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Abstract
In this paper, Schwarz problem for the inhomogeneous Cauchy-Riemann equation in
a rectangle is investigated explicitly. By the parqueting reflection principle and the
Cauchy-Pompeiu formula, a modified Schwarz-Poisson representation formula in a
rectangle is constructed. In particular, the boundary behaviors for the related
Schwarz-type and Pompeiu-type operators at the corner points are discussed in
detail.
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1 Introduction
There are many investigations of boundary value problems for its theoretical significance
and extensive applications in mathematical physics, such as elasticity theory, potential
theory, medical imaging. Numerous results have been achieved for boundary value prob-
lems in different particular domains; see [–]. The basic boundary value problems are
the Schwarz, Dirichlet, Robin and Neumann problems. In general, the well-known con-
formal invariance of the reflection across circles and lines can be used to find a Schwarz
operator for simple domains like circles, half circles, rings, half planes, etc. But the ex-
plicit Schwarz-Poisson formula in a rectangle cannot be simply obtained from the classi-
cal Schwarz-Poisson formula on the unit disc or the half-plane by conformal mapping. In
[, ], the authors introduced a method of plane parqueting, which can be used to de-
termine a Schwarz operator, the harmonic Green and Neumann functions, and requires
that reflecting the domain at all of these circular or straight curves produces a parqueting
of whole complex plane with possible exception of singular points. In [, , ], the au-
thors discussed Schwarz and Dirichlet problems in an isosceles orthogonal triangle and
an equilateral triangle via different series. Also the Green and Neumann functions for a
strip and a rectangle were established in detail in []. In the present paper, we construct
a modified Schwarz-Poisson representation formula by the parqueting reflection princi-
ple and Cauchy-Pompeiu formula in a rectangle, discussing the related Schwarz problem
explicitly.

Let � be a domain in the complex plane C defined by

� = {z = x + iy :  < x < a,  < y < b}, ()
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where , a, μ = a + ib, ν = ib are four corner points of the domain �. The boundary ∂� =
[, a] ∪ [a,μ] ∪ [μ,ν] ∪ [ν, ] is oriented counter-clockwise. That is, the oriented line [, a]
is parameterized by t �→ t, t ∈ [, a], the segment [a,μ] is parameterized by t �→ a + it,
t ∈ [, b], the oriented segment [μ,ν] is parameterized by t �→ t + ib, t ∈ [a, ], and the
oriented segment [ν, ] is parameterized by t �→ it, t ∈ [b, ].

Lemma . ([–]) If w ∈ C(�;C) ∩ C(�;C), then


π i

∫
∂�

w(ζ )
dζ

ζ – z
–


π

∫
�

wζ (ζ )
dξ dη

ζ – z
=

{
w(z), z ∈ �,
, z /∈ �

and

–


π i

∫
∂�

w(ζ )
dζ

ζ – z
–


π

∫
�

wζ (ζ )
dξ dη

ζ – z
=

{
w(z), z ∈ �,
, z /∈ �,

where � is the rectangle defined by () and ζ = ξ + iη, ξ ,η ∈R.

Reflecting the point z ∈ � at [a,μ], the symmetric point is z = a–z and the domain � is
bijectively mapped onto a rectangle � = {z = x + iy : a ≤ x ≤ a,  ≤ y ≤ b}. Furthermore,
the symmetric point of z at [μ,ν] is z = –z + a + bi and the domain � is bijectively
mapped onto a rectangle � = {z = x + iy : a ≤ x ≤ a, b ≤ y ≤ b}. Continuing the reflec-
tion at [a,μ], the symmetric point of z is z = z + bi and the domain � is bijectively
mapped onto a rectangle � = {z = x + iy :  ≤ x ≤ a, b ≤ y ≤ b}. Finally, reflecting z at
[μ,ν], the symmetric point of z is just point z. Therefore, let �, = �∪� ∪� ∪�, we
know that �, can be a basic rectangle and the reflection along the horizontal and verti-
cal direction is equivalent to extending the basic rectangle �, by double periods bi, a,
respectively (see Figure ).

Denoting ωmn = (ma + nbi), m, n ∈ Z, and

�m,n = {z + ωmn : z ∈ �,, m, n ∈ Z}, ()

Figure 1 �0,0 = � ∪ �1 ∪ �2 ∪ �3.
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thenC =
⋃+∞

m,n=–∞ �m,n. By the technique of plane parqueting, the complex plane is divided
into infinitely rectangles, which are congruent to the domain �.

2 Schwarz-Poisson formula
Suppose RM,N = {(k, j) : |k| ≤ M, |j| ≤ N , k, j ∈ Z} for M, N ∈ N be a finite set of dou-
ble series. If the limit lim(M,N)→(∞,∞)

∑
(m,n)∈RM,N

fm,n(ζ , z) exists, then the double series∑
(m,n)∈Z×Z

fm,n(ζ , z), simply
∑

m,n fm,n(ζ , z) is convergent along the rectangle, that is,

∑
m,n

fm,n(ζ , z) = lim
(M,N)→(∞,∞)

∑
(m,n)∈RM,N

fm,n(ζ , z). ()

Similarly in [, ], the following result is true.

Lemma . Suppose that S, E, W ⊂ C be three bounded sets. If S ∩ Em,n = ∅, S ∩ Wm,n = ∅
for all (m, n) ∈ Z×Z, then the double series

∑
m,n

[


ζ – z – ωmn
–


ζ – w – ωmn

]

is uniformly convergent for (ζ , z, w) ∈ S × E × W with Em,n = {z + ωmn : z ∈ E} and Wm,n =
{z + ωmn : z ∈ W }.

Let

qm,n(ζ , z) =


ζ – z – ωmn
+


ζ + z – ωmn

=


ζ – z – ma – nbi
+


ζ + z – ma – nbi

, ()

then we have the following result.

Theorem . Any w ∈ C(�;C) ∩ C(�;C) can be represented as

w(z) = w(α) +


π i

∫
∂�

w(ζ )�α(ζ , z) dζ –

π

∫
�

wζ (ζ )�α(ζ , z) dξ dη, z ∈ �, ()

and, for z ∈ �,

w(z) = w(α) +

π i

∫
∂�

Re w(ζ )�α(ζ , z) dζ

–

π

∫
�

[
wζ (ζ )�α(ζ , z) – wζ (ζ )�α(ζ , z)

]
dξ dη, ()

where α is a fixed point in � and

�α(ζ , z) =
∑
m,n

[
qm,n(ζ , z) – qm,n(ζ ,α)

]
.
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Proof For z ∈ �, we know ±z + ωmn, –z + ωmn /∈ � for (m, n) ∈ Z×Z, and z + ωmn /∈ � for
(m, n) �= (, ). Then by Lemma ., one has, for z ∈ �,


π i

∫
∂�

w(ζ )
ζ – z

dζ –

π

∫
�

wζ (ζ )
dξ dη

ζ – z
= w(z), ()


π i

∫
∂�

w(ζ )
ζ – z – ωmn

dζ –

π

∫
�

wζ (ζ )
dξ dη

ζ – z – ωmn
= , (m, n) �= (, ), ()


π i

∫
∂�

w(ζ )
ζ + z – ωmn

dζ –

π

∫
�

wζ (ζ )
dξ dη

ζ + z – ωmn
= , ()


π i

∫
∂�

w(ζ )
ζ – z – ωmn

dζ –

π

∫
�

wζ (ζ )
dξ dη

ζ – z – ωmn
= , ()


π i

∫
∂�

w(ζ )
ζ + z – ωmn

dζ –

π

∫
�

wζ (ζ )
dξ dη

ζ + z – ωmn
= . ()

Adding (), () and (), and taking the sum for all the indices (m, n) ∈ RM,N , we obtain

w(z) =


π i

∫
∂�

w(ζ )QM,N (ζ , z) dζ –

π

∫
�

wζ (ζ )QM,N (ζ , z) dξ dη, ()

which implies that

w(α) =


π i

∫
∂�

w(ζ )QM,N (ζ ,α) dζ –

π

∫
�

wζ (ζ )QM,N (ζ ,α) dξ dη, ()

where

QM,N (ζ , z) =
∑

(m,n)∈RM,N

qm,n(ζ , z). ()

Subtracting () from (), then

w(z) = w(α) +


π i

∫
∂�

w(ζ )
[
QM,N (ζ , z) – QM,N (ζ ,α)

]
dζ

–

π

∫
�

wζ (ζ )
[
QM,N (ζ , z) – QM,N (ζ ,α)

]
dξ dη. ()

Putting (M, N) → (∞,∞) and from Lemma ., we get ().
Let

gm,n(ζ , z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qm,–n(ζ , z), ζ ∈ [, a],
q–m+,n(ζ , z), ζ ∈ [a,μ],
qm,–n+(ζ , z), ζ ∈ [μ,ν],
q–m,n(ζ , z), ζ ∈ [ν, ],

()

then from the relationship

ζ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ζ , ζ ∈ [, a],
a – ζ , ζ ∈ [a,μ],
ζ + bi, ζ ∈ [μ,ν],
–ζ , ζ ∈ [ν, ],

()
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we obtain

qm,n(ζ , z) dζ = gm,n(ζ , z) dζ , ζ ∈ ∂�. ()

Furthermore, by () and taking the sum of conjugations of () and () for all the indices
(m, n) ∈ RM,N , we have


π i

∫
∂�

w(ζ )HM,N (ζ , z) dζ +

π

∫
�

wζ (ζ )HM,N (ζ , z) dξ dη = , ()

where

HM,N (ζ , z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
(m,n)∈RM,N

qm,–n(ζ , z), ζ ∈ [, a],∑
(m,n)∈RM,N

q–m+,n(ζ , z), ζ ∈ [a,μ],∑
(m,n)∈RM,N

qm,–n+(ζ , z), ζ ∈ [μ,ν],∑
(m,n)∈RM,N

q–m,n(ζ , z), ζ ∈ [ν, ],∑
(m,n)∈RM,N

qm,–n(ζ , z), ζ ∈ �.

()

Obviously,


π i

∫
∂�

w(ζ )HM,N (ζ ,α) dζ +

π

∫
�

wζ (ζ )HM,N (ζ ,α) dξ dη = . ()

Subtracting () from the sum of () and (), we know

w(z) = w(α) +


π i

∫
∂�

[
w(ζ )A(ζ , z) + w(ζ )B(ζ , z)

]
dζ

–

π

∫
�

[
wζ (ζ )A(ζ , z) – wζ (ζ )B(ζ , z)

]
dξ dη ()

with

A(ζ , z) = QM,N (ζ , z) – QM,N (ζ ,α)

and

B(ζ , z) = HM,N (ζ , z) – HM,N (ζ ,α).

From Lemma ., () and (), we obtain, for z ∈ �,

lim
(M,N)→(∞,∞)

A(ζ , z) = lim
(M,N)→(∞,∞)

B(ζ , z) =
∑
m,n

[
qm,n(ζ , z) – qm,n(ζ ,α)

]

and

lim
(M,N)→(∞,∞)

B(ζ , z) =
∑
m,n

[
qm,n(ζ , z) – qm,n(ζ ,α)

]
.

Letting (M, N) → (∞,∞) for (), () is obviously true. �
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3 Schwarz problem
The classical Schwarz kernel for the upper half-plane C

+ is

z – z
|x – z| , (x, z) ∈ (–∞, +∞) ×C

+

and satisfies (see [])

lim
z∈C+,z→t


π i

∫ d

c
ρ(x)

[


x – z
–


x – z

]
dx

= ρ(t), t ∈ (c, d) ⊂ (–∞, +∞), ()

with ρ ∈ C([c, d],C), c < d.

Lemma . For ρ ∈ C(∂�,C), z ∈ �, we obtain

lim
z→t


π i

∫
[a,μ]

ρ(ξ )
[


ξ – z

–


ξ + z – a

]
dξ = ρ(t), t ∈ (a,μ),

lim
z→t


π i

∫
[μ,ν]

ρ(ξ )
[


ξ – z

–


ξ – z – bi

]
dξ = ρ(t), t ∈ (μ,ν),

lim
z→t


π i

∫
[ν,]

ρ(ξ )
[


ξ – z

–


ξ + z

]
dξ = ρ(t), t ∈ (ν, ).

Proof When ξ ∈ [a,μ] and letting ξ = a + iy, then y ∈ [, b] and

lim
z→t,t∈(a,μ)


π i

∫
[a,μ]

ρ(ξ )
[


ξ – z

–


ξ + z – a

]
dξ

= lim
z→t,t∈(a,μ)


π i

∫ b


ρ(a + iy)

[


y – (a – z)i
–


y – (z – a)i

]
dy.

For z ∈ � and z → t ∈ (a,μ), we obtain (a – z)i ∈ C+ and → (a – t)i ∈ (, b). Thus, from
the classical Schwarz kernel theory (), the first limit in Lemma . equals ρ(t).

For ξ ∈ [μ,ν], we take ξ = y + ib, then y ∈ [a, ] and the second equation is

lim
z→t,t∈(μ,ν)


π i

∫ a


ρ(y + ib)

[


y – (z + ib)
–


y – (z – ib)

]
dy.

When z ∈ � and z → t ∈ (μ,ν), we obtain z + ib ∈ C
+ and → t + ib ∈ (, a). Hence, from

(), the second equation is true. In the same way, when ξ ∈ [ν, ], suppose ξ = iy, then
y ∈ [b, ] and the third limit equals

lim
z→t∈(ν,)


π i

∫ b


ρ(iy)

[


y – iz
–


y + iz

]
dy = ρ(t).

The proof is completed. �
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Define the following Pompeiu-type operator:

Aα[f ](z) = –

π

∫
�

{
f (ζ )

∑
m,n

[
qm,n(ζ , z) –

qm,n(ζ ,α) + qm,n(ζ ,α)


]

– f (ζ )
∑
m,n

[
qm,n(ζ , z) –

qm,n(ζ ,α) + qm,n(ζ ,α)


]}
dξ dη, ()

for f ∈ Lp(�,C), p >  with qm,n given by () and α ∈ �.

Lemma . If f ∈ Lp(�,C), p > , then Aα[f ](z) ∈ C(�,C) and ∂Aα [f ](z)
∂z = f (z) for z ∈ �.

Proof From the classical Pompeiu-type operator in [],

T[f ](z) = –

π

∫
�

f (ζ )
ζ – z

dξ dη ∈ C(�,C)

and ∂T[f ](z)
∂z = f (z) for z ∈ �. When z ∈ �, then z + ωmn /∈ � for (m, n) �= (, ) and ±z +

ωmn, –z + ωmn /∈ �. Thus by () and (), we have Aα[f ](z) ∈ C(�,C) and the integral in
() is analytic for z ∈ � except for one term T[f ](z), therefore,

∂Aα[f ](z)
∂z

=
∂(– 

π

∫
�

f (ζ )
ζ–z dξ dη)
∂z

= f (z). �

Lemma . For f ∈ Lp(�,C), p > ,

lim
z∈�,z→t

Re Aα[f ](z) = , t ∈ ∂�.

Proof By (), we obtain

Re Aα[f ](z) = –


π

∫
�

{
f (ζ )

[
P(ζ , z) + (ζ ,α)

]
– f (ζ )

[
P(ζ , z) + (ζ ,α)

]}
dξ dη

with

P(ζ , z) =
∑
m,n

[
qm,n(ζ , z) – qm,–n(ζ , z)

]

and

(ζ , z) =



∑
m,n

[
qm,–n(ζ , z) – qm,n(ζ , z) + qm,–n(ζ , z) – qm,n(ζ , z)

]
.

Obviously, we know (ζ ,α) = (ζ ,α) =  for ζ ∈ �. Therefore,

Re Aα[f ](z) = –


π

∫
�

{
f (ζ )

∑
m,n

[
qm,n(ζ , z) – qm,–n(ζ , z)

]

– f (ζ )
∑
m,n

[
qm,n(ζ , z) – qm,–n(ζ , z)

]}
dξ dη.
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Furthermore, when z ∈ ∂�, it satisfies equation () by replacing ζ with z. For ζ ∈ �,
z ∈ [μ,ν], we have z = z – bi, then

∑
m,n

[
qm,n(ζ , z) – qm,–n(ζ , z)

]
=

∑
m,n

[
qm,n(ζ , z) – qm,–n(ζ , z – bi)

]
= .

Similarly,

∑
m,n

[
qm,n(ζ , z) – qm,–n(ζ , z)

]
= , z ∈ [μ,ν], ζ ∈ �.

Also, for ζ ∈ � and z ∈ ∂� \ [μ,ν],

∑
m,n

[
qm,n(ζ , z) – qm,–n(ζ , z)

]
=

∑
m,n

[
qm,n(ζ , z) – qm,–n(ζ , z)

]
= ,

thus the proof is completed. �

Consider the Schwarz-type operator

Sα[γ ](z) =

π i

∫
∂�

γ (ζ )
∑
m,n

[
qm,n(ζ , z) –

qm,n(ζ ,α) + qm,n(ζ ,α)


]
dζ , ()

where qm,n is given by () and γ ∈ C(∂�,R). Then we have

Re Sα[γ ](z) =


π i

∫
∂�

γ (ζ )
{∑

m,n

[
qm,n(ζ , z) –

qm,n(ζ ,α) + qm,n(ζ ,α)


]
dζ

–
∑
m,n

[
qm,n(ζ , z) –

qm,n(ζ ,α) + qm,n(ζ ,α)


]
dζ

}
.

By (),

Re Sα[γ ](z) =


π i

∫
∂�

γ (ζ )
{∑

m,n

[
qm,n(ζ , z) – gm,n(ζ , z)

]

–



∑
m,n

[
qm,n(ζ ,α) – gm,n(ζ ,α) + qm,n(ζ ,α) – gm,n(ζ ,α)

]}
dζ ,

where gm,n is given by (). From () and Lemma ., for ζ ∈ ∂�,

∑
m,n

[
qm,n(ζ ,α) – gm,n(ζ ,α) + qm,n(ζ ,α) – gm,n(ζ ,α)

]
= 

and

∑
m,n

[
qm,n(ζ , z) – gm,n(ζ , z)

]
=

∑
m,n

[
qm,n(ζ , z) – qm,n(ζ , z)

]
,

therefore,

Re Sα[γ ](z) =


π i

∫
∂�

γ (ζ )
∑
m,n

[
qm,n(ζ , z) – qm,n(ζ , z)

]
dζ . ()
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Lemma . For γ ∈ C(∂�,R), Sα[γ ](z) is analytic in �, i.e.,

∂Sα[γ ](z)
∂z

= .

Proof From (), the sum in integrand can be rewritten as




∑
m,n

{[
qm,n(ζ , z) – qm,n(ζ ,α)

]
+

[
qm,n(ζ , z) – qm,n(ζ ,α)

]}
,

which is convergent for ζ ∈ ∂�, z ∈ � by Lemma .. Obviously, from the expression of
qm,n in (), the integrand in Sα[γ ](z) is analytic for z ∈ �, hence the proof is completed.

�

Lemma . For z ∈ �, γ ∈ C(∂�,R),

lim
z→t


π i

∫
L

[
γ (ζ ) – γ (t)

]∑
m,n

[
qm,n(ζ , z) – qm,n(ζ , z)

]
dζ = γ (t) – γ (t), ()

where t ∈ L ∪ {t}, L is L except for two endpoints and

L =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[μ,ν], for t = μ or ν,
[ν, ], for t =  or ν,
[, a], for t =  or a,
[a,μ], for t = a or μ.

Furthermore, for t ∈ ∂� \ L,

lim
z→t


π i

∫
L

[
γ (ζ ) – γ (t)

]∑
m,n

[
qm,n(ζ , z) – qm,n(ζ , z)

]
dζ = . ()

Proof When L = [μ,ν], t = ν and t ∈ L ∪ {t} = (μ,ν],

lim
z→t


π i

∫
[μ,ν]

[
γ (ζ ) – γ (ν)

]∑
m,n

[
qm,n(ζ , z) – qm,n(ζ , z)

]
dζ

= lim
z→t


π i

∫
[μ,ν]

[
γ (ζ ) – γ (ν)

][ 
ζ – z

–


ζ – z – bi
+


ζ + z – bi

–


ζ + z

]
dζ

= lim
z→t


π i

∫
[μ,ν]∪[ν,–a+ib]

�(ζ )
[


ζ – z

–


ζ – z – bi

]
dζ ,

where

�(ζ ) =

{
γ (ζ ) – γ (ν), ζ ∈ [μ,ν],
γ (ν) – γ (bi – ζ ), ζ ∈ [ν, –a + ib].

By � ∈ C([μ,ν] ∪ [ν, –a + ib],R) and from the second equation in Lemma ., the above
limit is �(t) = γ (t) – γ (ν). That is,

lim
z→t


π i

∫
[μ,ν]

[
γ (ζ ) – γ (ν)

]∑
m,n

[
qm,n(ζ , z) – qm,n(ζ , z)

]
dζ = γ (t) – γ (ν), t ∈ (μ,ν].
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Similarly,

lim
z→t


π i

∫
[μ,ν]

[
γ (ζ ) – γ (μ)

]∑
m,n

[
qm,n(ζ , z) – qm,n(ζ , z)

]
dζ = γ (t) – γ (μ), t ∈ [μ,ν).

In the same way, when L and t are in all other cases of (), the result () is also true.
Furthermore, by (), we obtain for z ∈ [, a] ∪ [a,μ) ∪ (ν, ] and ζ ∈ [μ,ν],

∑
m,n[qm,n(ζ ,

z) – qm,n(ζ , z)] = , therefore, for t ∈ [, a] ∪ [a,μ) ∪ (ν, ],

lim
z→t


π i

∫
[μ,ν]

[
γ (ζ ) – γ (t)

]∑
m,n

[
qm,n(ζ , z) – qm,n(ζ , z)

]
dζ = . ()

Combining the result (), we obtain () is also true for corner points t = μ,ν , hence ()
holds for L = [μ,ν] and t ∈ ∂� \ (μ,ν). Similarly, () is also true for L, t in the other cases.
The proof is completed. �

Lemma . For γ ∈ C(∂�,R) and t ∈ ∂�,

lim
z∈�,z→t

Re Sα[γ ](z) = γ (t).

Proof From (), we only need to prove

lim
z∈�,z→t


π i

∫
∂�

γ (ζ )
∑
m,n

[
qm,n(ζ , z) – qm,n(ζ , z)

]
dζ = γ (t), t ∈ ∂�. ()

First of all, taking w(z) ≡  and by (), (), we know


π i

∫
∂�

QM,N (ζ , z) dζ = , z ∈ �

and


π i

∫
∂�

QM,N (ζ ,α) dζ = .

In particular, for α ∈ �, ±α + ωmn do not belong to �, so we have


π i

∫
∂�

QM,N (ζ ,α) dζ = .

Combining the above three equations and taking (M, N) → (∞,∞), thus

Sα[](z) =

π i

∫
∂�

∑
m,n

[
qm,n(ζ , z) –

qm,n(ζ ,α) + qm,n(ζ ,α)


]
dζ = .

Then from (),

Re Sα[](z) =


π i

∫
∂�

∑
m,n

[
qm,n(ζ , z) – qm,n(ζ , z)

]
dζ = , z ∈ �, ()
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hence,

lim
z∈�,z→t

Re Sα[γ ](z)

= lim
z∈�,z→t


π i

∫
∂�

[
γ (ζ ) – γ (t)

]∑
m,n

[
qm,n(ζ , z) – qm,n(ζ , z)

]
dζ + γ (t). ()

When t ∈ (μ,ν), we rewrite Re Sα[γ ](z) as


π i

∫
∂�

[
γ (ζ ) – γ (μ)

]∑
m,n

[
qm,n(ζ , z) – qm,n(ζ , z)

]
dζ + γ (μ),

thus from the results for L = [μ,ν], t = μ in () and for L = [, a], [a,μ], and [ν, ] in (),
we get limz∈�,z→t Re Sα[γ ](z) = γ (t), t ∈ (μ,ν). Furthermore, by () and Lemma ., ()
obviously holds for t = μ,ν . Similarly, when t ∈ ∂�\ [μ,ν], the result is also true. Then the
proof is completed. �

Theorem . The Schwarz problem

{
∂zw = f in �, Re w = γ on ∂�,
Im w(α) = c, c ∈R,

()

for f ∈ Lp(�;C), p > , γ ∈ C(∂�;R), and α is a fixed point in �, is uniquely solvable by

w(z) = Sα[γ ](z) + Aα[f ](z) + ic, ()

where Aα , Sα are defined by () and (), respectively.

Proof By Lemmas .-. and Lemma ., ϕ(z) = Sα[γ ](z) + Aα[f ](z) satisfies the first two
conditions in (). Suppose φ(z) = w(z) – ϕ(z), then φ(z) satisfies

{
∂zφ =  in �,
Reφ =  on ∂�.

Then from Theorem ., we know φ(z) = i Im w(α) = ic, thus, the proof is completed. �
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