, T),
∂v
∂ν

= , x ∈ ∂�, t ∈ (, T),
(.)

and
{

–�w + δw = γ ũ, x ∈ �, t ∈ (, T),
∂w
∂ν

= , x ∈ ∂�, t ∈ (, T),
(.)
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respectively. Then we can find a unique u solving the following parabolic equation:

⎧
⎪⎨

⎪⎩

ut = ∇ · (D(ũ)∇u) + ∇ · [(–χ∇v + ξ∇w)u], x ∈ �, t ∈ (, T),
∂u
∂ν

= , x ∈ ∂�, t ∈ (, T),
u(x, ) = u(x), x ∈ �.

(.)

Thus, we can introduce a mapping � : ũ(∈ ST ) �−→ u by defining �(ũ) = u.
We next show that � has a fixed point for T sufficiently small. The elliptic regularity

[], Theorem ., implies that (.) admits a unique solution v(·, t) ∈ C+θ (�) for some
θ ∈ (, ). Similarly, (.) also possesses a unique solution w(·, t) ∈ C+θ (�). Moreover, the
Sobolev embedding theorem and the Lp estimates yield that

‖∇v‖L∞(�×(,T)) ≤ C‖v‖L∞((,T);W ,p(�)) ≤ C‖ũ‖L∞((,T);Lp(�))

and

‖∇w‖L∞(�×(,T)) ≤ C‖w‖L∞((,T);W ,p(�)) ≤ C‖ũ‖L∞((,T);Lp(�))

with p > n and some constants C >  and C > . It then follows from [], Theorem .,
that u ∈ Cθ , θ (� × (, T)) with

‖u‖
Cθ , θ (�×(,T))

≤ C (.)

for some θ ∈ (, ) and C > , where C depends on min≤s≤R D(s), ‖∇v‖L∞((,T);Cθ (�̄)) and
‖∇w‖L∞((,T);Cθ (�̄)). Thus, we obtain

∥
∥u(·, t)

∥
∥

L∞(�) ≤ ‖u‖L∞(�) +
∥
∥u(·, t) – u

∥
∥

L∞(�) ≤ ‖u‖L∞(�) + Ct
θ
 .

Hence if we take T < ( 
C

)

θ , then

∥
∥u(·, t)

∥
∥

L∞(�) ≤ ‖u‖L∞(�) +  = R for all t ∈ [, T], (.)

which implies that u ∈ ST . Then we conclude that �(ST ) ⊂ ST and �(ST ) is compact in
ST by (.). Moreover, we can easily deduce that � is a continuous operator. Thus, the
Schauder fixed point theorem gives that there exists at least one fixed point u ∈ ST of �.

(ii) Regularity and nonnegativity. By the elliptic regularity theory we see that v(·, t) ∈
C+θ (�̄) and w(·, t) ∈ C+θ (�̄). It then follows from (.) that v(x, t) ∈ C+θ , θ (�̄ × [η, T])
and w(x, t) ∈ C+θ , θ (�̄ × [η, T]) for all η ∈ (, T). The parabolic regularity theory [],
Theorem ., entails that

u(x, t) ∈ C+θ ,+ θ

(
�̄ × [η, T]

)
for all η ∈ (, T).

We may prolong the solution to the interval [, Tmax) with either Tmax = ∞ or Tmax < ∞,
where, in the latter case,

∥
∥u(·, t)

∥
∥

L∞(�) → ∞ as t → Tmax.
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Finally, the parabolic and elliptic comparison principles ensure the nonnegativity of u, v,
and w.

(iii) Uniqueness. The proof for the uniqueness of solutions to system (.) is inspired by
a method in []. We suppose that (u, v, w) and (u, v, w) are two classical solutions to
system (.) in � × (, T) with the same initial data. Fix T ∈ (, T).

It is clear that v – v satisfies the equation

–�(v – v) + β(v – v) = α(u – u). (.)

Thus, we differentiate (.) on t and then take v – v as a test function to have




d
dt

∫

�

∣
∣∇(v – v)

∣
∣ dx +

β


d
dt

∫

�

|v – v| dx

= α

∫

�

(u – u)t(v – v) dx

= –α

∫

�

∇(
A(u) – A(u)

) · ∇(v – v) dx + αχ

∫

�

(u∇v – u∇v) · ∇(v – v) dx

– αξ

∫

�

(u∇w – u∇w) · ∇(v – v) dx (.)

for any t ∈ (, T), where A(s) =
∫ s

 D(s) ds. For the first term on the right-hand side of (.),
we obtain from the mean value theorem and the Young inequality that

– α

∫

�

∇(
A(u) – A(u)

) · ∇(v – v) dx

= α

∫

�

(
A(u) – A(u)

) · �(v – v) dx

= –α
∫

�

(
A(u) – A(u)

)
(u – u) dx + αβ

∫

�

(
A(u) – A(u)

)
(v – v) dx

= αβC

∫

�

(u – u)(v – v) dx – αC

∫

�

(u – u) dx

≤ Cβ




∫

�

|v – v| dx –
Cα





∫

�

|u – u| dx (.)

for some positive constant C ∈ [D(s), D(s)], where

s := min
{‖u‖L∞(�×(,T)),‖u‖L∞(�×(,T))

}
and

s := max
{‖u‖L∞(�×(,T)),‖u‖L∞(�×(,T))

}
.

For the second integral on the right-hand side of (.), we can use the Hölder’s inequality
to have

αχ

∫

�

(u∇v – u∇v) · ∇(v – v) dx

≤ αχ

(∫

�

|u∇v – u∇v| dx
) 


(∫

�

∣
∣∇(v – v)

∣
∣ dx

) 


. (.)
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Notice that |u| ≤ C, |∇v| ≤ C, and |∇w| ≤ C with some positive constants C, C,
and C in � × (, T). Thus,

∫

�

|u∇v – u∇v| dx

≤ 
∫

�

|u – u||∇v| dx + 
∫

�

u

∣
∣∇(v – v)

∣
∣ dx

≤ C


∫

�

|u – u| dx + C


∫

�

∣
∣∇(v – v)

∣
∣ dx. (.)

Inserting (.) into (.) and using Young’s inequality, we obtain

αχ

∫

�

(u∇v – u∇v) · ∇(v – v) dx

≤ αχ
√


(

C


∫

�

|u – u| dx + C


∫

�

∣
∣∇(v – v)

∣
∣ dx

) 

(∫

�

∣
∣∇(v – v)

∣
∣ dx

) 


≤ αχ
√


(

C

(∫

�

|u – u| dx
) 



+ C

(∫

�

∣
∣∇(v – v)

∣
∣ dx

) 

)(∫

�

∣
∣∇(v – v)

∣
∣ dx

) 


≤ αχ
√

C

(∫

�

|u – u| dx
) 


(∫

�

∣
∣∇(v – v)

∣
∣ dx

) 


+ αχ
√

C

∫

�

∣
∣∇(v – v)

∣
∣ dx

≤ αC



∫

�

|u – u| dx +
(

χC


C
+ αχ

√
C

)∫

�

∣
∣∇(v – v)

∣
∣ dx. (.)

Similarly, we can conclude that

–αξ

∫

�

(u∇w – u∇w) · ∇(v – v) dx

≤ αC



∫

�

|u – u| dx +
ξ C


C

∫

�

∣
∣∇(v – v)

∣
∣ dx

+ αξ
√

C

(∫

�

∣
∣∇(v – v)

∣
∣ dx

) 

(∫

�

∣
∣∇(w – w)

∣
∣ dx

) 


. (.)

To estimate the last integral in (.), we notice that w – w satisfies the equation

–�(w – w) + δ(w – w) = γ (u – u).

Taking w – w as a test function, we obtain

∫

�

∣
∣∇(w – w)

∣
∣ dx = γ

∫

�

(u – u)(w – w) dx – δ

∫

�

(w – w) dx, (.)
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which, together with Young’s inequality, yields that

∫

�

∣
∣∇(w – w)

∣
∣ dx ≤ δ

∫

�

|w – w| dx +
γ 

δ

∫

�

|u – u| dx – δ

∫

�

|w – w| dx

=
γ 

δ

∫

�

|u – u| dx.

Thus, the last term in (.) can be estimated as

αξ
√

C

(∫

�

∣
∣∇(v – v)

∣
∣ dx

) 

(∫

�

∣
∣∇(w – w)

∣
∣ dx

) 


≤ δαC

γ 

∫

�

∣
∣∇(w – w)

∣
∣ dx +

ξ γ C


δC

∫

�

∣
∣∇(v – v)

∣
∣ dx

≤ αC



∫

�

|u – u| dx +
ξ γ C


δC

∫

�

∣
∣∇(v – v)

∣
∣ dx. (.)

Summarily, combining (.), (.), (.), and (.), we obtain




d
dt

∫

�

∣
∣∇(v – v)

∣
∣ dx +

β


d
dt

∫

�

|v – v| dx +
αC



∫

�

|u – u| dx

≤
(

χC


C
+

ξ C


C
+

ξ γ C


δC
+ αχ

√
C

)∫

�

∣
∣∇(v – v)

∣
∣ dx

+
βC



∫

�

|v – v| dx.

By Gronwall’s inequality we derive that v = v and u = u in �× (, T). By (.) we also
have w = w in � × (, T). Hence, v = v, u = u, and w = w in � × (, T) due to the
arbitrariness of T ∈ (, T). This implies the uniqueness of solutions. �

The following lemma deals with the mass identities.

Lemma . Let the assumptions in Lemma . hold. Then the classical solution (u, v, w) of
(.) fulfills

∥
∥u(·, t)

∥
∥

L(�) = ‖u‖L(�) for all t ∈ (, Tmax), (.)
∥
∥v(·, t)

∥
∥

L(�) =
α

β
‖u‖L(�) for all t ∈ (, Tmax), (.)

∥
∥w(·, t)

∥
∥

L(�) =
γ

δ
‖u‖L(�) for all t ∈ (, Tmax). (.)

Moreover, we have

u(x, t) >  for all x ∈ �, t > , (.)

provided that u > .

Proof We integrate each equation of (.) with respect to x ∈ � and then obtain

d
dt

∫

�

u dx ≡ , α

∫

�

u dx = β

∫

�

v dx, and γ

∫

�

u dx = δ

∫

�

w dx
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for all t ∈ (, Tmax). It is clear that (.)-(.) hold. By the maximum principle, we obtain
the positivity (.) of u. �

3 Global bounded classical solutions in the case of nondegenerate diffusion
In this section, we mainly investigate the existence of global bounded classical solutions
to system (.) with nondegenerate diffusion. We first consider the case that the repulsion
prevails over the attraction (i.e., ξγ – χα > ).

Lemma . Assume that ξγ – χα > . Suppose that u ∈ W ,∞(�) is a nonnegative func-
tion and D satisfies (.), (.), and (.). Then, for any p > n

 , there exists a constant C > 
independent of t such that the solution (u, v, w) of (.) fulfills

∫

�

up(x, t) dx ≤ C for all t ∈ (, Tmax). (.)

Proof We multiply the first equation in (.) by up– and integrate by parts over � to have


p

d
dt

∫

�

up dx

=
∫

�

up–∇ · (D(u)∇u
)

dx –
∫

�

up–∇ · (χu∇v) dx +
∫

�

up–∇ · (ξu∇w) dx

= –(p – )
∫

�

up–D(u)|∇u| dx +
(p – )χ

p

∫

�

∇up · ∇v dx

–
(p – )ξ

p

∫

�

∇up · ∇w dx

= –(p – )
∫

�

up–D(u)|∇u| dx +
p – 

p

∫

�

up(–χ�v + ξ�w) dx

for all t ∈ (, Tmax). Thus, from the second and third equations in (.) we obtain

d
dt

∫

�

up dx = –p(p – )
∫

�

up–D(u)|∇u| dx

+ (p – )
∫

�

up[ξδw – (ξγ – χα)u – χβv
]

dx, (.)

which, together with v ≥ , yields that

d
dt

∫

�

up dx ≤ –(ξγ – χα)(p – )
∫

�

up+ dx + ξδ(p – )
∫

�

upw dx. (.)

By ξγ – χα >  and Young’s inequality we deduce that

ξδ(p – )
∫

�

upw dx ≤ ξγ – χα


(p – )

∫

�

up+ dx + C

∫

�

wp+ dx, (.)

where C := ξδ
p–
p+ [ ξδp

(ξγ –χα)(p+) ]p. Substituting (.) into (.) yields

d
dt

∫

�

up dx ≤ –
ξγ – χα


(p – )

∫

�

up+ dx + C

∫

�

wp+ dx. (.)
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Following a similar procedure as in [], we go to estimate the term
∫

�
wp+ dx. Here we

give a sketch for completeness. Since w solves

{
–�w + δw = γ u, x ∈ �,
∂w
∂ν

= , x ∈ ∂�,
(.)

where δ >  and γ > , we can apply Lp estimates [, ] on (.) to obtain

∥
∥w(·, t)

∥
∥

W ,p(�) ≤ C
∥
∥u(·, t)

∥
∥

Lp(�) for all t ∈ (, Tmax) (.)

with some constant C > . Then by the Gagliardo-Nirenberg interpolation inequality []
and the L estimates of w (Lemma .) we find that

∫

�

wp+ dx ≤ C
∥
∥Dw

∥
∥(p+)θ

Lp(�) ‖w‖(p+)(–θ )
L(�) + C‖w‖p+

L(�)

≤ C‖u‖(p+)θ
Lp(�) + C for all t ∈ (, Tmax) (.)

with some constants C >  and C > , where

θ =
 – 

p+

 + 
n – 

p
.

Since p > n
 , it is easy to check that θ ∈ (, ) and (p + )θ < p. Hence, using Young’s in-

equality twice, we have
∫

�

wp+ dx ≤ C
(‖u‖p

Lp(�) + 
)

+ C

≤ C

(

κ

∫

�

up+ dx +
|�|

p + 

[
p

κ(p + )

]p)

+ C

= Cκ

∫

�

up+ dx + C(κ) for all t ∈ (, Tmax). (.)

Substituting (.) into (.), we obtain

d
dt

∫

�

up dx ≤ –
ξγ – χα


(p – )

∫

�

up+ dx + CCκ

∫

�

up+ dx + CC(κ).

Then by taking

κ =
(ξγ – χα)(p – )

CC

we have

d
dt

∫

�

up dx ≤ –
ξγ – χα


(p – )

∫

�

up+ dx + C for all t ∈ (, Tmax), (.)

where C := CC. By Young’s inequality again, we obtain

∫

�

up dx ≤ ξγ – χα


(p – )

∫

�

up+ dx +
|�|

p + 

[
p

(ξγ – χα)(p – )

]p

(.)
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for t ∈ (, Tmax). Thus, we conclude that

d
dt

∫

�

up dx +
∫

�

up dx ≤ C for all t ∈ (, Tmax), (.)

where C := C + |�|
p+ [ p

(ξγ –χα)(p–) ]p. By Gronwall’s inequality we have

∫

�

up(x, t) dx ≤ max

{∫

�

up
 dx, C

}

for all t ∈ (, Tmax),

which implies the desired uniform estimates. �

Next, considering the case that the attraction dominates over the repulsion, we can de-
duce a similar uniform estimate under the assumption of m >  – 

n . We will show that the
stronger diffusion plays a key role in deducing such a uniform bound.

Lemma . Assume that ξγ – χα ≤  and m >  – 
n . Suppose that u ∈ W ,∞(�) is a

nonnegative function and D satisfies (.), (.), and (.). Then, for any p > n
 , there exists

a constant C >  independent of t such that the solution (u, v, w) of system (.) fulfills

∫

�

up(x, t) dx ≤ C for all t ∈ (, Tmax). (.)

Proof Combining (.) with (.), we derive

d
dt

∫

�

up dx ≤ –
cD(p – )p
(p + m – )

∫

�

∣
∣∇u

p+m–


∣
∣ dx

+ (p – )
∫

�

up[ξδw + (χα – ξγ )u – χβv
]

dx

for all t ∈ (, Tmax). This, along with v ≥ , yields

d
dt

∫

�

up dx ≤ –
cD(p – )p
(p + m – )

∫

�

∣
∣∇u

p+m–


∣
∣ dx

+ (p – )ξδ

∫

�

upw dx + (p – )(χα – ξγ )
∫

�

up+ dx.

By Young’s inequality we obtain

d
dt

∫

�

up dx ≤ –
cD(p – )p
(p + m – )

∫

�

∣
∣∇u

p+m–


∣
∣ dx + C

∫

�

up+ dx + C

∫

�

wp+ dx, (.)

where C := (p – )(χα – ξγ + ξδ) and C := (p – )ξδ. Similarly to the deduction of (.)
in Lemma ., we find that there exist some constants C >  and C >  such that

∫

�

wp+ dx ≤ C
∥
∥Dw

∥
∥(p+)θ

Lp(�) ‖w‖(p+)(–θ )
L(�) + C‖w‖p+

L(�)

≤ C‖u‖(p+)θ
Lp(�) + C for all t ∈ (, Tmax),
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where (p + )θ = np

np+p–n ∈ (, p) by p > n
 . Using Young’s inequality twice yields

∫

�

wp+ dx ≤ C
(‖u‖p

Lp(�) + 
)

+ C

≤ C

(∫

�

up+ dx + |�|
)

+ C

= C

∫

�

up+ dx + C for all t ∈ (, Tmax), (.)

where C := C(|�| + ). Hence, inserting (.) into (.), we obtain

d
dt

∫

�

up dx ≤ –
cD(p – )p
(p + m – )

∫

�

∣
∣∇u

p+m–


∣
∣ dx + C

∫

�

up+ dx + C, (.)

where C := C + CC and C := CC. Since p > n
 and m ≥ , we have p > (–m)n

 > n–mn–


and then obtain


p + m – 

<
(p + )

p + m – 
<

n
n – 

.

By the Gagliardo-Nirenberg inequality we derive that there exists C >  such that

∫

�

up+ dx =
∥
∥u

p+m–


∥
∥

(p+)
p+m–

L
(p+)
p+m– (�)

≤ C
(∥
∥∇u

p+m–


∥
∥θ

L(�)

∥
∥u

p+m–


∥
∥–θ

L


p+m– (�)

) (p+)
p+m– + C

∥
∥u

p+m–


∥
∥

(p+)
p+m–

L


p+m– (�)

≤ C
∥
∥∇u

p+m–


∥
∥

θ(p+)
p+m–

L(�) + C for all t ∈ (, Tmax), (.)

where

θ =
p+m–

 – p+m–
(p+)


n – 

 + p+m–


∈ (, )

and

C := max
{

C‖u‖(–θ)(p+)
L(�) , C‖u‖p+

L(�)

}
= max

{
C‖u‖(–θ)(p+)

L(�) , C‖u‖p+
L(�)

}
.

Since m >  – 
n , we have

θ(p + )
p + m – 

=
p


n – 

 + p+m–


<
p


n – 

 + p+– 
n –



= .

Thus, we use Young’s inequality to derive

C

∫

�

up+ dx ≤ CC
∥
∥∇u

p+m–


∥
∥

θ(p+)
p+m–

L(�) + CC

≤ cD(p – )p
(p + m – )

∫

�

∣
∣∇u

p+m–


∣
∣ dx + C, (.)
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where

C := CC + (CC)
p+m–

p+m––θ(p+)

(
cD(p – )p
(p + m – )

)– θ(p+)
p+m––θ(p+)

.

Inserting (.) into (.) yields

d
dt

∫

�

up dx ≤ –
cD(p – )p
(p + m – )

∫

�

∣
∣∇u

p+m–


∣
∣ dx + C for all t ∈ (, Tmax), (.)

where C := C + C. Since p > n
 and m ≥ , it is easy to check that


p + m – 

<
p

p + m – 
<

n
n – 

.

By using the Gagliardo-Nirenberg inequality again, we can find a constant C >  such
that

∫

�

up dx =
∥
∥u

p+m–


∥
∥

p
p+m–

L
p

p+m– (�)

≤ C
∥
∥∇u

p+m–


∥
∥

θp
p+m–
L(�)

∥
∥u

p+m–


∥
∥

p(–θ)
p+m–

L


p+m– (�)
+ C

∥
∥u

p+m–


∥
∥

p
p+m–

L


p+m– (�)

≤ C
∥
∥∇u

p+m–


∥
∥

θp
p+m–
L(�) + C for all t ∈ (, Tmax), (.)

where

θ =
p + m – 


 – 

p

n – 

 + p+m–


∈ (, )

and

C := max
{

C‖u‖(–θ)p
L(�) , C‖u‖p

L(�)

}
.

Since m >  – 
n , we find that θp

p+m– = p–

n – 

 + p+m–


< p–

n – 

 + p+– 
n –



= (p–)
p < . Thus, using

Young’s inequality yields that

‖u‖p
Lp(�) ≤ cD(p – )p

(p + m – )

∫

�

∣
∣∇u

p+m–


∣
∣ dx + C, (.)

where

C :=
[

(p + m – )

cD(p – )p

] θp
p+m––θp

C
p+m–

p+m––θp
 + C.

Substituting (.) into (.) yields that

d
dt

∫

�

up dx +
∫

�

up dx ≤ C for all t ∈ (, Tmax), (.)
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where C := C + C. Thus, using Gronwall’s inequality, we have

∫

�

up dx ≤ max

{∫

�

up
 dx, C

}

for all t ∈ (, Tmax),

which implies the desired uniform Lp estimates. �

We now turn to the existence of global bounded classical solutions.

Proof of Theorem . According to the Lp estimates of w (see (.)), we obtain from Lem-
mas . and . that

sup
<t<Tmax

∥
∥w(·, t)

∥
∥

W ,p(�) ≤ C for all t ∈ (, Tmax)

with some positive constant C. Then, by choosing p > n, from the Sobolev embedding
theorem we can derive that there exists a constant C >  such that

sup
<t<Tmax

∥
∥∇w(·, t)

∥
∥

L∞(�) ≤ C for all t ∈ (, Tmax). (.)

Similarly, there exists a constant C >  such that

sup
<t<Tmax

∥
∥∇v(·, t)

∥
∥

L∞(�) ≤ C for all t ∈ (, Tmax). (.)

With the aid of Lemmas . and . and using Lemma A. in [] (see also []), we can
conclude that there exists a positive constant C >  such that

∥
∥u(·, t)

∥
∥

L∞(�) ≤ C for all t ∈ (, Tmax), (.)

which, together with the extensibility criterion (.), implies that Tmax = +∞. Thus, (u, v, w)
is a global bounded classical solution to system (.). �

4 Global bounded weak solutions in the case of degenerate diffusion
In this section, we consider system (.) with degenerate diffusion (i.e., D(u) ≥  for all
u ≥ ). We first consider the following regularized system with nondegenerate diffusion
for ε ∈ (, ), which satisfies all the formal arguments:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

uεt = ∇ · (Dε(uε)∇uε) – ∇ · (χuε∇vε) + ∇ · (ξuε∇wε), x ∈ �, t > ,
 = �vε + αuε – βvε , x ∈ �, t > ,
 = �wε + γ uε – δwε , x ∈ �, t > ,
∂uε

∂ν
= ∂vε

∂ν
= ∂wε

∂ν
= , x ∈ ∂�, t > ,

uε(x, ) = u(x), x ∈ �,

(.)

where Dε is defined by

Dε(s) := D(s + ε) for all s ≥ .

Thus, Dε satisfies (.), (.), and (.). The following proposition is a direct consequence
of Theorem ..
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Proposition . Let ε ∈ (, ), and let u ∈ W ,∞(�) be a nonnegative function. Suppose
that ξγ – χα >  or ξγ – χα ≤  and m >  – 

n . Then system (.) admits a unique global
bounded classical solution (uε , vε , wε).

Next, we go to find some estimates to (uε , vε , wε), which are independent of ε and used
to obtain some convergence properties. By taking ε →  we will establish the existence of
global bounded weak solutions. The following two lemmas based on the ideas in [] are
used to prove the existence of the limit function of ∇ ∫ uε+ε

 D(z) dz.

Lemma . Let T > , and let the assumptions in Proposition . hold. Let (uε , vε , wε) be a
solution to system (.) on (, T). Then

∥
∥D


 (uε + ε)∇uε

∥
∥

L(,T ;L(�)) ≤ 

‖u‖

L(�) + CT , (.)

where C is a positive constant independent of ε.

Proof Taking uε as a test function on the first equation in (.) and integrating it over
� × (, T), we derive



(∥
∥uε(T)

∥
∥

L(�) – ‖u‖
L(�)

)

= –
∫ T



∫

�

D(uε + ε)|∇uε| dx dt +
∫ T



∫

�

χuε∇vε · ∇uε dx dt

–
∫ T



∫

�

ξuε∇wε · ∇uε dx dt

= –
∫ T



∫

�

D(uε + ε)|∇uε| dx dt +
χ



∫ T



∫

�

∇vε · ∇u
ε dx dt

–
ξ



∫ T



∫

�

∇wε · ∇u
ε dx dt

= –
∫ T



∫

�

D(uε + ε)|∇uε| dx dt –
χ



∫ T



∫

�

u
ε�vε dx dt +

ξ



∫ T



∫

�

u
ε�wε dx dt.

It then follows from the second and third equations in (.) that



(∥
∥uε(T)

∥
∥

L(�) – ‖u‖
L(�)

)

= –
∫ T



∫

�

D(uε + ε)|∇uε| dx dt –
χ



∫ T



∫

�

(βvε – αuε)u
ε dx dt

+
ξ



∫ T



∫

�

(δwε – γ uε)u
ε dx dt.

From Proposition . we obtain that there exist some positive constants c, c, c, c, and
c independent of ε such that

‖uε‖L∞(�) < c, ‖vε‖L∞(�) < c, ‖wε‖L∞(�) < c,

‖∇vε‖L∞(�) < c, and ‖∇wε‖L∞(�) < c.
(.)
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Therefore, we have



(∥
∥uε(T)

∥
∥

L(�) – ‖u‖
L(�)

)

≤ –
∫ T



∫

�

D(uε + ε)|∇uε| dx dt +



c

(
χβc + (ξγ + χα)c + ξδc

)|�|T ,

which yields the desired estimate

∥
∥D


 (uε + ε)∇uε

∥
∥

L(,T ;L(�)) ≤ 

‖u‖

L(�) + CT ,

where C := 
 c

 (χβc + (ξγ + χα)c + ξδc)|�|. �

Lemma . Let T > , and let the assumptions in Proposition . hold. Let (uε , vε , wε) be
a solution to system (.) on (, T). Then

∥
∥
∥
∥

√
t

d
dt

∫ uε+ε


D


 (z) dz

∥
∥
∥
∥



L(,T ;L(�))
+ sup

t∈(,T)
t
∥
∥
∥
∥∇

∫ uε+ε


D(z) dz

∥
∥
∥
∥



L(�)

≤ C + CT + CT, (.)

where C is a positive constant independent of ε.

Proof We multiply the first equation in (.) by d
dt

∫ uε+ε

 D(z) dz and then integrate it over
� to obtain

∫

�

(
d
dt

∫ uε+ε


D


 (z) dz

)

dx

=
∫

�

∇ · (D(uε + ε)∇uε

) d
dt

∫ uε+ε


D(z) dz dx –

∫

�

∇ · (χuε∇vε)
d
dt

∫ uε+ε


D(z) dz dx

+
∫

�

∇ · (ξuε∇wε)
d
dt

∫ uε+ε


D(z) dz dx

= –
∫

�

D(uε + ε)∇uε · d
dt

(
D(uε + ε)∇uε

)
dx

– χ

∫

�

(∇uε · ∇vε + uε�vε)D

 (uε + ε)

(
d
dt

∫ uε+ε


D


 (z) dz

)

dx

+ ξ

∫

�

(∇uε · ∇wε + uε�wε)D

 (uε + ε)

(
d
dt

∫ uε+ε


D


 (z) dz

)

dx,

where we used d
dt

∫ uε+ε

 D(z) dz = D 
 (uε +ε) d

dt
∫ uε+ε

 D 
 (z) dz. By Young’s inequality we ob-

tain

∫

�

(
d
dt

∫ uε+ε


D


 (z) dz

)

dx

≤ –



d
dt

∥
∥
∥
∥∇

∫ uε+ε


D(z) dz

∥
∥
∥
∥



L(�)
+




∫

�

(
d
dt

∫ uε+ε


D


 (z) dz

)

dx

+



∫

�

(
d
dt

∫ uε+ε


D


 (z) dz

)

dx
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+ χ
∫

�

(∇uε · ∇vε + uε�vε)D(uε + ε) dx

+ ξ 
∫

�

(∇uε · ∇wε + uε�wε)D(uε + ε) dx. (.)

Since ‖uε‖L∞(�) < c and D ∈ C([,∞)), we have ‖D(uε + ε)‖L∞(�) < c∞ with some con-
stant c∞ > . Thus, by Young’s inequality and (.) we derive

∫

�

(∇uε · ∇vε + uε�vε)D(uε + ε) dx

≤ 
∫

�

(|∇uε||∇vε| + u
ε |�vε|

)
D(uε + ε) dx

≤ ‖∇vε‖
L∞(�)

∥
∥
∥
∥∇

∫ uε+ε


D


 (z) dz

∥
∥
∥
∥



L(�)
+ c

 c∞
∫

�

|�vε| dx

≤ ‖∇vε‖
L∞(�)

∥
∥
∥
∥∇

∫ uε+ε


D


 (z) dz

∥
∥
∥
∥



L(�)
+ c

 c∞
∫

�

(
αu

ε + βv
ε

)
dx

≤ c


∥
∥
∥
∥∇

∫ uε+ε


D


 (z) dz

∥
∥
∥
∥



L(�)
+ c

 c∞
(
αc

 + βc

)|�|.

Similarly,

∫

�

(∇uε · ∇wε + uε�wε)D(uε + ε) dx

≤ c


∥
∥
∥
∥∇

∫ uε+ε


D


 (z) dz

∥
∥
∥
∥



L(�)
+ c

 c∞
(
γ c

 + δc

)|�|.

Substituting the last two inequalities into (.), we obtain

∫

�

(
d
dt

∫ uε+ε


D


 (z) dz

)

dx +
d
dt

∥
∥
∥
∥∇

∫ uε+ε


D(z) dz

∥
∥
∥
∥



L(�)

≤ 
(
χc

 + ξ c

)
∥
∥
∥
∥∇

∫ uε+ε


D


 (z) dz

∥
∥
∥
∥



L(�)

+ c
 c∞χ(αc

 + βc

)|�| + c

 c∞ξ (γ c
 + δc


)|�|.

Setting Cmax :=  max{(χc
 + ξ c

), [c
 c∞χ(αc

 + βc
)|�| + c

 c∞ξ (γ c
 + δc

)|�|]}
yields

∥
∥
∥
∥

d
dt

∫ uε+ε


D


 (z) dz

∥
∥
∥
∥



L(�)
+

d
dt

∥
∥
∥
∥∇

∫ uε+ε


D(z) dz

∥
∥
∥
∥



L(�)

≤ Cmax

∥
∥
∥
∥∇

∫ uε+ε


D


 (z) dz

∥
∥
∥
∥



L(�)
+ Cmax. (.)
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Multiplying (.) by t and integrating it over (, T), we obtain

∥
∥
∥
∥

√
t

d
dt

∫ uε+ε


D


 (z) dz

∥
∥
∥
∥



L(,T ;L(�))
+ t

∥
∥
∥
∥∇

∫ uε+ε


D(z) dz

∥
∥
∥
∥



L(�)

≤
∥
∥
∥
∥∇

∫ uε+ε


D(z) dz

∥
∥
∥
∥



L(,T ;L(�))
+ CmaxT

∥
∥
∥
∥∇

∫ uε+ε


D


 (z) dz

∥
∥
∥
∥



L(,T ;L(�))

+ CmaxT . (.)

By (.) the integrals on the right-hand side of (.) can be estimated as

∥
∥
∥
∥∇

∫ uε+ε


D(z) dz

∥
∥
∥
∥



L(,T ;L(�))
=

∥
∥
∥
∥D


 (uε + ε)∇

∫ uε+ε


D


 (z) dz

∥
∥
∥
∥



L(,T ;L(�))

≤ c∞
∥
∥
∥
∥∇

∫ uε+ε


D


 (z) dz

∥
∥
∥
∥



L(,T ;L(�))

≤ c∞
(



‖u‖

L(�) + CT
)

(.)

Then substituting (.) into (.) and using (.) again, we have

∥
∥
∥
∥

√
t

d
dt

∫ uε+ε


D


 (z) dz

∥
∥
∥
∥



L(,T ;L(�))
+ t

∥
∥
∥
∥∇

∫ uε+ε


D(z) dz

∥
∥
∥
∥



L(�)

≤ c∞
(



‖u‖

L(�) + CT
)

+ CmaxT
(



‖u‖

L(�) + CT
)

+ CmaxT

≤ C + CT + CT,

where C := max{ 
 c∞‖u‖

L(�), CmaxC, [ 
 Cmax‖u‖

L(�) + Cmax + c∞C]}. By taking the
supremum with respect to t on (, T) we complete the proof of (.). �

We now prove Theorem .. Our method is also partially inspired by [].

Proof of Theorem . For any given T > , we have ‖uε‖L∞(,T ;Lp(�)) < C (p ∈ [,∞]), where
C is a positive constant independent of T and ε. Then there exist a subsequence {uεj}j∈N
and a function u ∈ L∞(, T ; Lp(�)) such that

uεj ⇀ u weakly∗ in L∞(
, T ; Lp(�)

)
(.)

for any p ∈ [,∞], where εj →  as j → ∞. By using D ∈ C([,∞)) and ‖uε(t)‖L∞(�) <
c again, from Lemma . we deduce that

∫ uε+ε

 D 
 (z) dz is bounded in L(, T ; H(�)).

Hence, there exist a subsequence (still denoted by {uεj}j∈N) and a function ϑ ∈ L(, T ;
H(�)) such that

∫ uεj +εj


D


 (z) dz ⇀ ϑ weakly in L(, T ; L(�)

)
,

∇
∫ uεj +εj


D


 (z) dz ⇀ ∇ϑ weakly in L(, T ; L(�)

)
.

(.)
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On the other hand, by letting τ > , from Lemma . we have

τ

∥
∥
∥
∥

d
dt

∫ uε+ε


D


 (z) dz

∥
∥
∥
∥



L(τ ,T ;L(�))
≤

∥
∥
∥
∥

√
t

d
dt

∫ uε+ε


D


 (z) dz

∥
∥
∥
∥



L(τ ,T ;L(�))

≤ C + CT + CT,

which implies that
∫ uε+ε

 D 
 (z) dz is bounded in H(τ , T ; L(�)) (in particular, it is bounded

in H(τ , T ; H–(�)). Thus, by the Aubin-Lions lemma there exists a subsequence (still de-
noted by {uεj}j∈N) such that

∫ uεj +εj


D


 (z) dz → ϑ strongly in L(τ , T ; L(�)

)
and a.e. on � × (τ , T).

Set f (r) :=
∫ r

 D 
 (z) dz. We see that f (r) is a strictly increasing and continuous function.

Thus, the inverse function f –(r) of f exists and is continuous. Moreover, we can obtain
that

uεj → u = f –(ϑ) strongly in L(τ , T ; L(�)
)

and a.e. on � × (τ , T). (.)

Since τ >  is arbitrary, we deduce from (.) and (.) that

ϑ =
∫ u


D


 (z) dz ∈ L(, T ; H(�)

)
. (.)

Since ‖vε(t)‖W ,∞(�) < c + c, there exist a subsequence {vεj}j∈N (hereafter, we still denote
the subscript of the subsequence by {vεj}j∈N for simplicity) and functions v such that

vεj ⇀ v weakly∗ in L∞(
, T ; L∞(�)

)
,

∇vεj ⇀ ∇v weakly∗ in L∞(
, T ; L∞(�)

)
.

(.)

Similarly, there exist subsequence {wεj}n∈N and functions w such that

wεj ⇀ w weakly∗ in L∞(
, T ; L∞(�)

)
,

∇wεj ⇀ ∇w weakly∗ in L∞(
, T ; L∞(�)

) (.)

due to ‖wε(t)‖W ,∞(�) < c + c.
For any given T ∈ (,∞), we take ϕ ∈ C∞

 (�× [, T)). Then multiplying the first, second,
and third equations in (.) by ϕ and integrating those on � × (, T) we see that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ T


∫

�
(D(uεj + εj)∇uεj · ∇ϕ – χuεj∇vεj · ∇ϕ + ξuεj∇wεj · ∇ϕ – uεjϕt) dx dt

=
∫

�
u(x)ϕ(x, ) dx,

∫ T


∫

�
(∇vεj · ∇ϕ + βvεjϕ) dx dt =

∫ T


∫

�
αuεjϕ dx dt,

∫ T


∫

�
(∇wεj · ∇ϕ + δwεjϕ) dx dt =

∫ T


∫

�
γ uεjϕ dx dt.

(.)
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Noting that D 
 (uε + ε)|∇ϕ| ≤ c


∞‖∇ϕ‖L∞ and thus D 

 (uε + ε)|∇ϕ| ∈ L(, T ; L(�)), we
see from (.) that

D

 (uεj + εj)∇ϕ → D


 (u)∇ϕ strongly in L(, T ; L(�)

)
,

which, together with (.) and (.), yields that

∫ T



∫

�

(
D(uεj + εj)∇uεj · ∇ϕ

)
dx dt

=
∫ T



∫

�

(

D

 (uεj + εj)∇ϕ · ∇

∫ uεj +εj


D


 (z) dz

)

dx dt

→
∫ T



∫

�

(

D

 (u)∇ϕ · ∇

∫ u


D


 (z) dz

)

dx dt

=
∫ T



∫

�

(
D(u)∇u · ∇ϕ

)
dx dt (.)

as j → ∞. Similarly, since

uεj∇ϕ → u∇ϕ strongly in L(, T ; L(�)
)

by (.), from (.) and (.) we see that

∫ T



∫

�

(–χuεj∇vεj · ∇ϕ + ξuεj∇wεj · ∇ϕ) dx dt

→
∫ T



∫

�

(–χu∇v · ∇ϕ + ξu∇w · ∇ϕ) dx dt (.)

as j → ∞. Summarily, by collecting (.), (.), (.), (.), and (.), from (.) we
obtain that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ T


∫

�
(D(u)∇u · ∇ϕ – χu∇v · ∇ϕ + ξu∇w · ∇ϕ – uϕt) dx dt

=
∫

�
u(x)ϕ(x, ) dx,

∫ T


∫

�
(∇v · ∇ϕ + βvϕ) dx dt =

∫ T


∫

�
αuϕ dx dt,

∫ T


∫

�
(∇w · ∇ϕ + δwϕ) dx dt =

∫ T


∫

�
γ uϕ dx dt

(.)

upon letting j → ∞. Hence, (u, v, w) is a global weak solution to system (.). Moreover,
we deduce from (.), (.), (.), and Theorem . that

‖u‖L∞(,T ;L∞(�)) ≤ lim inf
j→∞ ‖uεj‖L∞(,T ;L∞(�)) ≤ c,

‖v‖L∞(,T ;L∞(�)) ≤ lim inf
j→∞ ‖vεj‖L∞(,T ;L∞(�)) ≤ c,

‖w‖L∞(,T ;L∞(�)) ≤ lim inf
j→∞ ‖wεj‖L∞(,T ;L∞(�)) ≤ c,

which implies the uniform boundedness of (u, v, w). Thus, we complete the proof of The-
orem .. �
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