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Abstract
In this paper, we consider singular boundary value problems for the following
nonlinear fractional differential equations with delay:

⎧
⎨

⎩

Dαx(t) + λf (t, x(t – τ )) = 0, t ∈ (0, 1)\{τ },
x(t) = η(t), t ∈ [–τ , 0],
x′(1) = x′(0) = 0,

where 2 < α ≤ 3, Dα denotes the Riemann-Liouville fractional derivative, λ is a
positive constant, f (t, x) may change sign and be singular at t = 0, t = 1, and x = 0. By
means of the Guo-Krasnoselskii fixed point theorem, the eigenvalue intervals of the
nonlinear fractional functional differential equation boundary value problem are
considered, and some positive solutions are obtained, respectively.

MSC: 34A08; 34K37
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1 Introduction
Fractional differential equations have been of increasing importance for the past decades
due to their diverse applications in science and engineering, we can describe natural phe-
nomena and mathematical models more accurately. Many researchers have shown their
interest in fractional differential equations. The motivation for those works stems from
both the intensive development of the theory of fractional calculus itself and the applica-
tions such as in economics, engineering and other fields. Fractional differential equations
have received much attention, the theory and its applications have been greatly developed;
see [–].

There have been many papers dealing with boundary value problems of fractional dif-
ferential equations [–] and initial value problems of fractional differential equations
[–].

However, the results focused on the singular boundary value problems of fractional dif-
ferential equations with delay are relatively scarce [–]. It is well known that in practical
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problems, the behavior of systems not only depends on the status just at the present, but
also on the status in the past.

Thus, in many cases, we must study fractional differential equations with delay in order
to solve practical problems. Consequently, our aim in the paper is to consider the existence
of solutions for singular boundary value problems of fractional differential equations with
delay.

In , by means of the fixed point index theorem, Yu et al. [] investigate the exis-
tence of multiple positive solutions for the third-order three-point singular semipositone
boundary value problem

{
x′′′(t) – λf (t, x) = , t ∈ (, ),
x() = x′(η) = x′′() = ,

where 
 < η < , f (t, x) : (, ) × (, +∞) → (–∞, +∞) is continuous and may be singular

at t = , t = , and x =  and also may be negative for some values of t and x; λ is a positive
parameter.

In , Zhao et al. [] studied the existence on multiple positive solutions for the non-
linear fractional differential equation boundary value problem

{
Dα

+u(t) + f (t, u(t)) = , t ∈ (, ),
u() = u′() = u′() = ,

where  < α ≤ , Dα
+ is the Riemann-Liouville fractional derivative. By the lower and up-

per solutions method and the fixed point theorem, they obtained some new existence
criteria for singular and nonsingular fractional differential equation boundary value prob-
lems.

In , Su [] studied the boundary value problem for a singular fractional differential
equation with delay

⎧
⎪⎨

⎪⎩

Dαx(t) + f (t, x(t – τ )) = , t ∈ (, )\{τ },
x(t) = η(t), t ∈ [–τ , ],
x() = ,

where  < α ≤ , Dα is the Riemann-Liouville fractional derivative, τ ∈ (, ), f (t, x) ∈
C((, ) × R

+,R) is continuous and may be singular at t = , t = , and x =  and may
have negative values, where R

+ = (, +∞). By the Guo-Krasnoselskii fixed point theorem,
one obtained the existence results for positive solutions.

In , Vong [] considered the fractional differential equation with an integral
boundary condition

cDα
+ u(t) + f

(
t, u(t)

)
= , u′() = · · · = un–() = , u() =

∫ 


u(s) dμ(s),

where n ≥ , n –  < α < n, cDα
+ is the Caputo fractional derivative, μ(s) is a function of

bounded variation, f may have a singularity at t = . The existence of positive solutions
is obtained by the method of upper and lower solutions together with the Schauder fixed
point theorem.



Mu et al. Boundary Value Problems  (2016) 2016:8 Page 3 of 18

Motivated by the work mentioned above, in this paper, we study the existence of positive
solutions of singular boundary value problems for nonlinear fractional functional differ-
ential equation

⎧
⎪⎨

⎪⎩

Dαx(t) + λf (t, x(t – τ )) = , t ∈ (, )\{τ },
x(t) = η(t), t ∈ [–τ , ],
x′() = x′() = ,

(.)

where  < α ≤ , Dα denote the Riemann-Liouville fractional derivative, λ is a positive
parameter, τ ∈ (, ), η(t) ∈ C([–τ , ]), and η(t) >  for t ∈ [τ , ), η() = , f is a continuous
functional defined on (, ) ×R

+ and which may be singular at t = , t = , and x = .
When τ =  and λ = , problem (.) is reduced to the problem of fractional differential

equations and has been studied by Zhao et al. []. To the best of our knowledge, no one
has studied the existence of positive solutions for singular boundary value problem (.).
Key tools in finding our main results are the Guo-Krasnoselskii fixed point theorem, and
our main results of this paper are to extend and supplement some results in [, , ].

The paper is organized as follows. In Section , we shall introduce some definitions and
lemmas to prove our main results. In Section , we investigate the existence of positive
solution for boundary value problem (.) by the Guo-Krasnoselskii fixed point theorem.

2 Preliminaries
In the following section, we introduce the definitions and lemmas which are used through-
out the paper. This material can be found in [, ].

The Riemann-Liouville fractional derivative of order α (n –  < α < n) of a function f :
(t, +∞) →R is given by

Dα
+ f (t) =


�(n – α)

(
d
dt

)n ∫ t

t

f (s)
(t – s)α–n+ ds, t > t,

where n is the smallest integer than or equal to α and �(·) is the gamma function, provided
that the right side is point wise defined on (t, +∞).

The Riemann-Liouville fractional integral of order α (α > ) of a function f : (t, +∞) →
R is given by

Iαf (t) =


�(α)

∫ t

t

f (s)
(t – s)–α

ds, t > t,

where �(·) is the gamma function, provided that the right side is point-wise defined on
(t, +∞).

From the definition of the Riemann-Liouville derivative, we have the following state-
ments.

Let α > . If we assume u ∈ C(, ) ∩ L(, ), then the fractional differential equation

Dα
+ u(t) = 

has u(t) = ctα– + ctα– + · · · + cN tα–N , ci ∈R, i = , , . . . , N , as unique solutions, where N
is the smallest integer greater than or equal to α.
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Assume u ∈ C(, ) ∩ L(, ) with a fractional derivative of order α > . Then

Iα
+ Dα

+ u(t) = f (t) + ctα– + ctα– + · · · + cntα–n

for some ci ∈R, i = , , . . . , n, where n is the smallest integer greater than or equal to α.
Next we introduce the Green function of boundary value problems for fractional differ-

ential equations.

Lemma . [] Let  < α ≤  and h : [, ] be continuous. Then the unique solution of the
boundary value problem

Dα
+ u(t) + λh(t) = , t ∈ (, ), u() = u′() = u′() =  (.)

is

u(t) =
∫ 


λG(t, s)h(s) ds, t ∈ [, ],

where

G(t, s) =


�(α)

{
tα–( – s)α– – (t – s)α–,  ≤ s ≤ t ≤ ,
tα–( – s)α–,  ≤ t ≤ s ≤ .

(.)

The following properties of the Green function play important roles in this paper.

Lemma . [] The function G(t, s) defined by (.) satisfies the following conditions:
() G(t, s) >  for t, s ∈ (, );
() q(t)G(, s) ≤ G(t, s) ≤ G(, s) for t, s ∈ (, ), where q(t) = tα–.

Lemma . The function G∗(t, s) := t–αG(t, s) satisfies the following conditions:


�(α)

ts( – s)α– ≤ G∗(t, s) ≤ 
�(α)

t–αs( – s)α– for t, s ∈ (, ).

Proof The proof can be obtained easily by Lemma ., so we omit it here. �

The following lemma is fundamental in the proofs of our main results.

Lemma . [] Let E be a Banach space, and let K ⊂ E be a cone. Assume �, � are
open and bounded subset of E with  ∈ �, �̄ ⊂ �, and let T : K ∩ (�̄\�) → K be a
completely continuous operator such that

(i) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂�, and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂�; or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂�, and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂�.

Then T has a fixed point in K ∩ (�̄\�).

3 Main results
In this section, we discuss the existence of positive solutions for boundary value problem
(.). For convenience, we give some conditions, which will play roles in this paper.
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(H) There exists a nonnegative function ρ ∈ C(, ) ∩ L(, ) such that

ϕ(t)h(x) ≤ f
(
t, v(t)x

)
+ ρ(t) ≤ ϕ(t)

(
g(x) + h(x)

)

for all (t, x) ∈ (, ) ×R
+, where ϕ,ϕ ∈ L(, ) are nonnegative for t ∈ (, ), h, h ∈

C(R+
,R+

) are nondecreasing, g ∈ C(R+,R+
) is nonincreasing, R+

 = [, +∞), and

v(t) =

{
, t ∈ (, τ ],
(t – τ )α–, t ∈ (τ , ).

(H)

 <
∫ τ


s( – s)α–ϕ(s)g

(
η(s – τ )

)
ds < +∞,

and there exists a constant k >  such that

∫ 

τ

s( – s)α–ϕ(s)g
(

k


(s – τ )
)

ds < +∞.

(H) There exists a subinterval [a, b] ⊂ (τ , ) such that
∫ b

a s( – s)α–ϕ(s) ds > .

Let X := {x(t) : x ∈ C([–τ , ],R), x(t) =  for t ∈ [–τ , ], x′() = x′() = } be a Banach
space with the maximum norm ‖x‖[–τ ,] = max–τ≤t≤ |x(t)| = max≤t≤ |x(t)| for x ∈ X. Let
K be a cone in X defined by

K =
{

x ∈ X; x(t) ≥  for t ∈ [–τ , ]
}

.

Define

η̄(t) =

{
η(t), t ∈ [–τ , ],
, t ∈ (, ],

ω(t) =

{
, t ∈ [–τ , ],
∫ 

 λG(t, s)ρ(s) ds, t ∈ (, ],

and

x∗(t) = max
{

x(t) + η̄(t) – ω(t), 
}

=

{
η(t), t ∈ [–τ , ],
max{x(t) – ω(t), }, t ∈ (, ]

for any x ∈ K .
It is easy to know that the restriction ω|[,] of ω on [, ] is exactly the solution of

{
Dαx(t) + λρ(t) = , t ∈ (, ),α ∈ (, ],
x′() = x′() = x() = .
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Since f : [, ] × C[–τ , ] → R is a continuous function, setting f (t, x(t – τ )) := h(t) in
Lemma ., we see by Lemma . that a function x is a solution of boundary value problem
(.) if and only if it satisfies

x(t) =

{∫ 
 λG(t, s)f (s, x(s – τ )) ds, t ∈ (, ),

η(t), t ∈ [–τ , ].

Consider the following operator:

(Tx)(t) =

{∫ 
 λG(t, s)(f (s, x∗(s – τ )) + ρ(s)) ds, t ∈ (, ],

, t ∈ [–τ , ].
(.)

Set

y(t) =

{
t–αx(t), t ∈ (, ),
, t ∈ [–τ , ]

and

y∗(t) =

{
max{tα–y(t) – ω(t), }, t ∈ (, ],
η(t), t ∈ [–τ , ].

Then (.) is equivalent to

(Ty)(t) =

{∫ 
 λG∗(t, s)(f (s, y∗(s – τ )) + ρ(s)) ds, t ∈ (, ],

, t ∈ [–τ , ].
(.)

Obviously, if ỹ is a fixed point of operator T in (.), then

x̃(t) =

{
tα–ỹ(t), t ∈ (, ],
, t ∈ [–τ , ],

is a fixed point of operator T defined by (.). Lemma . implies that

⎧
⎪⎨

⎪⎩

Dα x̃(t) + λf ((t, x̃∗(t – τ )) + ρ(t)) = , t ∈ (, )\{τ },
x̃(t) = , t ∈ [–τ , ],
x̃′() = x̃′() = .

Thus if

x̃(t – τ ) + η̄(t – τ ) – ω(t – τ ) ≥  for t ∈ [, ], (.)

then

x̃∗(t – τ ) = x̃(t – τ ) + η̄(t – τ ) – ω(t – τ ).

Let

x(t) = x̃(t) + η̄(t) – ω(t).
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Then one can verify easily that the function x satisfied boundary value problem (.). As a
result, in the following we will concentrate our study on finding the fixed points of operator
T defined by (.).

Define the cone

K =
{

y ∈ K : y(t) ≥ t‖y‖ for t ∈ [, ]
}

and

� =
{

y ∈ K : ‖y‖ < r
}

,

� =
{

y ∈ K : ‖y‖ < r
}

,

� =
{

y ∈ K : ‖y‖ < R
}

,

� =
{

y ∈ K : ‖y‖ < R
}

for any r > r ≥ max{k, c}, R > R ≥ max{k, c}, where

c :=
λ

�(α)

∫ 


s( – s)α–ρ(s) ds < +∞ (.)

and k is the constant in (H).

Lemma . Let (H) and (H) hold. Then the operator T : K ∩ (�̄\�) → K is completely
continuous.

Proof First we show that operator T is well defined on K ∩ (�̄\�). For any y ∈ K ∩
(�̄\�), we know that

r ≤ ‖y‖ ≤ r

and

y(t) ≥ t‖y‖ ≥ tr for t ∈ [, ].

Then, for t ∈ [, ], we get

t–αω(t) = t–α

∫ 


λG(t, s)ρ(s) ds

≤ t–α

�(α)

∫ 


λs( – s)α–ρ(s) ds

≤ t

�(α)

∫ 


λs( – s)α–ρ(s) ds

≤ tc, (.)

where c is defined as (.). Thus, for t ∈ [, ],

y(t) – t–αω(t) ≥ t(r – c)

≥ r


t. (.)
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In view of (H), (H), and Lemma ., we show

(Ty)(t) =
∫ τ


λG∗(t, s)

(
f
(
s,η(s – τ )

)
+ ρ(s)

)
ds

+
∫ 

τ

λG∗(t, s)
(
f
(
s, (s – τ )α–y(s – τ ) – ω(s – τ )

)
+ ρ(s)

)
ds

≤ λt–α

�(α)

∫ τ


s( – s)α–ϕ(s)

(
g
(
η(s – τ )

)
+ h

(
η(s – τ )

))
ds

+
λt–α

�(α)

∫ 

τ

s( – s)α–ϕ(s)

×
(

g
(

r


(s – τ )

)

+ h
(
y(s – τ ) – (s – τ )–αω(s – τ )

)
)

ds

≤ λt–α

�(α)

∫ τ


s( – s)α–ϕ(s)

(
g
(
η(s – τ )

)
+ h

(
η(s – τ )

))
ds

+
λt–α

�(α)

∫ 

τ

s( – s)α–ϕ(s)
(

g
(

r


(s – τ )

)

+ h
(
y(s – τ )

)
)

ds

≤ λt–α

�(α)

∫ τ


s( – s)α–ϕ(s)

(
g
(
η(s – τ )

)
+ h

(
η(s – τ )

))
ds

+
λt–α

�(α)

∫ 

τ

s( – s)α–ϕ(s)
(

g
(

k


(s – τ )
)

+ h(r)
)

ds

< +∞.

Hence, T is uniformly bounded and T is well defined.
In fact, for y ∈ K ∩ (�̄\�), t ∈ [, ], in view of Lemma ., we have

‖Ty‖ ≤ λt–α

�(α)

∫ 


s( – s)α–(f

(
s, y∗(s – τ )

)
+ ρ(s)

)
ds

≤ λt

�(α)

∫ 


s( – s)α–(f

(
s, y∗(s – τ )

)
+ ρ(s)

)
ds

and

(Ty)(t) ≥ λt

�(α)

∫ 


s( – s)α–(f

(
s, y∗(s – τ )

)
+ ρ(s)

)
ds

≥ t‖Ty‖.

Hence, T : K ∩ (�̄\�) → K.
Next we show T : K ∩ (�̄\�) → K is continuous and compact. For any yn, y ∈ K ∩

(�̄\�), n = , , . . . with ‖yn – y‖[–τ ,] →  as n → ∞. Since r ≤ ‖yn‖ ≤ r and r ≤ ‖y‖ ≤
r, for t ∈ (, ), we know

yn(t) – t–αω(t) ≥ r


t

and

y(t) – t–αω(t) ≥ r


t.
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Then, for t ∈ [, ], we have

∣
∣(Tyn)(t) – (Ty)(t)

∣
∣ =

∣
∣
∣
∣

∫ 

τ

λG∗(t, s)
(
f
(
s, (s – τ )α–yn(s – τ ) – ω(s – τ )

)
+ ρ(s)

– f
(
s, (s – τ )α–y(s – τ ) – ω(s – τ )

)
– ρ(s)

)
ds

∣
∣
∣
∣

≤ λt–α

�(α)

∫ 

τ

s( – s)α–∣∣f
(
s, (s – τ )α–yn(s – τ ) – ω(s – τ )

)

– f
(
s, (s – τ )α–y(s – τ ) – ω(s – τ )

)∣
∣ds

≤ λt–α

�(α)

∫ 

τ

s( – s)α–ϕ(s)
(

g
(

k


(s – τ )
)

+ h(r)
)

ds

< +∞.

This implies that ‖Tyn – Ty‖[–τ ,] →  as n → ∞. Hence T is continuous.
Next we prove T is equicontinuous.
Since G∗ in uniformly continuous for t ∈ (, ), that is, for any ε > , there exists ξ > ,

when t, t ∈ [, ] and |t – t| < ξ, we have

∣
∣G∗(t, s) – G∗(t, s)

∣
∣ =

ε



(∫ τ


λϕ(s)

(
g
(
η(s – τ )

)
+ h

(
η(s – τ )

))
ds

+
∫ 

τ

λϕ(s)
(

g
(

k


(s – τ )
)

+ h(r)
)

ds
)–

.

Thus, for any y ∈ K ∩ (�̄\�), we get

∣
∣(Ty)(t) – (Ty)(t)

∣
∣ ≤

∫ τ


λ
∣
∣G∗(t, s) – G∗(t, s)

∣
∣ϕ(s)

(
g
(
η(s – τ )

)
+ h

(
η(s – τ )

))
ds

+
∫ 

τ

λ
∣
∣G∗(t, s) – G∗(t, s)

∣
∣ϕ(s)

(

g
(

k


(s – τ )
)

+ h(r)
)

ds

<
ε


+

ε


= ε.

Thus T is equicontinuous. Accordingly to the Ascoli-Arzelà theorem, T is completely con-
tinuous. The proof is completed. �

Now we prove the existence of positive solutions for boundary value problem (.) by
using the Guo-Krasnoselskii fixed point theorem.

For convenience, we denote

ξ :=


�(α)

(∫ τ


s( – s)α–ϕ(s)

(
g
(
η(s – τ )

)

+ h
(
η(s – τ )

))
ds +

∫ 

τ

s( – s)α–ϕ(s)
(

g
(

k


(s – τ )
)

+ εr

)

ds
)

> ,
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and there exists a subinterval [β ,γ ] ⊂ (τ , ),

ζ := min
t∈[β ,γ ]

(t – τ ), ζ := min
t∈[β ,γ ]

t,

ξ(t) :=
ζ

�(α)
h

(
rζ



)∫ γ

β

s( – s)α–ϕ(s) ds > .

Theorem . Let (H), (H), and ξ–
 r < ξ–

 r hold. Then the boundary value problem
(.) has at least one positive solution if

lim
y→+∞

h(y)
y

=  (.)

for each

λ ∈ (
ξ–

 r, ξ–
 r

)
.

Proof Let ε > . Then in view of (.), there exists a M >  such that

h(y) ≤ εy for y > M. (.)

Choose

r ≥ max{M + , r + },

then for y ∈ ∂�, like for (.), for t ∈ [, ], we obtain

y(t) – t–αω(t) ≥ t(r – c)

≥ r


t. (.)

Then from (H), (.), (.), and Lemma ., we get

(Ty)(t) ≤ λt–α

�(α)

∫ τ


s( – s)α–ϕ(s)

(
g
(
η(s – τ )

)
+ h

(
η(s – τ )

))
ds

+
λt–α

�(α)

∫ 

τ

s( – s)α–ϕ(s)

×
(

g
(

r


(s – τ )

)

+ h
(
y(s – τ ) – (s – τ )–αω(s – τ )

)
)

ds

≤ λt–α

�(α)

∫ τ


s( – s)α–ϕ(s)

(
g
(
η(s – τ )

)
+ h

(
η(s – τ )

))
ds

+
λt–α

�(α)

∫ 

τ

s( – s)α–ϕ(s)
(

g
(

r


(s – τ )

)

+ h
(
y(s – τ )

)
)

ds

≤ λ

�(α)

∫ τ


s( – s)α–ϕ(s)

(
g
(
η(s – τ )

)
+ h

(
η(s – τ )

))
ds

+
λ

�(α)

∫ 

τ

s( – s)α–ϕ(s)
(

g
(

k


(s – τ )
)

+ h(r)
)

ds
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≤ λ

�(α)

∫ τ


s( – s)α–ϕ(s)

(
g
(
η(s – τ )

)
+ h

(
η(s – τ )

))
ds

+
λ

�(α)

∫ 

τ

s( – s)α–ϕ(s)
(

g
(

k


(s – τ )
)

+ εr

)

ds

≤ λξ < r.

Therefore, for y ∈ ∂�, we have ‖Ty‖ ≤ ‖y‖.
On the other hand, for y ∈ ∂�, like for (.), for t ∈ [, ], we obtain

y(t) – t–αω(t) ≥ t(r – c)

≥ r


t. (.)

Thus from (H), (.), and Lemma ., we get

‖Ty‖ ≥
∫ γ

β

λ min
t∈[β ,γ ]

G∗(t, s)
(
f
(
s, (s – τ )α–y(s – τ ) – ω(s – τ )

)
+ ρ(s)

)
ds

≥
∫ γ

β

λ min
t∈[β ,γ ]

G∗(t, s)ϕ(s)h

(
r


(s – τ )

)

ds

≥ λζ

�(α)
h

(
rζ



)∫ γ

β

s( – s)α–ϕ(s) ds

≥ λξ > r.

Therefore, for y ∈ ∂�, we have ‖Ty‖ ≥ ‖y‖. Then T defined by (.) has a fixed point
ỹ ∈ K ∩ (�̄\�). In view of (.), we have

tα–ỹ(t) – ω(t) = tα–(ỹ(t) – t–αω(t)
)

≥ r


tα–

> .

It is easy to know (.) is satisfied. The proof is completed. �

Denote

ξ :=


�(α)

(∫ τ


s( – s)α–ϕ(s)

(
g
(
η(s – τ )

)
+ h

(
η(s – τ )

))
ds

+
∫ 

τ

s( – s)α–ϕ(s)
(

g
(

k


(s – τ )
)

+ h(R)
)

ds
)

> .

Theorem . Let (H)-(H) and

�(α)
M∗Aζ

(∫ b

a
s( – s)α–ϕ(s) ds

)–

< ξ–
 R
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hold. Then boundary value problem (.) has at least one positive solution if

lim
y→+∞

h(y)
y

= +∞ (.)

for each

λ ∈
(

�(α)
M∗Aζ

(∫ b

a
s( – s)α–ϕ(s) ds

)–

, ξ–
 R

)

, (.)

where A := mint∈[a,b](t – τ ), M∗ is a positive constant.

Proof It follows from (.) that there exists a M∗ >  such that

h(y) ≥ M∗y for y > M∗. (.)

Choose

R ≥ max

{

R + ,
M∗

A

}

.

Then for y ∈ ∂�, like for (.), for t ∈ [, ], we obtain

y(t) – t–αω(t) ≥ t(R – c)

≥ R


t. (.)

Thus from (H), (.), (.), and Lemma ., we get

‖Ty‖ ≥
∫ b

a
λ min

t∈[a,b]
G∗(t, s)

(
f
(
s, (s – τ )α–y(s – τ ) – ω(s – τ )

)
+ ρ(s)

)
ds

≥
∫ b

a
λ min

t∈[a,b]
G∗(t, s)ϕ(s)h

(
R


(s – τ )

)

ds

≥
∫ b

a
λ min

t∈[a,b]
G∗(t, s)ϕ(s)h

(
RA



)

ds

≥ M∗AλR



∫ b

a
min

t∈[a,b]
G∗(t, s)ϕ(s) ds

≥ λM∗ARζ

�(α)

∫ b

a
s( – s)α–ϕ(s) ds

≥ R.

Therefore, for y ∈ ∂�, we have ‖Ty‖ ≥ ‖y‖.
On the other hand, for y ∈ ∂�, like for (.), for t ∈ [, ], we obtain

y(t) – t–αω(t) ≥ t(R – c)

≥ R


t. (.)
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Thus from (H), (.), and (.), we have

(Ty)(t) ≤ λt–α

�(α)

∫ τ


s( – s)α–ϕ(s)

(
g
(
η(s – τ )

)
+ h

(
η(s – τ )

))
ds

+
λt–α

�(α)

∫ 

τ

s( – s)α–ϕ(s)

×
(

g
(

R


(s – τ )

)

+ h
(
y(s – τ ) – (s – τ )–αω(s – τ )

)
)

ds

≤ λ

�(α)

∫ τ


s( – s)α–ϕ(s)

(
g
(
η(s – τ )

)
+ h

(
η(s – τ )

))
ds

+
λ

�(α)

∫ 

τ

s( – s)α–ϕ(s)
(

g
(

k


(s – τ )
)

+ h(R)
)

ds

≤ λξ < R.

Therefore, for y ∈ ∂�, we have ‖Ty‖ ≤ ‖y‖. Arguments similar to those at the end of the
proof of Theorem . show that boundary value problem (.) has a positive solution. The
proof is completed. �

Theorem . Let (H) and (H) hold. Furthermore assume that

(H) there exists a subinterval [β ,γ ] ⊂ (τ , ) and a positive constant r such that

r > max

{

k, c,
λ

�(α)

(∫ τ


s( – s)α–ϕ(s)

(
g
(
η(s – τ )

)
+ h

(
η(s – τ )

))
ds

+
∫ 

τ

s( – s)α–ϕ(s)
(

g
(

k


(s – τ )
)

+ h(r) ds
))}

,

where k is defined in (H), c is defined as (.) and λ ∈ (, +∞).

Then boundary value problem (.) has at least one positive solution y with  < ‖y‖ < r.

Proof In view of (H), we choose n ∈ {, , . . .} such that

r >
λ

�(α)

(∫ τ


s( – s)α–ϕ(s)

(
g
(
η(s – τ )

)
+ h

(
η(s – τ )

))
ds

+
∫ 

τ

s( – s)α–ϕ(s)
(

g
(

k


(s – τ )
)

+ h(r)
)

ds
)

+


n
.

Let N = {n, n + , . . .}. Fix n ∈ N and consider the family of integral equations

y(t) =

{
κ

∫ 
 λG∗(t, s)(fn(s, y∗(s – τ )) + ρ(s)) ds + 

n , t ∈ (, ),

n , t ∈ [–τ , ],

(.)

where κ ∈ (, ),

fn
(
t, y∗(t – τ )

)
+ ρ(t) =

{
f (t, y∗(t – τ )) + ρ(t), y∗(t – τ ) ≥ 

n ,
f (t, 

n ) + ρ(t), y∗(t – τ ) < 
n .



Mu et al. Boundary Value Problems  (2016) 2016:8 Page 14 of 18

We claim that any solution y of (.) for any κ ∈ (, ) must satisfy ‖y‖ �= r. Otherwise,
assume that y is a solution of (.) for some κ ∈ (, ) such that ‖y‖ = r. Then y∗(t –τ ) ≥ 

n
for t ∈ (, ). In view of Lemma ., we have

‖y‖ ≤ κλt–α

�(α)

∫ 


s( – s)α–(fn

(
s, y∗(s – τ )

)
+ ρ(s)

)
ds +


n

. (.)

Thus, for t ∈ (, ), we have

y(t) ≥ 
n

+
κλt

�(α)

∫ 


s( – s)α–(fn

(
s, y∗(s – τ )

)
+ ρ(s)

)
ds

≥ 
n

+ tα–
(

‖y‖ –

n

)

≥ (
 – tα–) 

n
+ tα–‖y‖

≥ tα–‖y‖ ≥ tr.

Then like for (.), for t ∈ (, ), we have

y(t) – t–αω(t) ≥ t(r – c)

≥ r


t.

Then from (H), for t ∈ (, ), κ ∈ (, ), we have

y(t) =

n

+ κλ

∫ 


G∗(t, s)

(
fn

(
s, y∗(s – τ )

)
+ ρ(s)

)
ds

=

n

+ κλ

∫ 


G∗(t, s)

(
f
(
s, y∗(s – τ )

)
+ ρ(s)

)
ds

≤ 
n

+
λt–α

�(α)

∫ 


s( – s)α–(f

(
s, y∗(s – τ )

)
+ ρ(s)

)
ds

≤ 
n

+
λ

�(α)

∫ τ


s( – s)α–(ϕ(s)

(
g
(
η(s – τ )

)
+ h

(
η(s – τ )

)))
ds

+
λ

�(α)

∫ 

τ

s( – s)α–

×
(

ϕ(s)
(

g
(

r


(s – τ )
)

+ h
(
y(s – τ ) – (s – τ )–αω(s – τ )

)
))

ds.

Hence we obtain

r =
∥
∥y(t)

∥
∥

≤ 
n

+
λ

�(α)

∫ τ


s( – s)α–(ϕ(s)

(
g
(
η(s – τ )

)
+ h

(
η(s – τ )

)))
ds

+
λ

�(α)

∫ 

τ

s( – s)α–

×
(

ϕ(s)
(

g
(

r


(s – τ )
)

+ h
(
y(s – τ ) – (s – τ )–αω(s – τ )

)
))

ds.

This is a contradiction and the claim is proved.
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Now the Leray-Schauder nonlinear alternative theorem guarantees that the equation

y(t) =
∫ 


λG∗(t, s)

(
fn

(
s, y∗(s – τ )

)
+ ρ(s)

)
ds +


n

has a solution yn, in �̄r = {y ∈ C[, ] : ‖y‖ ≤ r}, for t ∈ (, ).
Next we claim that yn(t) has a uniform sharper lower bound. In view of (H) and

‖yn(t)‖ ≤ r, we obtain

yn(t) =

n

+ λ

∫ 


G∗(t, s)

(
fn

(
s, y∗

n(s – τ )
)

+ ρ(s)
)

ds

≥ 
n

+ λ

∫ γ

β

G∗(t, s)
(
f
(
s, y∗

n(s – τ )
)

+ ρ(s)
)

ds

≥ λt

�(α)

∫ γ

β

s( – s)α–(f
(
s, y∗

n(s – τ )
)

+ ρ(s)
)

ds

≥ λt

�(α)

∫ γ

β

s( – s)α–
(

ϕ(s)h

(
r


(s – τ )
))

ds

≥ λt

�(α)
h

(
rζ



)∫ γ

β

s( – s)α–ϕ(s) ds.

Choosing δ(t) = λt

�(α) h( rζ
 )

∫ γ

β
s(–s)α–ϕ(s) ds. Then we conclude that there exists a func-

tion δ ∈ C(, ) that is unrelated to n such that δ(t) >  for a.e. t ∈ (, ) and for any n ∈ N,

yn(t) ≥ δ(t).

Then we prove {yn}n∈N is an equicontinuous family on (, ). Since G∗ in uniformly
continuous for t ∈ (, ), that is, for any ε > , there exists ζ > , when t, t ∈ [, ] and
|t – t| < ζ, we have

∣
∣G∗(t, s) – G∗(t, s)

∣
∣ =

ε

λ

(∫ τ


ϕ(s)

(
g
(
η(s – τ )

)
+ h

(
η(s – τ )

))
ds

+
∫ 

τ

ϕ(s)
(

g
(

k


(s – τ )
)

+ h(r)
)

ds
)–

.

Thus

∣
∣(yn)(t) – (yn)(t)

∣
∣ ≤ λ

∫ τ



∣
∣G∗(t, s) – G∗(t, s)

∣
∣ϕ(s)

(
g
(
η(s – τ )

)
+ h

(
η(s – τ )

))
ds

+ λ

∫ 

τ

∣
∣G∗(t, s) – G∗(t, s)

∣
∣ϕ(s)

(

g
(

k


(s – τ )
)

+ h(r)
)

ds

<
ε


+

ε


= ε.

Therefore, {yn}n∈N is an equicontinuous family on (, ). By the Arzelà-Ascoli theorem,
there exist a subsequence N of N and y ∈ C(, ) such that {yn}n∈N is uniformly con-
vergent to y and y satisfies δ(t) ≤ y(t) ≤ r for any t ∈ (, ). By the Lebesgue dominated
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convergence theorem, in view of

yn(t) =
∫ 


λG∗(t, s)

(
fn

(
s, y∗

n(s – τ )
)

+ ρ(s)
)

ds,

we have

y(t) =
∫ 


λG∗(t, s)

(
f
(
s, y∗(s – τ )

)
+ ρ(s)

)
ds.

Then boundary value problem (.) has one positive solution with  < ‖y‖ < r. The proof
is completed. �

Theorem . Let (H) and (H) hold. Assume that there exists a subinterval [β ,γ ] ⊂ (τ , )
satisfying

max g(·) + max h(·) ≤ r
λ

�(α)
∫ 

 s( – s)α–ϕ(s) ds
,

min
≤y≤r

h(y) ≥ r
λζ
�(α)

∫ γ

β
s( – s)α–ϕ(s) ds

,

where λ ∈ (, +∞). Then boundary value problem (.) has at least one positive solution.

Proof In view of Theorem ., for y ∈ ∂�, t ∈ [, ], we obtain

y(t) – t–αω(t) ≥ r


t. (.)

Then from (H), (.), and Lemma ., we get

(Ty)(t) ≤ λt–α

�(α)

∫ τ


s( – s)α–ϕ(s)

(
g
(
η(s – τ )

)
+ h

(
η(s – τ )

))
ds

+
λt–α

�(α)

∫ 

τ

s( – s)α–ϕ(s)

×
(

g
(

r


(s – τ )

)

+ h
(
y(s – τ ) – (s – τ )–αω(s – τ )

)
)

ds

≤ λt–α

�(α)

∫ τ


s( – s)α–ϕ(s)

(
g
(
η(s – τ )

)
+ h

(
η(s – τ )

))
ds

+
λt–α

�(α)

∫ 

τ

s( – s)α–ϕ(s)
(

g
(

r


(s – τ )

)

+ h
(
y(s – τ )

)
)

ds

≤ λ

�(α)

∫ τ


s( – s)α–ϕ(s)

(
g
(
η(s – τ )

)
+ h

(
η(s – τ )

))
ds

+
λ

�(α)

∫ 

τ

s( – s)α–ϕ(s)
(

g
(

k


(s – τ )
)

+ h(r)
)

ds

≤ λ

�(α)
r

λ
�(α)

∫ 
 s( – s)α–ϕ(s) ds

∫ τ


s( – s)α–ϕ(s) ds

+
λ

�(α)
r

λ
�(α)

∫ 
 s( – s)α–ϕ(s) ds

∫ 

τ

s( – s)α–ϕ(s) ds ≤ r.

Therefore, for y ∈ ∂�, we have ‖Ty‖ ≤ ‖y‖.
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On the other hand, for y ∈ ∂�, like for (.), for t ∈ [, ], we obtain

y(t) – t–αω(t) ≥ t(r – c)

≥ r


t. (.)

Thus from (H), (.), and Lemma ., we get

‖Ty‖ ≥
∫ γ

β

λ min
t∈[β ,γ ]

G∗(t, s)
(
f
(
s, (s – τ )α–y(s – τ ) – ω(s – τ )

)
+ ρ(s)

)
ds

≥
∫ γ

β

λ min
t∈[β ,γ ]

G∗(t, s)ϕ(s)h

(
r


(s – τ )

)

ds

≥ λζ

�(α)
r

λζ
�(α)

∫ γ

β
s( – s)α–ϕ(s) ds

∫ γ

β

s( – s)α–ϕ(s) ds

≥ r.

Therefore, for y ∈ ∂�, we have ‖Ty‖ ≥ ‖y‖. Arguments similar to those at the end of the
proof of Theorem . show that boundary value problem (.) has a positive solution. The
proof is completed. �
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