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Abstract

This paper is concerned with the interior regularity for nonlinear sub-elliptic systems
with Dini continuous coefficients under superquadratic controllable growth
conditions in Carnot groups. We adapt the technique of the .A-harmonic
approximation to the case of sub-elliptic systems in divergence form, and we show a
partial regularity result for weak solutions. In particular, our result is optimal in the
sense that in the case of Holder continuous coefficients we obtain directly the
optimal Holder exponent for the horizontal gradient of weak solutions on its regular
set.

Keywords: optimal partial regularity; Dini continuity coefficient; controllable growth
condition; Carnot group; sub-elliptic system

1 Introduction and statements of main results
In this paper, we consider the following nonlinear sub-elliptic systems under superqua-
dratic controllable growth (m > 2) conditions in Carnot groups G in divergence form:

k
~ Y XiAY (&, u, Xu) = B*(§,u,Xu) inQa=12,..,N, 11)
i=1

where Q is a bounded domain in G, X = {X;,...,X;} with X; (i =1,...,k) to see the next
section (2.1) below, u = (u},...,uN) : Q@ — RN, A%(&,u,p) : Q@ x RN x RN — RPN and
B*(&,u,p): 2 x RN x RN 5 RN,

Under the coefficients A} assumed to be Dini continuous, the purpose of this paper is
to establish optimal partial regularity to the system (1.1) under the superquadratic con-
trollable growth conditions. Such an assumption is much weaker than the assumption of
Holder continuity; see [1, 2] for the case of sub-elliptic systems. More precisely, we assume
for the continuity of AY with respect to the variables (£, u) that

(1+1pl) "7 |A%(&, u,p) - A%, it,p)| < i (|2el) (A, E) + e — it (12)

for all £,& € Q, u,it € RN, and p € R*N, where « : (0,+00) — [1, +00) is nondecreasing,

and u : (0, +00) — [0, +00) is nondecreasing and concave with ©(0+) = 0. We also require

© 2016 Wang and Liao. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.


http://dx.doi.org/10.1186/s13661-016-0525-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-016-0525-7&domain=pdf
mailto:jialinwang1025@hotmail.com

Wang and Liao Boundary Value Problems (2016) 2016:18 Page 2 of 18

that »r — r7 u(r) is nonincreasing for some y € (0,1) and that
r
M(r) = / M dp <00, forsomer>0. (1.3)
o P

We employ the method of an .A-harmonic approximation to investigate the sub-elliptic
system (1.1) under this weaker assumption, and we establish optimal partial regular-
ity results: Roughly speaking, assume additionally to the standard hypotheses (see pre-
cisely (H1), (H2), and (H4) below) that (1 + |p|)‘%A§?‘($,u,p) satisfies (1.2) and (1.3). Let
u € HW'" (2, RN) be a weak solution of (1.1). Then u is of class C' outside a closed singu-
lar set Sing u C Q2 of Haar measure 0. Furthermore, for & € Q\ Sing u, the derivative Xu of
u has the modulus of continuity » — M(r) in a neighborhood of &y. Our result is optimal
in the sense that when u(p) = p¥, 0 <y <1, we have M(r) = y~1r”, and T regularity is
known to be optimal in that case; see [1].

As is well known, one, in general, cannot expect that weak solutions of the sub-elliptic
system (1.1) will be classical, i.e. C*-solutions, even under reasonable assumptions on A%
and B“. This was first shown by De Giorgi [3] in the Euclidean space; we also refer the
reader to Giaquinta [4], and Chen and Wu [5] for further discussion and additional ex-
amples. Then the goal is to establish partial regularity theory. Moreover, a new method
called A-harmonic approximation technique is introduced by Duzaar and Steffen in [6],
and simplified by Duzaar and Grotowski in [7], to study elliptic systems with quadratic
growth case. Then similar results have been proved for more general AY or B* in the Eu-
clidean setting; see [8—11] for Holder continuous coefficients, and [12-14] for Dini con-
tinuous coefficients.

However, turning to sub-elliptic equations and systems in Carnot groups, some new
difficulties will arise due to non-commutativity of the horizontal vectors X;. With regard
to cases of sub-elliptic equations, we refer the reader to Domokos [15-17], Capogna [18,
19], Manfredi and Mingione [20], and Mingione et al. [21] for more interesting results and
details. Several results were focused on sub-elliptic systems. Capogna and Garofalo [22],
and Shores [23] considered the quadratic growth case, and Foglein [24], Wang and Niu
[1], and Wang and Liao [2] treated non-quadratic cases. We note that the assumption of
Holder continuity on the coefficients A¥ is required for those regularity results of sub-
elliptic systems mentioned above.

When the assumption of Holder continuity of A is weakened to Dini continuity, one
may ask how to establish partial regularity for the nonlinear sub-elliptic systems under
superquadratic controllable growth conditions in the Carnot groups. This paper is de-
voted to this topic. To define weak solutions to (1.1), we assume the following structure
conditions on AY and B%:

(H1) The term A% (&, u,p) is differentiable in p, and there exists some constant L such
that

m=2

’A‘?‘Ij (E,u,p)‘ §L(1+ |p|2) T, & u,p) € 2 x RN x RPN 152, (1.4)
“Pp

. DAY (&,u,p)
where we write A% . (§,u,p) = ————.
" & up)=—" ¥
(H2) The term A¢ (&, u, p) is uniformly elliptic, i.e. for some A > 0 we have

a o m=2 X
A Ewpriny = AL+ Ipl)" " nl, vy e ROV, (L5)
B
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(H3) There exist a modulus of continuity u : (0, +00) — [0, +00) and a nondecreasing
function « : [0, +00) — [1, +00) such that

(1+1pl) "2 [AS (€ u,p) - AT E i p)| < e (lual) e (d(E, E) + | — ). (1.6)
(H4) The term B* satisfies the superquadratic controllable growth condition
[B* (6, u.p)| < c(L+Jul™" + |pI™0"), (L7)

where c is a positive constant, and r = Qm_—?n ifm<QorQ=<r<+xxifm=Q.
Without loss of generality we can assume « > 1 and that

(1) p is nondecreasing with u(0+) =0, u(1) =1;

(12) wis concave, in the proof of the regularity result we have to require that r — r~ u(r)
is nonincreasing for some exponent y € (0,1);

(#3) Dini’s condition M(r) = for % dp < oo for some r > 0.

Note that (H1) one infers

m=2
2

|AY (&, u,p) - AF (&, u,p)| < CL)(1+Ipl* +1p1*) = Ip-Dl, (1.8)

and there exists a continuously nonnegative and bounded function w(s,t) : [0,00) X
[0,00) — [0, 00), where w(s,0) = 0 for all s, and w(s,t) is monotonously nondecreasing
in s for fixed ¢; w(s, £) is concave and monotonously nondecreasing in ¢ for fixed s, such
that for all (€, u,p), (€, p) € 2 x RN x RN,

m=2
2

4% @ uwp) =A%, Ewp)| < C(L+ pI* +15P) 7 o(Ipl Ip - pP%). (19)
B B

Further (H2) allows us to deduce the following inequality; see [1] for more details:
(A;I(Sr M,P) _A?(Sr I/l,ﬁ))(p _15) > )"0(|p _l~9|2 + |P _p|m), (110)

with a positive constant 1.
To obtain partial regularity for weak solutions, the key point is to establish an excess-
decay estimate for the functional

(&0, py o) =][ (1Xut = po [*+1Xit - pol™) dE, (L1
Bp(io)

here we write pr (&) WAE = |B,(80) I/, B, (&) u dg, which itself leads to the continuity of the
horizontal gradient Xu of the weak solution « via the integral characterization of continu-
ity by Campanato; see [19]. Since the non-commutative basic vector fields {X;} of Lie alge-
bras corresponding to the Carnot group are more complicated than gradient vector fields
{3%} in the Euclidean space, we have to find different auxiliary functions in treating sub-
elliptic systems. Besides, the non-horizontal derivatives of weak solutions will appear in
the Taylor type formula on the Carnot groups and cannot be controlled under the present
hypotheses. So the method employing Taylor’s formula in [7] cannot trivially be adapted
to our cases. We apply the Poincaré type inequality in [25] instead of Taylor’s formula, and
we establish the main results.
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Theorem 1 Assume that coefficients AY and B* satisfy (H1)-(H4), (11)-(u3). Let u €
HWY(Q,RN) be a weak solution to the system (1.1), i.e.,

/ A%(E, u, Xu)X;0" dE = / B (&, u, Xu)p” d& Vo € C°(Q,RY). (1.12)
Q Q

Then there exists a relatively closed set Singu C Q2 such that u € C'(Q2\ Singu, RN). Fur-
thermore, Sing u C Xy U Xy and Haar meas (2\ Sing u) = 0, where

¥ = {go eQ: su(;))(lugo,rl + | (Xu)ey r|) = oo},
>

r—>0t

T, = {go eQ: lim inf][ | Xt — X, | dE > o}.
Br(fo)

In addition, for t € [y,1) and & € Q\ Sing u the horizontal derivative Xu has the modulus
of continuity r — r* + M(r) in a neighborhood of &.

2 Preliminaries

A Carnot group G of step r is a simply connected, nilpotent Lie group whose Lie algebra G
admits a stratification, i.e., G = V1@ V2@ ---® V", such that [V, V] = VIl j=1,...,r -1,
and [V, V"] = {0}. Let Xf denote a left-invariant basis vector field of V! with1 <[l <r
and 1 < i < my;, where m; is the dimension of V'. For the sake of simplicity, we let X; = Xil,
k =my, X = {X1,..., Xi} be the basis of left-invariant vector fields of V!, and denote by Vg =
(Xa,...,Xk) the sub-elliptic gradient. We will say that X; (i = 1,...,k) are the horizontal
vector fields with the form

Xi=0;+ Yy ag&)d,  X(0)=0, (21)
j=i+l
where a;;(£) is a polynomial in . For a vector valued function u = (..., uN): G RN,

we let X;u® (i=1,...,k, @ =1,...,N) be a horizontal direction derivative, and say that Xu
is the horizontal Jacobian with entries X;u“.
Denoting

g=(£,6%...,8)= (x%,xé,...,xfm;xf,.‘.,xfnz;...;x{,...,xfnl) eG,

the distance from the origin is defined by

r mj rTV %
d(s):{Z(DxﬂZ) ] : (2.2)

=1 i=1

For any £, € G, we set d(£,n) =d(n~! 0 &), where n! = - = (-n},..., —1") is the inverse
of n, and o is the multiplication rule in G defined by & of =£+E£+PE,£) & E € G, where
P:G x G+ G has polynomial components.

We denote by wg = |B(£y,1)|¢ the volume of unit pseudo-ball. Then the volume of
the pseudo-ball Br(&) = {n € G|d(£y,&) < R} is given by |B(&o,R)|g = wgR?, where Q =
>, Im is the homogeneous dimension of G.
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The horizontal Sobolev space HW?(Q) (1 < p < 00) is defined as
HW'Y(Q) = {u e I7(Q): Xu € I/(Q),i=1,2,...,k}.

Then HW'#() is a Banach space with the norm
k
el prwroey = lutllre + Y Xt r(e)- (2.3)

i=1

Lu [25] showed the following Poincaré type inequality related to Hérmander’s vector
fields for u € HW4(Bp(£0)),1<g<Q,1<p < 5—_qu

1 1
(][ |u—u§0,R|pd§>p < C,,R(][ |Xu|qd“§)q, (2.4)
Br(%o) Br(&o)

where ug) ¢ = fBr(So) udé = |Br(‘§o)|&1 fBr(éo) udé. Note the fact that the horizontal vectors
X; defined in (2.1) fit the Hormander’s vector fields, and that (2.4) is valid for p =g =m

(=2).
Let 0 < m,q < oo, f € L"™(Q2) N L(£2). By Holder’s inequality, it follows for any r with
m<r<q
1l < I W1 2.5)

E .
Following [12], for technical convenience, letting 1(£) = 12(+/£), we have the correspond-

where0<a<1with%=1‘7“+

ing properties for n: (1) n is continuous, nondecreasing and 1(0) = 0; (»2) n is concave,
and r — r~75(r) is nonincreasing for some exponent y € (0,1); (n3) H(r) := 4M?(\/7) =

r A/1(p)
[fo 55— dpl?
assume that (n4) n(1) = 1, implying n(¢) > ¢ for ¢ € [0,1].

< 0o for some r > 0. Changing « by a constant, but keeping « > 1, we can

From the fact that 5 is nondecreasing we conclude sn(t) < sn(t) forall 0 <t <s. We use
the nonincreasing property of r — @ and 7(1) <1. Combining both cases we get

sn(t) <sn(s)+t, se[0,1],¢>0. (2.6)

From (n2), we deduce for 6 € (0,1),£>0,j € N U {0},

2 ) 0%t 12(9% 0%t 172
2 (1= 07)n"(6%1) - / a7 o / 2@
14

620+ (CRI e 02+, T

which implies

= 1/2 (52 14 “n'(2) _ 14 1/2
Zn (0 1t)§2(1—0V)/0 . dt_Z(l—GV)H ().

=0

~.

It yields particularly that n(z) < %H (¢) for all t <0, and ¢ +— ¢tV H(t) is also nonincreas-
ing.
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In the sequel, we let pi(s,£) = (1 + s + £) 'k (s + £)™, and Ki(s,£) = (1 + £)*"«*(s + ¢t) for
s,t > 0. The constant C may vary from line to line. Note that p; <1 and that s — p(s, t),
t — pi(s, £) are nonincreasing functions.

3 Caccioppoli type inequality

In this section, we begin by introducing the A-harmonic approximation lemma, and the
proof is similar to [7], also see Foglein [24] with p = 2 in the Heisenberg group. We mainly
prove the Caccioppoli type inequality for weak solutions of the systems (1.1) with control-
lable growth conditions.

Lemma 2 Let A and L be fixed positive numbers, and k, N € N with k > 2. Assume for any
given € > 0, there exists § = 5(k,N, A, €) € (0,1] with the following properties:
() for any A e Bil(R*N) satisfying
AW, v) = Av|> and AW, b) <L|v|[p], v,beRN, (3.1)

(10) for any w e HWY(B, (&), RN) satisfying

7[ |Xw|>dé <1 and (3.2)
Bp(éo)

A(Xw,Xga)dé’ <& sup [Xgl, Ve e Cy(B,(&),RY). (3.3)

Bp (50) B/)(éo)

Then there exists an A-harmonic function h such that

][ |Xh*de <1 and p*2][ |h—w|*dE <e. (3.4)
Bp(f()) Bp(éo)

Shores in [23] established the following prior estimate for the weak solution u to the
sub-elliptic systems with constant coefficients in Carnot groups:

2
sup (Jul® + P21 Xul? + p* | X?ul") < C0p2][ | Xu|? dt. (3.5)
Bya (o) By(&0)

Lemma3 Letu € HWY(Q,RN) be a weak solution to the system (1.1) under the conditions
(H1)-(H4) and (11)-(n3). Then for every & = (€},&2,...,&5) € Q, ug € RN, pg € RON and
0<p<R< ,01”‘/2(|u0|, |pol) <1 such that Br(&) CC R, the inequality

/ (1Xut = po [ + | Xuu — po|") di
B,o(%‘o)

Cc 1 1 2
< —uy— (E' - d
< /BR@O)W o — (' - £4)po|” de
+L/ |u — o — (€' =& )po " dE
(R =)™ Jxieo)
o)
+ CcwgROKy (1o, Ipol)n(R?) +cc[/ ( )(1+ lu|” + |Xu|’”)d§:| (3.6)
Br(o

holds, where &' = (&1, €1,...,&L) is the horizontal component of § = (£',...,€") € Q.
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Proof We test the sub-elliptic system (1.1) with the testing function ¢ = ¢?v with v = u —

uo— (' —£})po, where ¢ € C3°(Br(&), RY) is a cut-off function satisfying 0 < ¢ <1, |X¢| <
S, and ¢ =1 on B, (&). This yields

/ A&, 1, Xia) 6 (X - po) d = =2 /
Bgr(%0)

Bg(%o)

+/ B(&, u, Xu)p® d§.
Br(&o)

PXPA] (&, u, Xu)v dé

Adding this to the equations

- / A&, 1y o) (Xit — po) dE =2 /
Br(&o)

QXA (&, u, po)vdE
Br(0)

_ / A%, po) X dE
Bgr(&o)

and
0= / Af (50, 10, p0)X9®, (3.7)
Br(&0)
we have
/ [A?(f,M,XM) _A;‘x(%': uypo)](ﬁz(XM—PO)d%'
Bgr(&o)
= 2/ [A;"(S,u,po) —A?‘(é,u,Xu)]qﬁvXq&dé
Br(§o)
* /B o [A7 (&m0 + (5" = & )po,po) — A (§,u,po)| Xo® d§
RS0
+ / . [A (€0, 10, p0)-AS (5,40 + (§' = &) po, o) | X d
Br(o
+ / BY(&, u, Xu)p* d&
Bgr(&o)
= [+ I+ +1V+V, (3.8)

with the obvious labeling for 7-V.

The left hand side of (3.8) can be estimated via the uniformly elliptic condition (H2)
(also see (1.10)),

Ao / (1Xu = pol? + | Xit - po|™)? d
Br(&o)

< / [A% (&, 1, Xus) — A&, 6, po) | (Xut — po)? d. (3.9)
Bpr(&o)
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For ¢ > 0 to be fixed later we have, using the version (1.8) of (H1), and Young’s inequality,

m=2
I<2C(L) (1+ [Xul® + |pol®) 2
Br(€o)

|Xu = poll@|IvIIXo| d§

C
§Cs/ |Xu—po|2|¢|2ds+—2/ |v|* d&
Br(&0) e(R=p)* Jp(eo)

m C
+C8/ | Xu — po|™|p| T dE + ﬁ/ |v|"™ dt. (3.10)
Bgr(£o) " (R - p) Bgr(£o)

Using Jensen’s inequality, (2.6), and the fact that n(ts) < tn(s) for t > 1, we arrive at

(1+1pol) "k?() n(IvI?) dé
Br(&o)

5wGRQ2[(1+|p0|)’”K2(.)R2]n(][ |v|2ds)
Br(&o)
< wGRQ-Z[][ vI*dE + (1+ |pol) "k > (VR n((1 + |P0|)mK2(')R2)]
Br(&o)
<R / WP dE + w6R(L+ [pol) " (n(R), (3.10)
Br(&o)

where « (-) is abbreviation of the function « (|ug| + |po|). Also note that (2.6) in the second

last inequality is applied with the assumption R < p"?(Juq|, |po|) < 1.

Using the Dini continuity condition (H3), Young’s inequality, and (3.11) in I, we obtain

11 < (1+1pol) ¥ « (luol + Ripo) / () = i,
R\SO

< s/ \Xu — pol*|¢1*dé + 7' (1+ |P0|)ml<2(')/ n(|vI*) dg
Br(%0) Br(&o)

1
58/ |X”—Po|2|¢|2d€+—2/ |v|* dg
Br(0) e(R=p) B0

+&e " wgR(1 + |p0|)2mfc4(~)n(R2).

(3.12)
Similarly,
m 1
11152(1+|P0|)2K(|140|+R|P0|)/ n2 (V) IvIIXl|p| d,
Br(&0)
< C [ wide e (Ueipl)"i6) [ n(v?)ae
(R~ p)* JBaizo) Bp(éo)
C / 2 2m 4 2
<— V2 dE + wgR2(1 + |pol) " k*()n(R (3.13)
(R=p)* Jr(eo) R {1+ Ipo) (%)
and
IV < (1+ |pol) 2k (luo| + Rlpol)

’ /B € >"% (R*(L+ lpol”)) [1Xu — pol¢” + 210 1vI1 X9 [] d
R\50
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Ce
S N e R
Br(&o) (R=p)? Jpgieo)

+26 7 wgR1 + |p0|)m,c2(.)n<][
Bgr(&o)

Ce
<o [ u-plioldss s [ wpde
Br(&o) (R=p)? Jgieo)

+ 267 wgR(1 + pol) " it (I (R?), (3.14)

R*(1+1pol®) ds)

where we have used ¥ > 1 in the last inequality.
Finally, the term V can be estimated by using the controllable growth condition (H4),
Holder’s inequality, and Young’s inequality. This yields

V< c/ @+ |l ™ + [ Xu ") g dE
Br(&o)

1/r (r=1)/r
< c(/ |¢|’ds) (/ (Lt ful + |Xu|’”)ds)
Bgr(&o) Bgr(&)
1/m (r-1)/r
< c</ IXsol’”d$> (/ (L lul” + | Xul™) dé)
Bpr(&o) Br(&o)

m(r-1)/r(m-1)
55/ |X¢|mdé+C(£)</ (1+|u|’+|Xu|"’)d$>
Bgr(éo) Br(éo)

2"-1Ce
szm-le/ |Xu—po|'“|¢>|””d5+—m/ IvI" d
Bgr(&o) (R-p) Bgr(o)

m(r-1)/r(m-1)

+ C(e)(/B o (L + [ul” + [ Xul™) dg) , (3.15)

where we have used the fact [X¢|” < 2" 1(¢™| Xu — po|™ + m [v|™).

Applying these estimates to (3.8), we obtain

A / (1Xut = pol + | Xut = po ") §° d
Bp(éo)

(C+1)(e+e™) / ) C(el™ +2m71) /

= - dg + —————— "d
SR o E TRy Br(&0) e

+ (3¢ +1)wgRY(1 + Ipo|)2mK4(')77(R2)

m(r-1)/r(m-1)

+ C(E)(/ ( )(1 +|ul” + |Xu|m) d%‘) ,
Bp(éo

where A = %o — (C + 2 + 2" 1)e. The conclusion follows by choosing suitable ¢ such that
A > 0. We refer to [7] for a similar and detailed argument. O

4 Proof of main theorem

In this section, we will complete the proof of the partial regularity results via the following
lemmas. In the sequel, we always suppose that u € HW"(Q, RN) with m > 2 is a weak
solution to (1.1) with the assumptions of (H1)-(H4), and (u1)-(u3). First of all, we provide
a linearization strategy for nonlinear sub-elliptic systems as in (1.1).
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Lemma 4 Let B,(&) CC Q with p < p (luol, |pol) and ¢ € CF(B,(&),RN) satisfying
lo| < p? and SUPg, (&) 1 Xel <1. Then there exists a constant Cy > 1, such that

L,

][ A 6o, po) et o)X d
By (&0) B

< Ci[® (&0, pspo) + wm (Ipol, @ (o, P»po))q)% (0, 0,p0)

+ F(luol, lpol)n? (0%)] sup |Xgl, (4.1)

Bp(EO)
where F(s,t) = Ki(s,) + (1+ s+ £) and Cy = 2”5 (C(L) + 2¢ + 4 + 2C,) > 1.

Proof We first write
1
’A?(i:Or MQ,XM) _A?(é:o; UO;pO)’ = / Aap] (goy Uuo, OXu + (1 _e)po)(Xu _po)de
0o g

Noting that f By(&0) A% (&o, 1o, po) X d& = 0 and using the weak form of u, we conclude

][ A G, po) O po) X d
B,a (EO) b B

1
<][ |:/ (Aa : (go,uo,po)—A"X ; (%‘0,”0,0XM+(l—e)po))(Xu—po)dQ] d%‘
Boeo) LJo P 7y

x sup |Xo
Bp(fo)

+][ [AY (8o, uo, Xu) — A (&, u0 + po(& — &), Xu)] sup |Xg|
Bp(fo) Bp(éo)

. ]‘ [A% (£, 110 + Po(& — £0), Xit) — A(&, 10, Xu)] sup X
Bp (EO) Bp (50)

+ ][ B*(&,u, Xu)p® d&
Bp(éo)

=T +I0 + 1T + 1V, (4.2)

with the obvious meaning of I-IV. In order to estimate the term /, we use (1.4) and (1.9)

to first get

1,01

|A% ; (&0, 0, po) — A* ; (o, 10, 0 X1 + (1 —9)P0)|M+(1 2
"1;/3 z,p/ﬂ

m=2

m=2 1
<[C(+1pol + |[6(Xu = po) + po|*) = @ (Ipol, |6(Xus - po)|})]”

m=2 m=2_1 1
m

x [L(l + |p0|2)T_ +L(1+ |9(Xu—p0) +p0’2) 2 ]

[

m=2 1
< CL)(1+1pol®) 7 1Xu—pol” w7 (Ipol, |Xu - pol*). (4.3)
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Using (4.3), Holder’s inequality, the fact that t — ?(s, £) is concave, and Jensen’s inequal-

ity, we have

N

I'< C(L)][ ™ (1Dl 1Xit - pol?) Xt = pol™™ sup |Xo| dé
Bp(éo) Bp éO)

m=1

1
<CL) sup |X<p|[f w(|P0|,|XU—P0|2)d§:| {f |Xu—po|’"ds}
Bp(EO) B,o(EO)

B,a (EO)

m=1
m

1
<CL) sup [Xplon <|po|, ][ |Xu—po|2ds){ ][ |Xu—po|mds}
Bp(%'o) Bp(¥0) Bp(fo)

< C(L)o" (|pol, D(Eo, 0,90)) 2 (B0, . p0) sup 1Xel, (4.4)

Bp (SO)

where we have used the fact - <2 and the assumption ®(&, p, po) < 1.
The term II’ can be estimated using the Dini continuity condition (1.6) and the fact that
n(ts) < tn(s) for t > 1. We have

m
2

< sup WolkOu(p(U+ pol) F - (Ue ) ¥ s
By (o) By (&)

SN

< sup [Xgle()(1+ |po|)n%(p2)f3 (ol e pol)
S0

By (§0)

m=2

=2"7 sup [Xgl[c()(1+ Ipol)" 0¥ (02) + €2() (1 + Ipol)*n(0?)

Bn(fo)
+][ |Xu—p0|md§]
Bp(so)
< 2" [ D&, p,po) + 22 () (1 + Ipol) "% 0 (0?)] sup [Xgl, (4.5)

Bp (SO)

where we have used the fact that n(p?) < n% (02), which follows from the nondecreasing
property of the function 7(¢), (n4), and our assumption p < p; <1.

Similarly, it follows that by using (1.6), (3.11), and the Poincaré inequality (2.4) in the
special casep =g =2
7

/ 1
' < sup [Xel £ kO (W) + Xu)
B, (&0) By (80)

d§

[}

m—

<277 sup |Xgo|[][ | Xu — po|™ dE + () n(vI*) dé
Bp(%) Bp(%0) By (&)

()L |190|)%]i RACE ds}

[

m—

<27 sup |X90||:q>(§0»0f190)
Bp(fo)

+ 2p’2][ VP d +*On (%) + O 1+ Ipol) 02 (pz)}
Bp(So)

m=2

52_ sup |X‘P||:q)(§0;ﬂrl70)
B,U(SO)
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+ 2cp][ |Xu— po 2 dE + 26c*(-)(1 + Ipol) "0 (pz)]
Bp(é:o)

=25 (142600060 pop0) + 260Ut o) "1 ()] sup X 4.6

Note that by the assumption SUPg, (&) lp| < p? <1 and (n4), we have

V' < c][ (1 + ul™™ + [ Xu ™) || dE
Bp(éo)

_ —1
< c][ X0 | +c][ = 1o - po(&" — £) | i
Bp(éo) Bp(fo)

+cp?[1+ (luol + plpol) ]
ﬂ

gc(][ Xit = pol" d (f |¢|’ds)
B, (&0) By (&0)

r-1

r-1 1
+c(][ |po|’"ds> (][ |¢|’ds)
Bp(EO) Bp(io)

r=1 1

+c(7[ |Xu—Po|md§) (][ |¢|’ds) +ep*[1+ (1ol + Ipol) ']
By (&0) By (&0)

r—

r=1 1
szc(f |Xu—po|mds) (f |<p|’ds)
Bp(EO) Bp(fo)

r—

+ep*[1+ (luol + Ipol) ™ + |pol™@ 7]

(0*)[(1 + luol + Ipol) ], (4.7)

—

ol

< 2c¢® (&0, p,po) + 2cn

where we have used r —1 > m(1 —1/r) and n(s) <1 for s € (0,1].
Combining the estimates (4.4)-(4.7) with (4.2), we obtain the conclusion with C; =
2" (C(L) + 2¢ + 4+ 2C,). m

The following lemma is to establish the excess improvement of the functional ® as in
(1.11). The strategy of the proof is to approximate the given solution by A-harmonic func-

tions, for which suitable decay estimates are available from the classical theory.

Lemma 5 Assume that the conditions of Lemma 2 and the following smallness conditions

hold:

8
, @ (80, 0, (Xtt)gy ) + @12 (80, 0, Kit)gy ) < X

w7 (|ttgy,p | + | (X10)gy,p

CoF* (|utgo o

(Xut)zo,0] )0 (%) < 6%, (4.9)
with Cy = 8C12C4, together with the radius condition

p < P72 (1+ |ugy ol 1+ | (Xt)gy ) (4.10)
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Then we have the following excess improvement estimate with t € [y,1):

(0, 0p) < 0% D (o, p) + K*(lugg,p, |(Xur)gy, p |)”(p%),

where we have abbreviated ®(&,r) = ®(&o, 1, (Xu)z, ), and K*(s,t) = C;F2(1 +5,1 + ).

Proof We define w = [u — ug, , — (Xtt)g, ,(§* — €})]o ™!, where

0 = Ciy/ D (&0, p) + 452F2 (jugy

Xu)eo,p |)1(0%) (4.11)

with C; > 1 in Lemma 4. Then we have Xw = 07! (Xu — (Xu)g,,). Now we consider
B, (&) CC Q such that p < p; (|ugy |, [(Xut)g,,p|) < 1. It yields

1
][ |Xw|>dé =02 ®(&,p) < — <1 (4.12)
By (&) &

1
Applying Lemma 4 on B, (&) to u, we have, for any ¢ € C°(B, (&), RN),

][ A‘.x/ (Eo,ugo,p,(Xu)go,p)Xngo d&
By(€0) “PB

1 )
< [¢1/2(so,p) + w7 (|(Xu)gy |, P (0, ) + 5] sup 1Xgl. (4.13)

Bp(SO

In consideration of the smallness condition (4.8), we see that (4.12) and (4.13) imply
the conditions (3.2) and (3.3) in Lemma 2, respectively. Also note that assumptions (H1)
and (H2) with u = ug,,, and p = (Xu)g,,,, imply the conditions (3.1). So there exists a

A‘?‘/ (%0, gy, p» (Xu)g, »)-harmonic function 1 € HWV%(B, (&), RN) such that
YPp

][ |Xh2de <1 (4.14)
By (o)
and

,0’2][ |w—h|>dE <e. (4.15)
Bp(fo)

Using Lemma 3 on the ball By, (&) with uy = ug,29,, 6 € (0,1/4], and replacing p, by
(Xu)g,,p + 0 (X)g, 200, We obtain

/ (!Xu - (Xut)zy,0 — 0 (XN)zy,20 ’2 + |Xu — Xu)gy,p — 0 (Xh)gy 200 ’m) dg
Bop (&)
C.
<
(6p)?
C.
(©0)" J By te0)

+ Cew(200)[Ki(|ugy 200 | |(Xtt)gy,0 + 0 (XH)go.26, | ) 1((260)%) ]

/ |1t = gy 26 — (X  + 0 (XM 26) (6~ 80) |l
Bagp(&0)

+ |t — gy p0p — (Xut)gy,p + 0 (X)gy 00p) (' — £5) | dE
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m(r-1)/r(m-1)
+CC|:/ (1+|u|’+ |Xu|'”)d§]
Bagp(€0)

=0+ 0+ o’ + 1v”. (4.16)

Note that the smallness conditions (4.8)-(4.9) imply 02Cy(= C}C4® + 3 C,F?n8~%) < 1 with
C4 = max{Cy, (20)~2}, where we have assumed %Clz C,8?% <1, which is no restriction. Then

it follows by applying the prior estimate (3.5) for the .A-harmonic function 4

1
2
|o(Xh)gy20p| <0 sup |Xh|§o\/C0<][ |Xh|2d§) <oyCo <L (4.17)
BP(EO)

Bagp(&0)

Furthermore, it follows by Poincaré inequality (2.4)

|Ugo,200] =< lthgg, 0| + [Uheg,20p — U,

1/2
< lugy,ol +(20)79 (ﬁ o | = Xu)e, 0 (8 - &) - uso,p|2ds)

< lugy,p| +(20)"Y2pC, @2 (&, p)
O'Cp
Q
C1 (29) 2

< lugy,p| + 0/ Ca < lugy | +1, (4.18)

= |u€o.P| +

where we have used the definition of o (4.11) and the fact C; > C,,.

Recall that g(7) = wap(EO)(u - 7)?d§ has a minimal value at T = ug; 2,. Noting that u —
((Xu)gy,p + 0 (XH)gy200)(EL — £}) has mean value ug, 29, on the ball By, (&), and using the
definition of w, and Poincaré inequality (2.4), we have

1
00 Js000 [ = azo 200 = (K)o p + 0 (X 0) (8" = 83) |
20p 50

402

<— |W—h|2d5+][ h = hgy06p — (XM 20 (' — &5 zdf]
(20p) []izep(éo) Bzep(€0)| o ’ p( 0)|

< 402[(29)_Q_28 + C2(26p)? ][ | X2h|? dé]
B

200 (50)

< C3(079 % + 67)[D(€0, p) + 48 F (|uzg

(Xu)so,[)n(0%)]; (4.19)

where C; = C12(2‘Q + 16C[2, Co) > 1, and in the last inequality we have used the definition of
o (4.11) with ug = ug, 205, and the fact that

][ |X?h|dé < sup [X?h| < copfz][ |Xh|?de < Cop™2.
Bagp (60) p(50) By (&0)

Then it follows

I" < CGCew6(20p)2(07% e + 6%)[@(50, 0) + 482 F2 (|t

(Xtt)zo,p )0 (0%) ]
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For 2 < m < Q, we have %—mm = % < % < % Then there exists ¢ € (0,1) such that % = %(1 -
)+ %t. Using (2.5), (2.4), Young’s inequality, and (4.19) in turn, we have

][ |1t = gy 200 = (Xit)eo.p + 0 (Xh)go 200) (6 = &) | A&
Bagp (50)

-0
< [][ |1t — gy 20p — (Xua)gy,p + 0 (Xh)gy 20p) (' = &) |2 d$i|
Bagp(£0)

m
1
mF

8 [f | = ey 20y — (Xt + 0 (X)gg 20) (8" — 60" B ]
Bagp(€0)

<{(00)*C3[07% e + 02][ @ (&0, p) + 487 2F? (|ugy |, | (X)) 1 (%) ] }(17:)%

x ( Cr(26p)" | Xt~ ((Xu)gy,p + 0 (Xh)gy 20p) | dE
Bagp (60)

< (e7(2C)™) r {(0p)*C5[07 % + 6]

X [®(50, p) + 4872 F? (Jugy,p |, | (Xir)eo 0| )1(0%) ]}

+&(0p)" ][ ’Xu - ((Xu)go,p + U(Xh)go,zgp) ‘m d&
Bagp (60)
< (2C)"™) T (Co)# (0p)"[070 %6 +67]
x [ (€0, 0) + 4872 F2 (Jugy,p, | (X1t)go )11 (0%) ]
+&(0p)" ][ |Xu - ((Xu)go,p + O’(Xh)goyz@p) |m dé, (4.20)
Bagp (50)

here we have used the assumption 02C,4 < 1. Furthermore, we obtain the estimate for the
term I1”,

1 m
II" < C.w(20p)° (sH(2C,)™) TF(C3) 2 [679 % + 67]

x [@ (&0, p) + 487 F> (Jugy o, | (X)) 1 (0%) ]

+eC, / |Xu — ((Xu)e,,p + 0 (Xh)gy 205) | dE. (4.21)
Bagp (50)

Also, (4.17) and (4.18) yield

II" < Cowg(20p) [ Ky (1 + ugypl, 1+ |(Xu)gy,p| ) 1((260)%) ]

< Cew(20p)°F (1 + |ugy o1, 1 + |(Xu)g | )n((200)?).

Using the Poincaré type inequality, we have

m(r=1)
m(r=1)

r(m=-1)
|:f (|Xu|"‘+|u|’+1)d“§]
Bagp (60)
-1 m(,

< [2'"-1][ (Xt - (Xuey | ™) d§:|r(m (@ (X, |
Bagp (50)
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m(r-1)
r(m-1)

+ [][ 2”1(|u—u50,p _(X”)Eo,/)(gl —53)|r) dé:|
Bagp (§0)
)
[0+ 27 gy, + (X (€' = £)[ )] 70D

m(r-1)
r(m-1)

1

m o =)
= CI:(ZQ)Q]i o (|Xu _ (Xu)so,p’ )d§i| + (zm—l‘(Xu)go,p’ )r(m—l)

—

r—
=

i

+C[(29)‘Q][ ( )|Xu—(Xu)gO,p| ds] +[(1+ 277 agy,p + X)gy,p|")] 70D
Bp o0

g mlr-1)
= C[(ze)_QqD(EOI :0)] oD 4 C(l + |M§0’p| + |(Xu)€0’p )r(m—l)

m(r-1)
< C(2+ lugy,pl + | (Xn)gy | ) 7D, (4.22)

where in the last inequality we have used the fact (20)"2®(&, p) < 1, implied by the as-
sumption 02Cy < 1 with C4 = max{Cy, (20)~?}. In view of % + V;”—i(l -1< %, we
have

IV" < Carg(20p)2F T (1 + |ug, |,

Xw)ey,|)1(20p)7T), (4.23)

where we have used % <Q+ % and (20p)m-1 < r]((29,0)%).
Joining the estimates of I”, II”, III”, and IV" with (4.16), we obtain

/ | Xt — (Xut)ey,p — 0 (Xh)gg 20, | dE
By, (&0)
+(1-C.e) | Xu — (Xu)gy,p — 0 (Xh)gy 0, | dE
Bgp(&0)
< Cc(Cg)%w(;(29p)Q[((2Cp)W8_t)1%‘ +1][67% e +67]
x [® (€0, p) + 4872 F> (|ugy,p), |(X)g,p | )1(07) ]
+ chg(29,o)QF2(|u50,p [,1+ ‘(Xu)éo,p ’)n((29,0)2)
+ ng(zep)QF’(m—WiU (1 + Uy s (Xu)go,p‘)n((%p)%)

Xu)eo,p|)11(0%)]

< Cs06(20p)[07% e + 0%][@(50, p) + 487 F2 (|t

+ Carg(200) 2 (1+ [t 1,1+ | (Xt Y (0 77),
where Cs = C,(C3) % [((2C,)™ &)™ +1] > 1.
We set P = (Xu)g,,», + 0 (Xh)g, 200 Choosing a suitable small ¢ > 0 such that (1 - Cc¢) > 0,

and considering the smallness condition (4.10) (it implies p < p1(|ug, 20,1, |P]), see (4.17)
and (4.18) above), we deduce that

@ (€0, 00, (Xi)ey.61)

-/ (= G P+ = G|

5][ (IXu - P|* + | Xu - P|"™) dé
Bgp (60)

Page 16 of 18
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< Ce[079 e +07][® (60, 0, (Xuu)gy ) + 487 (%) F* (1o, | (Xt 0)]
+ CeF2(1 + lugy,pl, 1+ |(Xu)gy | ) 0 (p71), (4.24)
_c52R
where Cg = ca > 1.
For a given 7 € [y, 1), we now specify & = 624, 0 € (0,1/4] such that 2C¢6% < 6%, Then
we have

(60, 6p) < 07 (6o, p) + (8Ce878 7 + Co) F (1 + ugy o1, 1+ | (Xiu)gy o[ 1 (077
< 0% (%, p) + CrFX (1 + |ty p |, 1 + | (Xua)gy | )1 (07T )

1= 0% (&0, p) + K* (|, p, | (Xta)zy | )1 (07T), (4.25)

where C; = 8C46%572 + Cs > 1 and K*(s,t) = C;F?(1 + 5,1 + t). Then the proof of Lemma 5

is complete. O

For T > 0, we find ®¢(T) > 0 (depending on Q, N, A, L, 7, and w) such that

wn (2T,200(T)) + 2<1>§(T) < %5 and (4.26)
2(1+/Cp)y/ @o(T) <09 (1-67)T. (4.27)

With ®¢(7) from (4.26) and (4.27), we choose po(T) € (0,1] (depending on Q, N, A, L, 7,
w, n, and k) such that

po(T) < p"?(1 + 27,1+ 27), (4.28)
CF*(2T,2T)n(po(T)*) < 8%, (4.29)
Ko(T)n(po(T)?) < (6% —6°7)@o(T) and (4.30)
2(1 + C,)Ko(T)H (po(T)?) < 62(1-67)? (6% - 677) T?, (4.31)

where Ko(T) := K*(2T,2T).
By the proof method of Lemma 5.1 in [12] and conditions (4.26)-(4.31), Lemma 6 can
be proved. As we know, it is sufficient to complete the proof of Theorem 1 once we obtain

Lemma 6.

Lemma 6 Assume that for some T > 0 and B, (&) CC Q2 we have

(1) lugy,pl + [(Xtn)g,p| < Tos

(2) p =< po(To);

(3) @(&o, p) < Po(T0).
Then the smallness conditions (4.8)-(4.10) are satisfied on the balls B (&) for j € N U {0}.
Moreover, the limit Ag, = limy_, oo (Xu)g, 47, exists, and the estimate

2t
][ Xt — Ag, [ d < cg((f) (&0, p) +H(r2)>
By (&) P

holds for 0 < r < p with a constant Cg = C3(Q,N, A, L, 7, T).
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Proof The proof is very similar to the proof of Lemma 5.1 in [12]. We omit it here. O
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