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Abstract
This paper studies a Caputo type anti-periodic boundary value problem of impulsive
fractional q-difference equations involving a q-shifting operator of the form
a�q(m) = qm + (1 – q)a. Concerning the existence of solutions for the given problem,
two theorems are proved via Schauder’s fixed point theorem and the Leray-Schauder
nonlinear alternative, while the uniqueness of solutions is established by means of
Banach’s contraction mapping principle. Finally, we discuss some examples
illustrating the main results.
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1 Introduction
The quantum calculus (calculus without limits or q-calculus) is concerned with differ-
ence operators and allows one to deal with sets of nondifferentiable functions. Quantum
difference operators appear in several branches of mathematics, such as orthogonal poly-
nomials, basic hyper-geometric functions, combinatorics, the calculus of variations, me-
chanics, and the theory of relativity. For the fundamental concepts of quantum calculus,
we refer the reader to the text by Kac and Cheung [].

In recent years, the topic of q-calculus has attracted the attention of several researchers
and a variety of new results can be found in [–] and the references cited therein.

In [] and [], the authors studied the problems involving nonlinear impulsive qk-dif-
ference equations. In [], some new concepts of fractional quantum calculus were intro-
duced in terms of a q-shifting operator a�q(m) = qm + ( – q)a, and existence results for
initial value problems of impulsive fractional q-difference equations were obtained.

In this paper we study the following anti-periodic boundary value problem of an impul-
sive fractional q-difference equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c
tk

Dαk
qk x(t) = f (t, x(t)), t ∈ Jk ⊆ [, T], t �= tk ,

�x(tk) := x(t+
k ) – x(tk) = ϕk(tk– Iβk–

qk– x(tk)), k = , , . . . , m,
tk Dqk x(t+

k ) – tk– Dqk– x(tk) = ϕ∗
k (tk– Iγk–

qk– x(tk)), k = , , . . . , m,
x() = –x(T), Dq x() = –tm Dqm x(T),

(.)
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where  = t < t < · · · < tm < tm+ = T , c
tk

Dαk
qk denotes the Caputo qk-fractional derivative

of order αk on Jk ,  < αk ≤ ,  < qk < , Jk = (tk , tk+], J = [, t], k = , , . . . , m, J = [, T],
f ∈ C(J ×R,R), ϕk ,ϕ∗

k ∈ C(R,R), k = , , . . . , m, tk Iβk
qk , tk Iγk

qk denotes the Riemann-Liouville
qk-fractional integral of orders βk ,γk >  on Jk , k = , , , . . . , m – .

The rest of the paper is organized as follows. In Section , we present some background
material for the problem at hand and prove an auxiliary lemma for the linear variant
of problem (.). Section  contains the main results which are established by means of
Schauder’s fixed point theorem, the Leray-Schauder nonlinear alternative, and Banach’s
fixed point theorem. Section  deals with some illustrative examples for the existence re-
sults obtained in Section .

2 Preliminaries
First of all, we recall some basic concepts of q-calculus [].

The q-derivative of a function f on the interval [a, b] is defined by

(aDqf )(t) =
f (t) – f (a�q(t))

( – q)(t – a)
, t �= a and (aDqf )(a) = lim

t→a
(aDqf )(t), (.)

and q-derivative of higher order is given by

(
aDk

qf
)
(t) = aDk–

q (aDqf )(t),
(

aD
qf

)
(t) = f (t), k ∈N.

The q-derivatives of a product and ratio of functions f and g on [a, b] are

aDq(fg)(t) = f (t)aDqg(t) + g
(

a�q(t)
)

aDqf (t)

= g(t)aDqf (t) + f
(

a�q(t)
)

aDqg(t) (.)

and

aDq

(
f
g

)

(t) =
g(t)aDqf (t) – f (t)aDqg(t)

g(t)g(a�q(t))
, (.)

where g(t)g(a�q(t)) �= .
The q-integral of a function f defined on the interval [a, b] is given by

(aIqf )(t) =
∫ t

a
f (s) ads = ( – q)(t – a)

∞∑

i=

qif
(

a�qi (t)
)
, t ∈ [a, b], (.)

with

(
aIk

q f
)
(t) = aIk–

q (aIqf )(t),
(

aI
q f

)
(t) = f (t), k ∈N. (.)

The fundamental theorem of calculus applies to the operators aDq and aIq as follows:

(aDqaIqf )(t) = f (t). (.)

If f is continuous at t = a, then

(aIqaDqf )(t) = f (t) – f (a). (.)
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The formula for q-integration by parts on the interval [a, b] is

∫ b

a
f (s)aDqg(s) adqs = (fg)(t)|ba –

∫ b

a
g
(

a�q(s)
)

aDqf (s) adqs. (.)

Now we enlist some useful properties of the q-shifting operator a�q(m) = qm + ( – q)a
as follows:

(i) a�
k
q(m) = a�

k–
q (a�q(m)) with a�


q(m) = m, for any positive integer k.

(ii) a(n – m)()
q = , a(n – m)(k)

q =
∏k–

i= (n – a�
i
q(m)), k ∈N∪ {∞}.

(iii) a(n – m)(γ )
q = n(γ ) ∏∞

i=
– a

n
�i

q(m/n)

– a
n

�
γ +i
q (m/n)

, γ ∈R.

Next we turn to the definitions of the Riemann-Liouville fractional q-derivative and the
q-integral on the interval [a, b].

Definition . [] The fractional q-derivative of Riemann-Liouville type of order ν ≥ 
on the interval [a, b] is defined by (aD

qf )(t) = f (t) and

(
aDν

qf
)
(t) =

(
aDl

qaIl–ν
q f

)
(t), ν > , (.)

where l is the smallest integer greater than or equal to ν .

Definition . [] Let α ≥  and f be a function defined on [a, b]. The fractional q-inte-
gral of Riemann-Liouville type is given by (aI

q f )(t) = f (t) and

(
aIα

q f
)
(t) =


	q(α)

∫ t

a
a
(
t – a�q(s)

)(α–)
q f (s) adqs, α > , t ∈ [a, b]. (.)

From [], we have the following formulas:

aDα
q (t – a)β =

	q(β + )
	q(β – α + )

(t – a)β–α , (.)

aIα
q (t – a)β =

	q(β + )
	q(β + α + )

(t – a)β+α . (.)

Lemma . [] Let α,β ∈ R
+ and f be a continuous function on [a, b], a ≥ . The

Riemann-Liouville fractional q-integral has the following semi-group property:

aIβ
q aIα

q f (t) = aIα
q aIβ

q f (t) = aIα+β
q f (t). (.)

Lemma . [] Let f be a q-integrable function on [a, b]. Then the following equality
holds:

aDα
q aIα

q f (t) = f (t), for α > , t ∈ [a, b]. (.)

Lemma . [] Let α >  and p be a positive integer. Then for t ∈ [a, b] the following
equality holds:

aIα
q aDp

qf (t) = aDp
qaIα

q f (t) –
p–∑

k=

(t – a)α–p+k

	q(α + k – p + ) aDk
qf (a). (.)
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In this paper we first give the definition of Caputo fractional q-derivative as follows.

Definition . The fractional q-derivative of Caputo type of order α ≥  on the interval
[a, b] is defined by (c

aD
qf )(t) = f (t) and

(c
aDα

q f
)
(t) =

(
aIn–α

q aDn
qf

)
(t), α > , (.)

where n is the smallest integer greater than or equal to α.

Lemma . Let α >  and n be the smallest integer greater than or equal to α. Then for
t ∈ [a, b], the following equality holds:

aIα
q

c
aDα

q f (t) = f (t) –
n–∑

k=

(t – a)k

	q(k + ) aDk
qf (a). (.)

Proof From Lemma ., for α = p = m, where m is a positive integer, we have

aIm
q aDm

q f (t) = aDm
q aIm

q f (t) –
m–∑

k=

(t – a)k

	q(k + ) aDk
qf (a) = f (t) –

m–∑

k=

(t – a)k

	q(k + ) aDk
qf (a).

Then by Definition ., we have

aIα
q

c
aDα

q f (t) = aIα
q aIn–α

q aDn
qf (t) = aIn

q aDn
qf (t) = f (t) –

n–∑

k=

(t – a)k

	q(k + ) aDk
qf (a). �

Lemma . Let h ∈ C(J ,R). Then the unique solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c
tk

Dαk
qk x(t) = h(t), t ∈ Jk ⊆ [, T], t �= tk ,

�x(tk) = ϕk(tk– Iβk–
qk– x(tk)), k = , , . . . , m,

tk Dqk x(t+
k ) – tk– Dqk– x(tk) = ϕ∗

k (tk– Iγk–
qk– x(tk)), k = , , . . . , m,

x() = –x(T), Dq x() = –tm Dqm x(T),

(.)

is given by

x(t) = –



m∑

i=

[
ti– Iαi–

qi–
h(ti) + ϕi

(
ti– Iβi–

qi–
x(ti)

)]

–



m∑

i=

(T – ti)
{

ti– Iαi––
qi–

h(ti) + ϕ∗
i
(

ti– Iγi–
qi–

x(ti)
)}

–

 tm Iαm

qm h(T) +
(

t –
T


)[

–



m∑

i=

{
ti– Iαi––

qi–
h(ti)

+ ϕ∗
i
(

ti– Iγi–
qi–

x(ti)
)}

–

 tm Iαm–

qm h(T)

]

+
k∑

i=

[
ti– Iαi–

qi–
h(ti) + ϕi

(
ti– Iβi–

qi–
x(ti)

)]
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+
k∑

i=

(t – ti)
{

ti– Iαi––
qi–

h(ti) + ϕ∗
i
(

ti– Iγi–
qi–

x(ti)
)}

+ tk Iαk
qk

h(t), (.)

where
∑

 (·) = .

Proof Applying the Riemann-Liouville fractional q-integral operator of order α on both
sides of the first equation of (.) for t ∈ J and using Lemma ., we obtain

t Iα
q

c
t Dα

q x(t) = x(t) – x() – Dq x()
	q ()

t = t Iα
q h(t),

which yields

x(t) = C + Ct + t Iα
q h(t), (.)

where C = x() and C = Dq x(). In particular, for t = t, we have

x(t) = C + Ct + t Iα
q h(t) and t Dq x(t) = C + t Iα–

q h(t). (.)

For t ∈ J, on application of the Riemann-Liouville fractional q-integral operator of order
α to (.) and using the above arguments, we get

x(t) = x
(
t+

)

+ (t – t)t Dq x
(
t+

)

+ t Iα
q h(t). (.)

Using the impulsive conditions x(t+
 ) = x(t) + ϕ(t Iβ

q x(t)) and t Dq x(t+
 ) = t Dq x(t) +

ϕ∗
 (t Iγ

q x(t)), we obtain

x(t) = C + Ct +
[

t Iα
q h(t) + ϕ

(
t Iβ

q x(t)
)]

+ (t – t)
[

t Iα–
q h(t) + ϕ∗


(

t Iγ
q x(t)

)]
+ t Iα

q h(t).

In a similar manner, for t ∈ J, we have

x(t) = C + Ct +
[

t Iα
q h(t) + ϕ

(
t Iβ

q x(t)
)]

+
[

t Iα
q h(t) + ϕ

(
t Iβ

q x(t)
)]

+ (t – t)
[

t Iα–
q h(t) + ϕ∗


(

t Iγ
q x(t)

)]

+ (t – t)
[

t Iα–
q h(t) + ϕ∗


(

t Iγ
q x(t)

)]
+ t Iα

q h(t).

Repeating the above process, for t ∈ Jk ⊆ J , k = , , , . . . , m, we obtain

x(t) = C + Ct +
k∑

i=

[
ti– Iαi–

qi–
h(ti) + ϕi

(
ti– Iβi–

qi–
x(ti)

)]

+
k∑

i=

(t – ti)
{

ti– Iαi––
qi–

h(ti) + ϕ∗
i
(

ti– Iγi–
qi–

x(ti)
)}

+ tk Iαk
qk

h(t), (.)
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where
∑

 (·) = . Notice that x() = C and

x(T) = C + CT +
m∑

i=

[
ti– Iαi–

qi–
h(ti) + ϕi

(
ti– Iβi–

qi–
x(ti)

)]

+
m∑

i=

(T – ti)
{

ti– Iαi––
qi–

h(ti) + ϕ∗
i
(

ti– Iγi–
qi–

x(ti)
)}

+ tm Iαm
qm h(T).

On the other hand, we have

tk Dqk x(t) = C +
k∑

i=

{
ti– Iαi––

qi–
h(ti) + ϕ∗

i
(

ti– Iγi–
qi–

x(ti)
)}

+ tk Iαk –
qk

h(t),

which implies t Dq x() = C and

tm Dqm x(T) = C +
m∑

i=

{
ti– Iαi––

qi–
h(ti) + ϕ∗

i
(

ti– Iγi–
qi–

x(ti)
)}

+ tm Iαm–
qm h(T).

Now making use of the boundary conditions given by (.), we find that

C = –



CT –



m∑

i=

[
ti– Iαi–

qi–
h(ti) + ϕi

(
ti– Iβi–

qi–
x(ti)

)]

–



m∑

i=

(T – ti)
{

ti– Iαi––
qi–

h(ti) + ϕ∗
i
(

ti– Iγi–
qi–

x(ti)
)}

–

 tm Iαm

qm h(T)

and

C = –



m∑

i=

{
ti– Iαi––

qi–
h(ti) + ϕ∗

i
(

ti– Iγi–
qi–

x(ti)
)}

–

 tm Iαm–

qm h(T).

Substituting the values C and C in (.) yields the solution (.). �

3 Main results
Let PC(J ,R) = {x : J →R : x(t) is continuous everywhere except for some tk at which x(t+

k )
and x(t–

k ) exist and x(t–
k ) = x(tk), k = , , . . . , m}. Observe that PC(J ,R) is a Banach space

equipped with the norm ‖x‖PC = sup{|x(t)| : t ∈ J}.
In view of Lemma ., we define an operator A : PC(J ,R) → PC(J ,R) by

Ax(t) = –



m∑

i=

[
ti– Iαi–

qi–
f
(
ti, x(ti)

)
+ ϕi

(
ti– Iβi–

qi–
x(ti)

)]

–



m∑

i=

(T – ti)
{

ti– Iαi––
qi–

f
(
ti, x(ti)

)
+ ϕ∗

i
(

ti– Iγi–
qi–

x(ti)
)}

–

 tm Iαm

qm f
(
T , x(T)

)
+

(

t –
T


)[

–



m∑

i=

{
ti– Iαi––

qi–
f
(
ti, x(ti)

)
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+ ϕ∗
i
(

ti– Iγi–
qi–

x(ti)
)}

–

 tm Iαm–

qm f
(
T , x(T)

)
]

+
k∑

i=

[
ti– Iαi–

qi–
f
(
ti, x(ti)

)
+ ϕi

(
ti– Iβi–

qi–
x(ti)

)]

+
k∑

i=

(t – ti)
{

ti– Iαi––
qi–

f
(
ti, x(ti)

)
+ ϕ∗

i
(

ti– Iγi–
qi–

x(ti)
)}

+ tk Iαk
qk

f
(
t, x(t)

)
, (.)

where

aIp
q f

(
u, x(u)

)
=


	q(p)

∫ u

a
a
(
u – a�q(s)

)(p–)
q f

(
s, x(s)

)
adqs,

p ∈ {α, . . . ,αm,α – , . . . ,αm – ,β, . . . ,βm–,γ, . . . ,γm–}, q ∈ {q, . . . , qm}, a ∈ {t, . . . , tm},
and u ∈ {t, t, t, . . . , tm, T}.

For computational convenience, we set


 =



m+∑

i=

(ti – ti–)αi–

	qi– (αi– + )
+




m∑

i=

(T – ti)(ti – ti–)αi––

	qi– (αi–)

+
T


m+∑

i=

(ti – ti–)αi––

	qi– (αi–)
, (.)


 =



mM +



M

m∑

i=

(T – ti) +
T


mM. (.)

Now we present our first existence result for the problem (.), which is based on the
Schauder fixed point theorem.

Theorem . Assume that

(H) there exist continuous functions a(t), b(t), and nonnegative constants M, M such that

∣
∣f (t, x)

∣
∣ ≤ a(t) + b(t)|x|, (t, x) ∈ J ×R (.)

with supt∈J |a(t)| = a, supt∈J |b(t)| = b, and

∣
∣ϕk(x)

∣
∣ ≤ M,

∣
∣ϕ∗

k (x)
∣
∣ ≤ M, ∀x ∈R, k = , , . . . , m. (.)

Then the anti-periodic boundary value problem (.) has at least one solution on J if

b
 < . (.)

Proof Let us define a closed ball BR = {x ∈ PC(J ,R) : ‖x‖PC ≤ R} with

R >
a
 + 


 – b

,
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where a, b are defined in (H) and 
, 
 are, respectively, given by (.) and (.). Clearly
BR is a bounded, closed, and convex subset of PC(J ,R). Now we show that the operator
A : PC(J ,R) → PC(J ,R) defined by (.) has a fixed point in the following two steps.

Step . A : BR → BR.
For any x ∈ BR, using (.), we have

∣
∣Ax(t)

∣
∣ ≤ 



m∑

i=

[
ti– Iαi–

qi–

∣
∣f

(
ti, x(ti)

)∣
∣ +

∣
∣ϕi

(
ti– Iβi–

qi–
x(ti)

)∣
∣
]

+



m∑

i=

(T – ti)
{

ti– Iαi––
qi–

∣
∣f

(
ti, x(ti)

)∣
∣ +

∣
∣ϕ∗

i
(

ti– Iγi–
qi–

x(ti)
)∣
∣
}

+

 tm Iαm

qm

∣
∣f

(
T , x(T)

)∣
∣ +

T


[



m∑

i=

{
ti– Iαi––

qi–

∣
∣f

(
ti, x(ti)

)∣
∣

+
∣
∣ϕ∗

i
(

ti– Iγi–
qi–

x(ti)
)∣
∣
}

+

 tm Iαm–

qm

∣
∣f

(
T , x(T)

)∣
∣

]

+
k∑

i=

[
ti– Iαi–

qi–

∣
∣f

(
ti, x(ti)

)∣
∣ +

∣
∣ϕi

(
ti– Iβi–

qi–
x(ti)

)∣
∣
]

+
k∑

i=

(t – ti)
{

ti– Iαi––
qi–

∣
∣f

(
ti, x(ti)

)∣
∣ +

∣
∣ϕ∗

i
(

ti– Iγi–
qi–

x(ti)
)∣
∣
}

+ tk Iαk
qk

∣
∣f

(
t, x(t)

)∣
∣

≤ 


m∑

i=

[(
a + b‖x‖PC

)
ti– Iαi–

qi–
(ti) + M

]

+



m∑

i=

(T – ti)
{(

a + b‖x‖PC
)

ti– Iαi––
qi–

(ti) + M
}

+


(
a + b‖x‖PC

)
tm Iαm

qm (T)

+
T


[



m∑

i=

{(
a + b‖x‖PC

)
ti– Iαi––

qi–
(ti) + M

}

+


(
a + b‖x‖PC

)
tm Iαm–

qm (T)

]

+
m∑

i=

[(
a + b‖x‖PC

)
ti– Iαi–

qi–
(ti) + M

]

+
m∑

i=

(T – ti)
{(

a + b‖x‖PC
)

ti– Iαi––
qi–

(ti) + M
}

+
(
a + b‖x‖PC

)
tm Iαm

qm (T)

=



m+∑

i=

(ti – ti–)αi–

	qi– (αi– + )
(
a + b‖x‖PC

)
+




mM

+



m∑

i=

(T – ti)
{

(ti – ti–)αi––

	qi– (αi–)
(
a + b‖x‖PC

)
+ M

}



Ahmad et al. Boundary Value Problems  (2016) 2016:16 Page 9 of 14

+
T


m+∑

i=

(ti – ti–)αi––

	qi– (αi–)
(
a + b‖x‖PC

)
+

T


Mm

= a
 + 
 + b‖x‖PC
 ≤ R,

which implies ‖Ax‖PC ≤ R. Therefore, A : BR → BR.
Step . The operator A : PC(J ,R) → PC(J ,R) is completely continuous on BR.
Let sup(t,x)∈J×BR |f (t, x)| = F. For any τ, τ ∈ Jk , k = , , . . . , m, with τ < τ, we have

∣
∣Ax(τ) – Ax(τ)

∣
∣ ≤ |τ – τ|

[



m+∑

i=

(ti – ti–)αi––

	qi– (αi–)
F +

mM



]

+ |τ – τ|
k∑

i=

[
(ti – ti–)αi––

	qi– (αi–)
F + M

]

+
F

	qk (αk)

∣
∣
∣
∣

∫ τ

tk
tk (τ – tk �qk )(αk–)

qk tk dqk s

–
∫ τ

tk
tk (τ – tk �qk )(αk–)

qk tk dqk s
∣
∣
∣
∣,

which is independent of x and tends to zero as τ –τ → . Therefore A is equicontinuous.
Thus ABR is relatively compact as ABR ⊂ BR is uniformly bounded. In view of the conti-
nuity of f , ϕk and ϕ∗

k , k = , , . . . , m, it is clear that the operator A is continuous. Hence the
operator A : PC(J ,R) → PC(J ,R) is completely continuous on BR. Applying the Schauder
fixed point theorem, we deduce that the operator A has at least one fixed point in BR. This
shows that the problem (.) has at least one solution on J . �

In the next existence result, we make use of Leray-Schauder’s nonlinear alternative.

Lemma . (Nonlinear alternative for single valued maps) [] Let E be a Banach space,
C a closed, convex subset of E, U an open subset of C, and  ∈ U . Suppose that F : U → C is
a continuous, compact (that is, F(U) is a relatively compact subset of C) map. Then either

(i) F has a fixed point in U , or
(ii) there is a u ∈ ∂U (the boundary of U in C) and θ ∈ (, ) with u = θF(u).

In the sequel, we set


 =



m∑

i=

(ti – ti–)βi–

	qi– (βi– + )
, (.)


 =



m∑

i=

(T – ti)(ti – ti–)γi–

	qi– (γi– + )
+

T


m∑

i=

(ti – ti–)γi–

	qi– (γi– + )
. (.)

Theorem . Assume that

(H) there exist a continuous nondecreasing function ψ : [,∞) → (,∞), a continuous
function p : J →R

+ with p∗ = supt∈J |p(t)| and constants M, M >  such that

∣
∣f (t, x)

∣
∣ ≤ p(t)ψ

(|x|), ∀(t, x) ∈ J ×R (.)
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and

∣
∣ϕk(x)

∣
∣ ≤ M|x|, ∣

∣ϕ∗
k (x)

∣
∣ ≤ M|x|, ∀x ∈ R, k = , . . . , m; (.)

(H) there exists a constant N >  such that

( – M
 – M
)N
p∗ψ(N)


> , M
 + M
 < , (.)

where 
, 
 are, respectively, given by (.) and (.).

Then the problem (.) has at least one solution J .

Proof We shall show that the operator A defined by (.) has a fixed point. To accomplish
this, for a positive number ρ , let Bρ = {x ∈ PC(J ,R) : ‖x‖PC ≤ ρ} denote a closed ball in
PC(J ,R). Then for x ∈ Bρ , t ∈ J , and using (.), we have

∣
∣Ax(t)

∣
∣ ≤ 



m∑

i=

[
p∗ψ(ρ)ti– Iαi–

qi–
(ti) + ρMti– Iβi–

qi–
(ti)

]

+



m∑

i=

(T – ti)
{

p∗ψ(ρ)ti– Iαi––
qi–

(ti) + ρMti– Iγi–
qi–

(ti)
}

+



p∗ψ(ρ)tm Iαm
qm (T) +

T


[



m∑

i=

{
p∗ψ(ρ)ti– Iαi––

qi–
(ti)

+ ρMti– Iγi–
qi–

(ti)
}

+



p∗ψ(ρ)tm Iαm–
qm (T)

]

+
m∑

i=

[
p∗ψ(ρ)ti– Iαi–

qi–
(ti) + ρMti– Iβi–

qi–
(ti)

]

+
m∑

i=

(T – ti)
{

p∗ψ(ρ)ti– Iαi––
qi–

(ti) + ρMti– Iγi–
qi–

(ti)
}

+ p∗ψ(ρ)tm Iαm
qm (T)

= p∗ψ(ρ)
 + ρM
 + ρM
 := K ,

which implies that ‖Ax‖PC ≤ K .
To show that the operator A maps bounded sets into equicontinuous sets of PC(J ,R),

we take τ, τ ∈ Jk for some k ∈ {, , , . . . , m} with τ < τ and x ∈ Bρ . Then we have

∣
∣Ax(τ) – Ax(τ)

∣
∣

≤ |τ – τ|
[

p∗ψ(ρ)


m+∑

i=

(ti – ti–)αi––

	qi– (αi–)
+

ρM



m∑

i=

(ti – ti–)γi–

	qi– (γi– + )

]

+ |τ – τ|
k∑

i=

[
(ti – ti–)αi––

	qi– (αi–)
p∗ψ(ρ) + ρM

(ti – ti–)γi–

	qi– (γi– + )

]

+
p∗ψ(ρ)
	qk (αk)

∣
∣
∣
∣

∫ τ

tk
tk (τ – tk �qk )(αk –)

qk tk dqk s –
∫ τ

tk
tk (τ – tk �qk )(αk–)

qk tk dqk s
∣
∣
∣
∣,
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which tends to zero independent of x as τ → τ. Thus, by the Arzelá-Ascoli theorem, the
operator A : PC(J ,R) → PC(J ,R) is completely continuous.

Finally, for λ ∈ (, ), let x = λAx. Then, as in the first step, we can get

‖x‖PC ≤ p∗ψ
(‖x‖PC

)

 + ‖x‖PCM
 + ‖x‖PCM
,

which can alternatively be written as

( – M
 – M
)‖x‖PC

p∗ψ(‖x‖PC)

≤ .

In view of (H), there exists N such that ‖x‖PC �= N . We define U = {x ∈ PC(J ,R) : ‖x‖PC <
N}. Note that the operator A : U → PC is continuous and completely continuous. From
the choice of U , there is no x ∈ ∂U such that x = λAx for some λ ∈ (, ). Consequently,
by the nonlinear alternative of Leray-Schauder type (Lemma .), we deduce that A has a
fixed point x ∈ U which is a solution of the problem (.) on J . This completes the proof.

�

In the last theorem, we apply Banach’s contraction principle to establish the uniqueness
of solutions for the problem (.).

Theorem . Assume that there exist a function W(t) ∈ C(J ,R+) with W = supt∈J |W(t)|
and positive constants M, M such that

∣
∣f (t, x) – f (t, y)

∣
∣ ≤W(t)|x – y|, ∀(t, x) ∈ J ×R (.)

and

∣
∣ϕk(x) – ϕk(y)

∣
∣ ≤ M|x – y|,

∣
∣ϕ∗

k (x) – ϕ∗
k (y)

∣
∣ ≤ M|x – y|, x, y ∈R,

(.)

for k = , , . . . , m. If

W
 + M
 + M
 < , (.)

then the problem (.) has a unique solution on J .

Proof For any x, y ∈ PC(J ,R), we have

∣
∣Ax(t) – Ay(t)

∣
∣

≤ 


m∑

i=

[
ti– Iαi–

qi–

∣
∣f (ti, x) – f (ti, y)

∣
∣ + Mti– Iβi–

qi–
|x – y|(ti)

]

+



m∑

i=

(T – ti)
{

ti– Iαi––
qi–

∣
∣f (ti, x) – f (ti, y)

∣
∣ + Mti– Iγi–

qi–
|x – y|(ti)

}

+

 tm Iαm

qm

∣
∣f (T , x) – f (T , y)

∣
∣ +

T


[



m∑

i=

{
ti– Iαi––

qi–

∣
∣f (ti, x) – f (ti, y)

∣
∣
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+ Mti– Iγi–
qi–

|x – y|(ti)
}

+

 tm Iαm–

qm

∣
∣f (T , x) – f (T , y)

∣
∣

]

+
k∑

i=

[
ti– Iαi–

qi–

∣
∣f (ti, x) – f (ti, y)

∣
∣ + Mti– Iβi–

qi–
|x – y|(ti)

]

+
k∑

i=

(t – ti)
{

ti– Iαi––
qi–

∣
∣f (ti, x) – f (ti, y)

∣
∣ + Mti– Iγi–

qi–
|x – y|(ti)

}

+ tk Iαk
qk

∣
∣f (t, x) – f (t, y)

∣
∣

≤ (W
 + M
 + M
)‖x – y‖PC ,

which yields

‖Ax – Ay‖PC ≤ (W
 + M
 + M
)‖x – y‖PC .

By (.), we conclude that A is a contraction. Thus, by Banach’s contraction mapping
principle, the problem (.) has a unique solution on J . This completes the proof. �

4 Examples
In this section, we present three examples to illustrate our results.

Example . Consider the following anti-periodic boundary value problem for impulsive
Caputo fractional q-difference equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
tk

D
k+
k+


k–k+

x(t) = t +  + 
 sin t x(t)

+|x(t)| , t ∈ [, ] \ {t, t, t},

�x(tk) = k
k+ e

–(tk– I
k–




k–k+
x(tk ))

, tk = k
 , k = , , ,

tk D 
k–k+

x(t+
k ) – tk– D 

k–k+
x(tk)

= k cos(log( + |tk– I
k+




k–k+
x(tk)|)), tk = k

 ,

x() = –x(), D 


x() = – 


D 


x().

(.)

Here αk = (k + )/(k + ), qk = /(k – k + ), k = , , , , βk– = (k – )/, γk– = (k +
)/, tk = k/, k = , , , m = , T = . With the given information, it is found that 
 =
.. Also, we have

∣
∣f (t, x)

∣
∣ =

∣
∣
∣
∣t +  +




sin t
x

 + |x|
∣
∣
∣
∣ ≤ t +  +




sin t|x|,
∣
∣ϕk(y)

∣
∣ =

∣
∣
∣
∣

k
k + 

e–y
∣
∣
∣
∣ ≤ e,

∣
∣ϕ∗

k (z)
∣
∣ =

∣
∣k cos

(
log

(
 + |z|))∣∣ ≤ , k = , , .

With B = supt∈[,] |(/) sin t| = /, we obtain B
 = . < . Thus all the con-
ditions of Theorem . are satisfied. Therefore, by the conclusion of Theorem ., the
problem (.) has at least one solution on [, ].
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Example . Consider the anti-periodic impulsive boundary value problem of fractional
q-difference equations given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
tk

D
k+
k+


k–k+

x(t) = 
(+t) (loge( |x(t)|

 + )), t ∈ [, /] \ {t, . . . , t},

�x(tk) = 
+k sin(tk– I

+(–)k–



k–k+
x(tk)), tk = k

 , k = , . . . , ,

tk D 
k–k+

x(t+
k ) – tk– D 

k–k+
x(tk) = 

+k tk– I
+(–)k–




k–k+
x(tk), tk = k

 ,

x() = –x( 
 ), D 


x() = – 


D 


x( 

 ).

(.)

Here αk = (k + )/(k + ), qk = /(k – k + ), k = , , , , , βk– = ( + (–)k–)/,
γk– = ( + (–)k–)/, tk = k/, k = , , , , m = , T = /. Using the above data, we find
that 
 = ., 
 = ., 
 = ., and

∣
∣f (t, x)

∣
∣ =

∣
∣
∣
∣


( + t)

(

loge

( |x|


+ 
))∣∣

∣
∣ ≤ 

( + t)

( |x|


+ 
)

,

∣
∣ϕk(y)

∣
∣ =


 + k

| sin y| ≤ 


|y|, ∣
∣ϕ∗

k (z)
∣
∣ =


 + k

|z| ≤ 


|z|, k = , , , .

Setting ψ(x) = (x/) + , p∗ = supt∈[,/] |/( + t)| = /, M = /, and M = /, we
find that M
 + M
 = . < . Also, there exists a constant N such that
N > . satisfying (.). Clearly the hypothesis of Theorem . holds true. Thus
the conclusion of Theorem . implies that the problem (.) has at least one solution on
[, /].

Example . Consider the following impulsive anti-periodic problem of a fractional
q-difference equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
tk

D
k+k+

k+


k–k+
x(t) = e–t sin(t+)

t+
x(t)+|x(t)|

+|x(t)| + 
 , t ∈ [, /] \ {t, . . . , t},

�x(tk) = k
 tan–(tk– I

k+



k–k+

x(tk)) + 
 , tk = k

 , k = , . . . , ,

tk D 
k–k+

x(t+
k ) – tk– D 

k–k+
x(tk) =

|tk– I
k–k+




k–k+
x(tk )|

k(+|tk– I
k–k+




k–k+
x(tk )|)

+ 
 , tk = k

 ,

x() = –x( 
 ), D 


x() = – 


D 


x( 

 ).

(.)

Here αk = (k + k + )/(k + ), qk = /(k – k + ), k = , , , , , , βk– = (k + )/,
γk– = (k – k + )/, tk = k/, k = , , , , , m = , T = /. With the given values, we
find that 
 = ., 
 = ., and 
 = .. Also, we have

∣
∣f (t, x) – f (t, x)

∣
∣ ≤

∣
∣
∣
∣
e–t sin(t + )

t + 

∣
∣
∣
∣|x – x|,

∣
∣ϕk(y) – ϕk(y)

∣
∣ =

k


∣
∣tan– y – tan– y

∣
∣ ≤ 


|y – y|,

∣
∣ϕ∗

k (z) – ϕ∗
k (z)

∣
∣ =


k

∣
∣
∣
∣

|z|
 + |z| –

|z|
 + |z|

∣
∣
∣
∣ ≤ 


|z – z|, k = , , , , .
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It is easy to see that W = /. Hence, W
 + M
 + M
 = . < . Thus all
the conditions of Theorem . are satisfied. Hence it follows by the conclusion of Theo-
rem . that the problem (.) has a unique solution on [, /].
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