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1 Introduction
The viscous primitive equations are a fundamental mathematical model of geophysics that
describes the large-scale ocean and atmosphere dynamics, see, for instance, the mono-
graphs [–]. The model reads as follows:

⎧
⎪⎨

⎪⎩

∂tu – ν�u + �e × u + (u · ∇)u + ∇p = gθe in R
 × (,∞),

∂tθ – μ�θ + (u · ∇)θ = –N u in R
 × (,∞),

div u =  in R
 × (,∞),

(.)

where the unknown functions u = (u, u, u), p, and θ denote the fluid velocity, pressure,
and thermal disturbance, respectively, and ν , μ, and g are the positive constants of vis-
cosity, thermal diffusivity, and gravity, respectively. Moreover, � is the so-called Coriolis
parameter, a real constant which is twice the angular velocity of the rotation around the
vertical unit vector e = (, , ), and N is the stratification parameter, a nonnegative con-
stant representing the Brunt-Väisälä wave frequency. The ratio P := ν

μ
is known as the

Prandtl number, and B := �
N is essentially the “Burger” number of geophysics. We refer

the reader to [, , ] for derivation of this model and more detailed discussions on its
physical background.

If θ ≡ , N = , and � = , then (.) reduces to the classical incompressible Navier-
Stokes equations

{
∂tu – ν�u + (u · ∇)u = –∇p in R

 × (,∞),
div u =  in R

 × (,∞),
(NS)

which have drawn great attention during the past fifty more years. It has been proved
that the Cauchy problem of (NS) is globally well posed for small initial data in a family of
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function spaces including particularly the following ones:

Ḣ


(
R

) ↪→ L(
R

) ↪→ Ḃ
–+ 

p
p,∞

(
R

) ( < p < ∞) ↪→ BMO–(
R

);

see Fujita and Kato [], Kato [], Cannone [], and Koch and Tataru []. These spaces are
called critical because their norms are invariant with respect to the following scaling:

(
uλ(t, x), pλ(t, x)

)
:=

(
λu

(
λt,λx

)
,λp

(
λt,λx

))
,

which is related to the Navier-Stokes equations themselves. More precisely, if (u, p) is a
solution of (NS), so is (uλ, pλ). Note that the literatures listed here are far from being com-
plete; we refer the reader to [] and [] for exposition and more references. If only θ ≡ 
andN =  but � �= , then (.) reduces to the incompressible rotating Navier-Stokes equa-
tions

{
∂tu – ν�u + �e × u + (u · ∇)u = –∇p in R

 × (,∞),
div u =  in R

 × (,∞).
(RNS)

The topic of well-posedness for the Cauchy problem of (RNS) has also been widely studied
in various function spaces. We refer the interested reader to [–] and the references
therein.

In this paper we study the global well-posedness of the Cauchy problem of the viscous
primitive equations (.), that is, the problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu – ν�u + �e × u + (u · ∇)u + ∇p = gθe in R
 × (,∞),

∂tθ – μ�θ + (u · ∇)θ = –N u in R
 × (,∞),

div u =  in R
 × (,∞),

u|t= = u, θ |t= = θ in R
.

(.)

Before going further, let us first make a short review on the study of the well-posedness
topic of this problem. By taking full advantage of the absence of resonances between the
fast rotation and the nonlinear advection, Babin, Mahalov, and Nicolaenko [] obtained
the global well-posedness of problem (.) in Hs(T) with s ≥ / for small initial data
when the stratification parameter N is sufficiently large. By constructing the solution of
a quasi-geostrophic system related to equations (.) and using some Strichartz-type esti-
mates, Charve [] verified global well-posedness of problem (.) in Ḣ 

 (R)∩ Ḣ(R) for
arbitrary (i.e., not necessarily small) initial data under the assumptions that both � and N
are sufficiently large (depending on the scale of the initial data). Charve [] further con-
sidered the well-posedness of (.) in less regular initial value spaces. We also mention the
interesting work of Charve and Ngo [] on the well-posedness of the problem (.) with
anisotropic viscosities. Recently, Koba, Mahalov, and Yoneda [] proved the global well-
posedness of problem (.) for any given (u, θ) ∈ Ḣ 

 (R) ∩ Ḣ(R) with ∂u
 – ∂u

 = 
in the special case where the Prandtl number P = , provided that one of the following
conditions holds: (a) |B| < √g , and N is sufficiently large (depending on the scale of the
initial data); (b) |B| > √g , and both � and N are sufficiently large (depending on the scale
of initial data). They also proved the following global result for uniformly small data with
respect to � and N in Ḣ 

 (R).
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Theorem . ([]) Let P = , that is, ν = μ. Then there exists a positive constant c = c(ν)
such that if (u, θ) ∈ [Ḣ 

 (R)] satisfies div u =  and

∥
∥(u, θ)

∥
∥

Ḣ



≤ c,

then problem (.) has a unique mild solution (u, θ ) ∈ [C([,∞); Ḣ 
 (R))] ∩ [L̃(,∞;

Ḣ 
 (R))].

For other related studies on the viscous primitive equations (.), we refer the interested
reader to [–].

For problem (.), the situation is obviously more complicated than (NS) and (RNS) on
account of the coupling effect between the velocity u(t, x) and the thermal disturbance
θ (t, x). Moreover, due to the influence of the oscillations caused by the rotation (i.e., the
term �e × u) and the stratification (i.e., the terms gθe and N u), a big portion of the
integral estimates, such as Lp estimate for p �= , for the Stokes semigroup {etP�}t≥ (which
relates to the Navier-Stokes equations) do not work for the Stokes-Coriolis-Stratification
semigroup {T�,N (t)}t≥ (see Section  for the definition) related to the primitive equations.
Consequently, the usual function spaces used in the study of the Navier-Stokes equations
such as the homogeneous and inhomogeneous Besov spaces Ḃs

p,r(R) and Bs
p,r(R) with

p �=  and the space BMO–(R) are not suitable for the primitive equations. In this work,

inspired by [, , ], we introduce a customized hybrid-Besov space Ḃ

 , 

p –
,p , seeing Def-

inition ., in which we shall obtain the regularizing effects of {T�,N (t)}t≥ similar to the
Stokes semigroup and gain the global solvability for (.). Our main result is stated as fol-
lows.

Theorem . Let P = , that is, ν = μ, and let p ∈ [, ]. There exists a positive constant c

independent of � and N such that if (u, θ) ∈ [Ḃ

 ,–+ 

p
,p (R)] satisfies div u =  and

∥
∥(u,

√
gθ/N )

∥
∥

Ḃ

 ,–+ 

p
,p

≤ c, (.)

then problem (.) possesses a unique mild solution (u, θ ) in

[
C

(
[,∞); Ḃ


 ,–+ 

p
,p

(
R

))] ∩ [
L̃


–α

(
,∞; Ḃ


 –α, 

p –α

,p
(
R

))]

∩[
L̃


+α

(
,∞; Ḃ


 +α, 

p +α

,p
(
R

))],

where α ∈ ( 
 – 

p , ] is an arbitrary fixed number.

Remark . Obviously, Theorem . is an improvement of Theorem . due to Ḣ 
 ↪→

Ḃ

 , 

p –
,p for p ≥ . It is also worth mentioning that θ can be large in (.), provided that N

is large enough.

The rest part of this paper is organized as follows. In Section  we introduce the hybrid-

Besov space Ḃ

 , 

p –
,p and Stokes-Coriolis-Stratification semigroup {T�,N (t)}t≥ and inves-

tigate the regularizing effects of {T�,N (t)}t≥. In Section , we use the Littlewood-Paley
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analysis technique to derive some linear estimates and a useful product law. Finally, we
present the proof of our main result.

Throughout this paper, we use C and c to denote universal constants whose values may
change from line to line. BothFg and ĝ stand for the Fourier transform of g with respect to
space variable, whereas F– stands for the inverse Fourier transform. For any  ≤ p ≤ ∞,
we denote Lp(, T) and Lq(R) by Lp

T and Lq, respectively.

2 Function spaces and Stokes-Coriolis-Stratification semigroup
Let S(R) be the Schwartz class, and let S′(R) be the space of tempered distributions.
First, we recall the homogeneous Littlewood-Paley decomposition. Choose two radial
functions ϕ,ψ ∈ S(R) such that their Fourier transforms ϕ̂ and ψ̂ satisfy the following
properties:

supp ϕ̂ ⊂ B :=
{

ξ ∈ R
 : |ξ | ≤ 



}

,

supp ψ̂ ⊂ C :=
{

ξ ∈R
 :




≤ |ξ | ≤ 


}

,

and, furthermore,

∑

j∈Z
ψ̂

(
–jξ

)
=  for all ξ ∈R

 \ {}.

Let ϕj(x) := jϕ(jx) and ψj(x) := jψ(jx) for all j ∈ Z. We define by �j and Sj the follow-
ing operators in S′(R):

�jf := ψj ∗ f and Sjf := ϕj ∗ f for j ∈ Z and f ∈ S′(
R

).

Define S′
h(R) := S′(R)/P[R], where P[R] denotes the linear space of polynomials on

R
 (see [, ]). It is known that there hold the following decompositions:

f =
∑

j∈Z
�jf and Sjf =

∑

j′≤j–

�j′ f in S′
h
(
R

).

With our choice of ϕ and ψ , it is easy to verify that

�j�kf =  if |j – k| ≥  and

�j(Sk–f �kf ) =  if |j – k| ≥ .

Here, we recall the definition of general homogeneous Besov spaces Ḃs
p,r and intro-

duce the hybrid-Besov space Ḃσ ,β
,p and the Chemin-Lerner-type spaces L̃δ

T (,∞; Ḃσ ,β
,p (R)),

which are made to measure problem (.).

Definition . ([]) Let s ∈R,  ≤ p, r ≤ ∞, and u ∈ S′
h(R). We set

‖u‖Ḃs
p,r :=

∥
∥
{

js‖�ju‖Lp
}

r∈Z
∥
∥

�r(Z).
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• For s < 
p (or s = 

p if r = ), we define Ḃs
p,r(R) := {u ∈ S′

h(R) : ‖u‖Ḃs
p,r < ∞};

• If k ∈N and 
p + k ≤ s < 

p + k +  (or s = 
p + k +  if r = ), then Ḃs

p,r(R) is defined as
the subset of distributions u ∈ S′

h(R) such that ∂δu ∈ Ḃs–k
p,r (R) whenever |δ| = k.

Definition . Let N := N√g , σ ,β ∈ R, and  ≤ p ≤ ∞. Then the hybrid-Besov space
Ḃσ ,β

,p is defined by

Ḃσ ,β
,p

(
R

) :=
{

u ∈ S′
h
(
R

) : ‖u‖Ḃσ ,β
,p

< ∞}
,

where

‖u‖Ḃσ ,β
,p

:= sup
j≤max{|�|,N}

jσ ‖�jf ‖L + sup
j>max{|�|,N}

jβ‖�jf ‖Lp .

Definition . Let N := N√g . For σ ,β ∈ R and  ≤ p, δ ≤ ∞, we set

‖u‖L̃δ
T (Ḃσ ,β

,p ) := sup
j≤max{|�|,N}

jσ ‖�jf ‖Lδ
T L + sup

j>max{|�|,N}
jβ‖�jf ‖Lδ

T Lp .

We then define the space L̃δ(, T ; Ḃσ ,β
,p (R)) as the set of temperate distributions u over

(, T) ×R
 such that limj→–∞ Sju =  in S′((, T) ×R

) and ‖u‖L̃δ
T (Ḃσ ,β

,p ) < ∞.

In the sequel, we will constantly use the following Bernstein inequality.

Lemma . ([, ]) Let B be a ball, and C a ring centered at origin in R
. There exists

a constant C such that for any positive real number λ, any nonnegative integer k, and any
couple of real numbers (a, b) with b ≥ a ≥ , we have:

• Supp û ⊂ λB �⇒ sup|α|=k ‖∂αu‖Lb ≤ Ck+λk+( 
a – 

b )‖u‖La ;
• Supp û ⊂ λC �⇒ C–(k+)λ–k‖u‖La ≤ sup|α|=k ‖∂αu‖La ≤ Ck+λk‖u‖La .

Now, we introduce the Stokes-Coriolis-Stratification semigroup {T�,N (t)}t≥ and study
its regularizing effects.

By setting N := N√g , v := (v, v, v, v) := (u, u, u,√gθ/N ), v := (v
, v

, v
, v

) :=
(u

, u
, u

,√gθ/N ), and ∇̃ := (∂, ∂, ∂, ) problem (.) can be rewritten as the follow-
ing problem:

⎧
⎪⎨

⎪⎩

∂tv + Av + Bv + ∇̃p = –(v · ∇̃)v in R
 × (,∞),

∇̃ · v =  in R
 × (,∞),

v|t= = v in R
,

(.)

where

A :=

⎛

⎜
⎜
⎜
⎝

–ν�   
 –ν�  
  –ν� 
   –μ�

⎞

⎟
⎟
⎟
⎠

, B :=

⎛

⎜
⎜
⎜
⎝

 –�  
�   
   –N
  N 

⎞

⎟
⎟
⎟
⎠

. (.)

Lemma . in [], together with the fact e(A+B)t = eAteBt for ν = μ, gives an explicit ex-
pression of the Stokes-Coriolis-Stratification semigroup {T�,N (t)}t≥ corresponding to the
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linear problem of (.) via the Fourier transform

T�,N (t)f := F –
[

cos

( |ξ |′
|ξ | t

)

e–ν|ξ |tM(ξ )f̂ + sin

( |ξ |′
|ξ | t

)

e–ν|ξ |tM(ξ )f̂

+ e–ν|ξ |tM(ξ )f̂
]

, (.)

where

|ξ | :=
√

ξ 
 + ξ 

 + ξ 
 , |ξ |′ := |ξ |′�,N :=

√

Nξ 
 + Nξ 

 + �ξ 
 (.)

for ξ := (ξ, ξ, ξ) ∈R
, and

M(ξ ) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

�ξ


|ξ |′  – Nξξ
|ξ |′

�Nξξ
|ξ |′

 �ξ


|ξ |′ – Nξξ
|ξ |′ – �Nξξ

|ξ |′

– �ξξ
|ξ |′ – �ξξ

|ξ |′
N(ξ

 +ξ
 )

|ξ |′ 
�Nξξ

|ξ |′ – �Nξξ
|ξ |′  N(ξ

 +ξ
 )

|ξ |′

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (.)

M(ξ ) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

 – �ξ


|ξ ||ξ |′
�ξξ
|ξ ||ξ |′

Nξξ
|ξ ||ξ |′

�ξ


|ξ ||ξ |′  – �ξξ
|ξ ||ξ |′

Nξξ
|ξ ||ξ |′

– �ξξ
|ξ ||ξ |′

�ξξ
|ξ ||ξ |′  – N(ξ

 +ξ
 )

|ξ ||ξ |′

– Nξξ
|ξ ||ξ |′ – Nξξ

|ξ ||ξ |′
N(ξ

 +ξ
 )

|ξ ||ξ |′ 

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (.)

and

M(ξ ) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Nξ


|ξ |′ – Nξξ
|ξ |′  – N�ξξ

|ξ |′

– Nξξ
|ξ |′

Nξ


|ξ |′  N�ξξ
|ξ |′

   

– N�ξξ
|ξ |′

N�ξξ
|ξ |′  �ξ


|ξ |′

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (.)

Note that, denoting by Ml
jk(ξ ) (j, k = , , , , l = , , ) the (j, k)th component of the matrix

Ml(ξ ), it is obvious that nonvanishing Ml
jk(ξ ) satisfies

∣
∣Ml

jk(ξ )
∣
∣ ≤  for ξ ∈R

, j, k = , , , , l = , , .

Hence, from (.) and Plancherel’s theorem it is easy to see that {T�,N (t)}t≥ is a bounded
C-semigroup on L(R). By Mikhlin’s theorem we may extend the semigroup {T�,N (t)}t≥

to a C-semigroup on Lp(R) for  < p < ∞. Moreover, we have

∥
∥T�,N (t)f

∥
∥

Lp ≤ Cp max
{|�|, N

}t‖f ‖Lp , t ≥ , f ∈ Lp(
R

)

for some constant Cp. However, it is noteworthy that T�,N is not uniformly bounded in
Lp(R) for p �= , which is the primary reason for the invalidation of Cannone’s proof []
in Ḃs

p,r(R) with p �=  for our case, and similarly for Bs
p,r(R) and BMO–(R).
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Thanks to the Euler formula e±i |ξ |′
|ξ | t = cos( |ξ |′

|ξ | t)±i sin( |ξ |′
|ξ | t), we can rewrite the semigroup

{T�,N (t)}t≥ as

T�,N (t)f :=



ei |D|′
|D| teνt�(M + M)f +




e–i |D|′
|D| teνt�(M – M)f + eνt�Mf , (.)

where |D|′
|D| is the Fourier multiplier with symbol given by |ξ |′

|ξ | , and Mi (i = , , ) with
symbols given by Mi(ξ ) (i = , , ) are the matrices of singular integral operators. The

operators e±i |D|′
|D| t represent the oscillation parts of {T�,N (t)}t≥.

By considering low and high frequencies differently, we can establish the following
smoothing effect of the Stokes-Coriolis-Stratification semigroup {T�,N (t)}t≥.

Lemma . Let C be a annulus centered at  in R
. Then there exist positive constants c

and C depending only on ν such that if supp û ⊂ λC , then we have
(i) for any λ > ,

∥
∥T�,N (t)u

∥
∥

L ≤ e–cλt‖u‖L ; (.)

(ii) for any λ� max{|�|, N} and  ≤ p ≤ ∞,

∥
∥T�,N (t)u

∥
∥

Lp ≤ e–cλt‖u‖Lp . (.)

Proof (i) By Plancherel’s theorem, combining the support property of û, it is obvious that
(.) is obtained directly from expression (.).

(ii) Decomposing T�,N (t) into T�,N (t) := T 
�,N (t) + T

�,N (t), where

T 
�,N (t)f :=




ei |D|′
|D| teνt�(M + M)f +




e–i |D|′
|D| teνt�(M – M)f

and

T
�,N (t)f := eνt�Mf .

For T
�,N (t), since each nonvanishing component of M(ξ ) is homogeneous with degree

, Fourier multiplier theory implies that M is bounded in Lp ( ≤ p ≤ ∞) when localized
in dyadic annulus in the Fourier space. Applying Lemma . in [] yields

∥
∥T

�,N (t)u
∥
∥

Lp ≤ e–cλt‖u‖Lp .

Now, we focus our attention on T 
�,N (t). We will adopt the spirit of the proof for the heat

operator as in []. Let φ ∈ D(R\{}) be equal to  near the annulus C . Set

T(t, x) := F –[φ
(
λ–ξ

)
T̂ 

�,N (t, ξ )
]
(t, x) = (π )–

∫

R
eix·ξφ

(
λ–ξ

)
T̂ 

�,N (t, ξ ) dξ .

Thus, to prove (.), it suffices to show that

∥
∥T(t, ·)∥∥L ≤ Ce–cλt . (.)
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Thanks to the boundedness properties of M(ξ ) and M(ξ ), we have

∫

|x|≤λ–

∣
∣T(t, x)

∣
∣dx ≤ C

∫

|x|≤λ–

∫

R

∣
∣φ

(
λ–ξ

)∣
∣
∣
∣T̂ 

�,N (t, ξ )
∣
∣dξ dx ≤ Ce–cλt . (.)

Let L := x·∇ξ

i|x| . It is easy to check that L(eix·ξ ) = eix·ξ . By integration by parts we obtain

T(t, x) = (π )–
∫

R
Lm(

eix·ξ )φ
(
λ–ξ

)
T̂ 

�,N (t, ξ ) dξ

= (π )–
∫

R
eix·ξ (L∗)m(

φ
(
λ–ξ

)
T̂ 

�,N (t, ξ )
)

dξ ,

where m ∈N is chosen later. We verify by applying the Leibnitz formula that

∣
∣∂γ

(
e±i |ξ |′

|ξ | t)∣∣ ≤ C|ξ |–γ
(
max

{|�|, N
}

t + 
)|γ |

and

∣
∣∂γ

(
e–ν|ξ |t)∣∣ ≤ C|ξ |–γ e– ν

 |ξ |t .

Thus, we have

∣
∣
(
L∗)m(

φ
(
λ–ξ

)
T̂ 

�,N (t, ξ )
)∣
∣

≤ C|x|–m
∑

|α|+|α|+|α|=|α|
|α|≤m

λ–(m–|α|)∣∣(∇m–|α|φ
)(

λ–ξ
)
∂α

(
e±i |ξ |′

|ξ | t)

× ∂α
(
e–ν|ξ |t)∂α

(
M(ξ ) + M(ξ )

)∣
∣

≤ C|λx|–m
∑

|α|+|α|+|α|=|α|
|α|≤m

λ|α|∣∣(∇m–|α|φ
)(

λ–ξ
)∣
∣|ξ |–|α|–|α|–|α|e– ν

 |ξ |t

× (
max

{|�|, N
}

t + 
)|α|.

Taking m =  for λ� {|�|, N} in

∣
∣
(
L∗)m(

φ
(
λ–ξ

)
T̂ 

�,N (t, ξ )
)∣
∣ ≤ C|λx|–e– ν

 |ξ |t

leads to
∫

|λ|≥ 
λ

∣
∣T(t, x)

∣
∣dx ≤ Ce–cλtλ

∫

|λ|≥ 
λ

|λx|– dx ≤ Ce–cλt ,

which, together with (.), gives (.). Inequality (.) is proved. �

3 Linear estimates and bilinear estimates
We establish some basic estimates that will play a crucial role in the proof of Theorem..
We first consider linear estimates for the semigroup {T�,N (t)}t≥.
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Lemma . Let T > , α ∈ [, ], σ ,β ∈ R, and p ∈ [,∞]. Then, for u ∈ Ḃσ ,β
,p (R), there

exists a constant C >  such that

∥
∥T�,N (t)u

∥
∥

L̃


±α (,T ;Ḃσ+±α,β+±α
,p )

≤ C‖u‖Ḃσ ,β
,p

. (.)

Proof For j such that j > max{|�|, N}, by Lemma . we have

∥
∥
∥
∥�jT�,N (t)u

∥
∥

Lp

∥
∥

L


±α (,T)
≤ C

∥
∥e–cjt‖�ju‖Lp

∥
∥

L


±α (,T)
≤ C–(±α)j‖�ju‖Lp . (.)

Similarly, for j such that j ≤ max{|�|, N}, we have

∥
∥
∥
∥�jT�,N (t)u

∥
∥

L

∥
∥

L


±α (,T)
≤ C–(±α)j‖�ju‖L . (.)

Combining (.) with (.) yields (.). �

Lemma . Let T > , α ∈ [, ], σ ,β ∈ R, and p ∈ [,∞]. There exists a constant C > 
such that

∥
∥
∥
∥

∫ t


T�,N (t – τ )f (τ ) dτ

∥
∥
∥
∥

L̃


±α (,T ;Ḃσ+±α,β+±α
,p )

≤ C‖f ‖L̃(,T ;Ḃσ ,β
,p ) (.)

for any f ∈ L̃(, T ; Ḃσ ,β
,p (R)).

Proof For j such that j > max{|�|, N}, applying Lemma . and Young’s inequality yields

∥
∥
∥
∥�j

∫ t


T�,N (t – τ )f (τ ) dτ

∥
∥
∥
∥

L


±α (,T ;Lp)
≤ C

∥
∥
∥
∥

∫ t


e–cj(t–τ )∥∥�jf (τ )

∥
∥

Lp dτ

∥
∥
∥
∥

L


±α

≤ C–(±α)j‖�jf ‖L(,T ;Lp). (.)

Similarly, for j such that j ≤ max{|�|, N}, we obtain

∥
∥
∥
∥�j

∫ t


T�,N (t – τ )f (τ ) dτ

∥
∥
∥
∥

L


±α (,T ;L)
≤ C–(±α)j‖�jf ‖L(,T ;L). (.)

Inequality (.), together with (.), yields (.). �

We now turn to establish the following product law, which is indispensable for gaining
the bilinear estimate in the proof of our main result.

Lemma . Let T > , p ∈ [, ], and α ∈ ( 
 – 

p , ]. There exists a constant C >  such that

‖fg‖
L̃(,T ;Ḃ


 , 

p
,p )

≤ C
(‖f ‖

L̃


+α (,T ;Ḃ

 +α, 

p +α

,p )
‖g‖

L̃


–α (,T ;Ḃ

 –α, 

p –α

,p )

+ ‖g‖
L̃


+α (,T ;Ḃ


 +α, 

p +α

,p )
‖f ‖

L̃


–α (,T ;Ḃ

 –α, 

p –α

,p )

)
(.)

for all f , g ∈ L̃


±α (, T ; Ḃ

 ±α, 

p ±α

,p (R)).
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Proof Applying Bony’s decomposition [], we rewrite �̇j(fg) as

�̇j(fg) =
∑

|k–j|≤

�̇j(Ṡk–f �̇kg) +
∑

|k–j|≤

�̇j(Ṡk–f �̇kg) +
∑

k≥j–

∑

|k–k′|≤

�̇j(�̇kf �̇k′g)

=: Ij + IIj + IIIj.

First, we consider Ij. Set Kj := {(k′, k); |k – j| ≤ , k′ ≤ k – }. On the one hand, for j >
max{|�|, N}, we have

‖Ij‖L
T Lp ≤

∑

Kj

∥
∥�j(�k′ f �kg)

∥
∥

L
T Lp

≤
(∑

Kj,ll

+
∑

Kj,lh

+
∑

Kj,hh

)
∥
∥�j(�k′ f �kg)

∥
∥

L
T Lp

=: Ij, + Ij, + Ij,,

where

Kj,ll :=
{(

k′, k
) ∈ Kj; k′ ≤ max

{|�|, N
}

, k ≤ max
{|�|, N

}}
,

Kj,lh :=
{(

k′, k
) ∈ Kj; k′ ≤ max

{|�|, N
}

, k > max
{|�|, N

}}
,

Kj,hh :=
{(

k′, k
) ∈ Kj; k′

> max
{|�|, N

}
, k > max

{|�|, N
}}

.

Applying Lemma . and Hölder’s inequality, we see that

Ij, ≤
∑

(k′ ,k)∈Kj,ll

∥
∥�j(�k′ f �kg)

∥
∥

L
T Lp

≤
∑

(k′ ,k)∈Kj,ll



 k′ ‖�k′ f ‖

L


–α
T L

k( 
 – 

p )‖�kg‖
L


+α
T L

≤
∑

(k′ ,k)∈Kj,ll

k′( 
 –α)‖�k′ f ‖

L


–α
T L

k( 
 +α)‖�kg‖

L


+α
T L

α(k′–k)– 
p k

≤ C‖f ‖
L


–α
T Ḃ


 –α, 

p –α

,p

‖g‖
L


+α
T Ḃ


 +α, 

p +α

,p

∑

(k′ ,k)∈Kj,ll

α(k′–k)– 
p k

≤ C– 
p j‖f ‖

L


–α
T Ḃ


 –α, 

p –α

,p

‖g‖
L


+α
T Ḃ


 +α, 

p +α

,p

,

where we have used the fact that

∑

(k′ ,k)∈Kj,ll

α(k′–k)– 
p k ≤

∑

k′≤k–

α(k′–k)
∑

|k–j|≤

– 
p k ≤ C– 

p j.

Similarly, we have

Ij, ≤
∑

(k′ ,k)∈Kj,lh

‖�k′ f ‖
L


–α
T L∞

‖�kg‖
L


+α
T Lp

≤ C
∑

(k′ ,k)∈Kj,lh



 k′ ‖�k′ f ‖

L


–α
T L

‖�kg‖
L


+α
T Lp
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= C
∑

(k′ ,k)∈Kj,lh

k′( 
 –α)‖�k′ f ‖

L


–α
T L

k( 
p +α)‖�kg‖

L


+α
T Lp

α(k′–k)– 
p k

≤ C– 
p j‖f ‖

L


–α
T Ḃ


 –α, 

p –α

,p

‖g‖
L


+α
T Ḃ


 +α, 

p +α

,p

and

Ij, ≤
∑

(k′ ,k)∈Kj,hh

‖�k′ f ‖
L


–α
T L∞

‖�kg‖
L


+α
T Lp

≤ C
∑

(k′ ,k)∈Kj,hh



p k′ ‖�k′ f ‖

L


–α
T Lp

‖�kg‖
L


+α
T Lp

= C
∑

(k′ ,k)∈Kj,hh

k′( 
p –α)‖�k′ f ‖

L


–α
T Lp

k( 
p +α)‖�kg‖

L


+α
T Lp

α(k′–k)– 
p k

≤ C– 
p j‖f ‖

L


–α
T Ḃ


 –α, 

p –α

,p

‖g‖
L


+α
T Ḃ


 +α, 

p +α

,p

.

On the other hand, for j such that j ≤ max{|�|, N}, we have

‖Ij‖L
T L ≤

∑

Kj

∥
∥�j(�k′ f �kg)

∥
∥

L
T L

≤
(∑

Kj,ll

+
∑

Kj,lh

+
∑

Kj,hh

)
∥
∥�j(�k′ f �kg)

∥
∥

L
T L

=: Ij, + Ij, + Ij,.

Applying Lemma . and Hölder’s inequality gives

Ij, ≤
∑

(k′ ,k)∈Kj,ll

∥
∥�j(�k′ f �kg)

∥
∥

L
T L

≤
∑

(k′ ,k)∈Kj,ll



 k′ ‖�k′ f ‖

L


–α
T L

‖�kg‖
L


+α
T L

≤
∑

(k′ ,k)∈Kj,ll

k′( 
 –α)‖�k′ f ‖

L


–α
T L

k( 
 +α)‖�kg‖

L


+α
T L

α(k′–k)– 
 k

≤ C‖f ‖
L


–α
T Ḃ


 –α, 

p –α

,p

‖g‖
L


+α
T Ḃ


 +α, 

p +α

,p

∑

(k′ ,k)∈Kj,ll

α(k′–k)– 
 k

≤ C– 
 j‖f ‖

L


–α
T Ḃ


 –α, 

p –α

,p

‖g‖
L


+α
T Ḃ


 +α, 

p +α

,p

,

and due to p ≥  and α + 
p – 

 > , we see that

Ij, ≤
∑

(k′ ,k)∈Kj,lh

‖�k′ f ‖
L


–α
T L

p
p–

‖�kg‖
L


+α
T Lp

≤ C
∑

(k′ ,k)∈Kj,lh



p k′ ‖�k′ f ‖

L


–α
T L

‖�kg‖
L


+α
T Lp
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= C
∑

(k′ ,k)∈Kj,lh

k′( 
 –α)‖�k′ f ‖

L


–α
T L

k( 
p +α)‖�kg‖

L


+α
T Lp

(α+ 
p – 

 )(k′–k)– 
 k

≤ C– 
 j‖f ‖

L


–α
T Ḃ


 –α, 

p –α

,p

‖g‖
L


+α
T Ḃ


 +α, 

p +α

,p

,

and due to p ≤  and α + 
p – 

 > , we get

Ij, ≤
∑

(k′ ,k)∈Kj,hh

‖�k′ f ‖
L


–α
T L

p
p–

‖�kg‖
L


+α
T Lp

≤ C
∑

(k′ ,k)∈Kj,hh

(– 
 + 

p )k′ ‖�k′ f ‖
L


–α
T Lp

‖�kg‖
L


+α
T Lp

= C
∑

(k′ ,k)∈Kj,hh

k′( 
p –α)‖�k′ f ‖

L


–α
T Lp

k( 
p +α)‖�kg‖

L


+α
T Lp

(α+ 
p – 

 )(k′–k)– 
 k

≤ C– 
 j‖f ‖

L


–α
T Ḃ


 –α, 

p –α

,p

‖g‖
L


+α
T Ḃ


 +α, 

p +α

,p

.

Summing the estimates obtained, Ij, ∼ Ij, yields that

sup
j>max{|�|,N}



p j‖Ij‖L̃

T Lp + sup
j≤max{|�|,N}



 j‖Ij‖L̃

T L

≤ C‖f ‖
L


–α
T Ḃ


 –α, 

p –α

,p

‖g‖
L


+α
T Ḃ


 +α, 

p +α

,p

. (.)

By the same argument we have

sup
j>max{|�|,N}



p j‖IIj‖L̃

T Lp + sup
j≤max{|�|,N}



 j‖IIj‖L̃

T L

≤ C‖g‖
L


–α
T Ḃ


 –α, 

p –α

,p

‖f ‖
L


+α
T Ḃ


 +α, 

p +α

,p

. (.)

Now, we consider IIIj. Setting K̃j := {(k′, k); k ≥ j – , |k – k′| ≤ }, we get

IIIj =
(∑

K̃j,ll

+
∑

K̃j,lh

+
∑

K̃j,hl

+
∑

K̃j,hh

)

�j(�kf �k′g)

=: IIIj, + IIIj, + IIIj, + IIIj,,

where

K̃j,ll :=
{(

k′, k
) ∈ K̃j; k′ ≤ max

{|�|, N
}

, k ≤ max
{|�|, N

}}
,

K̃j,lh :=
{(

k′, k
) ∈ K̃j; k′ ≤ max

{|�|, N
}

, k > max
{|�|, N

}}
,

K̃j,hl :=
{(

k′, k
) ∈ K̃j; k′ > max

{|�|, N
}

, k ≤ max
{|�|, N

}}
,

K̃j,hh :=
{(

k′, k
) ∈ K̃j; k′

> max
{|�|, N

}
, k > max

{|�|, N
}}

.
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By Lemma . and Hölder’s inequality we have

‖IIIj,‖L
T Lp

≤ Cj(– 
p ) ∑

(k′ ,k)∈K̃j,ll

‖�kf �k′g‖L
T L

≤ Cj(– 
p ) ∑

(k′ ,k)∈K̃j,ll

( 
 –α)k‖�kf ‖

L


–α
T L

( 
 +α)k′ ‖�k′g‖

L


+α
T L

–( 
 –α)k–( 

 +α)k′

≤ Cj(– 
p )‖f ‖

L


–α
T Ḃ


 –α, 

p –α

,p

‖g‖
L


+α
T Ḃ


 +α, 

p +α

,p

∑

k≥j–

–( 
 –α)k

∑

|k–k′|≤

–( 
 +α)k′

≤ C– 
p j‖f ‖

L


–α
T Ḃ


 –α, 

p –α

,p

‖g‖
L


+α
T Ḃ


 +α, 

p +α

,p

and

‖IIIj,‖L
T L ≤ C


 j

∑

(k′ ,k)∈K̃j,ll

‖�kf �k′g‖L
T L ≤ C– 

 j‖f ‖
L


–α
T Ḃ


 –α, 

p –α

,p

‖g‖
L


+α
T Ḃ


 +α, 

p +α

,p

.

Similarly, we have

‖IIIj, + IIIj,‖L
T Lp

≤ C

 j

( ∑

(k′ ,k)∈K̃j,lh

+
∑

(k′ ,k)∈K̃j,hl

)

‖�kf �k′g‖
L

T L
p

+p

≤ C

 j

{ ∑

(k′ ,k)∈K̃j,lh

‖�kf ‖
L


–α
T Lp

‖�k′g‖
L


+α
T L

+
∑

(k′ ,k)∈K̃j,hl

‖�kf ‖
L


–α
T L

‖�k′g‖
L


+α
T Lp

}

≤ C

 j‖f ‖

L


–α
T Ḃ


 –α, 

p –α

,p

‖g‖
L


+α
T Ḃ


 +α, 

p +α

,p

×
∑

k≥j–

∑

|k–k′|≤

(
–( 

p –α)k–( 
 +α)k′

+ –( 
 +α)k–( 

p –α)k′)

≤ C– 
p j‖f ‖

L


–α
T Ḃ


 –α, 

p –α

,p

‖g‖
L


+α
T Ḃ


 +α, 

p +α

,p

and

‖IIIj, + IIIj,‖L
T L ≤ C


p j ∑

(k′ ,k)∈K̃j,ll

‖�kf �k′g‖L
T L

≤ C– 
 j‖f ‖

L


–α
T Ḃ


 –α, 

p –α

,p

‖g‖
L


+α
T Ḃ


 +α, 

p +α

,p

.

Finally, noticing that  ≥ p ≥ , we obtain

‖IIIj,‖L
T Lp

≤ C

p j ∑

(k′ ,k)∈K̃j,hh

‖�kf �k′g‖
L

T L
p




Sun and Yang Boundary Value Problems  (2016) 2016:21 Page 14 of 16

≤ C

p j ∑

(k′ ,k)∈K̃j,hh

‖�kf ‖
L


–α
T Lp

‖�k′g‖
L


+α
T Lp

≤ C

p j‖f ‖

L


–α
T Ḃ


 –α, 

p –α

,p

‖g‖
L


+α
T Ḃ


 +α, 

p +α

,p

∑

k≥j–

∑

|k–k′|≤

–( 
p –α)k–( 

p +α)k′

≤ C– 
p j‖f ‖

L


–α
T Ḃ


 –α, 

p –α

,p

‖g‖
L


+α
T Ḃ


 +α, 

p +α

,p

and

‖IIIj, + IIIj,‖L
T L ≤ Cj( 

p – 
 ) ∑

(k′ ,k)∈K̃j,hh

‖�kf �k′g‖
L

T L
p


≤ C– 
 j‖f ‖

L


–α
T Ḃ


 –α, 

p –α

,p

‖g‖
L


+α
T Ḃ


 +α, 

p +α

,p

.

Summing up the estimates of IIIj, ∼ IIIj,, we arrive at

sup
j>max{|�|,N}



p j‖IIIj‖L

T Lp + sup
j≤max{|�|,N}



 j‖IIIj‖L

T L

≤ C‖f ‖
L


–α
T Ḃ


 –α, 

p –α

,p

‖g‖
L


+α
T Ḃ


 +α, 

p +α

,p

. (.)

Then, combining (.)–(.) yields (.). �

4 The proof of Theorem 1.2
The proof of Theorem . follows from the following standard Banach fixed point lemma
combined with applications of the estimates established in the previous section.

Lemma . (Cannone []) Let (X ,‖ · ‖X ) be a Banach space, and B : X × X → X a
bounded bilinear form satisfying ‖B(x, x)‖X ≤ η‖x‖X ‖x‖X for all x, x ∈ X and some
constant η > . Then, if  < ε < 

η
and if y ∈ X such that ‖y‖X ≤ ε, then the equation

x = y + B(x, x) has a solution in X such that ‖x‖X ≤ ε. This solution is the only one in
the ball B̄(, ε). Moreover, the solution depends continuously on y in the following sense: if
‖ỹ‖X ≤ ε, x̃ = ỹ + B(x̃, x̃) and ‖x̃‖X ≤ ε, then

‖x – x̃‖X ≤ 
 – ηε

‖y – ỹ‖X .

Let Rj (j = , , ) be the Riesz transforms on R
 and set P̃ = (̃Pij)× with

P̃ij :=

{
δij + RiRj,  ≤ i, j ≤ ,
δij otherwise,

where δij is the Kronecker’s delta notation. By using the Duhamel principle we easily obtain
that problem (.) is equivalent to the following integral equation:

v(t) = T�,N (t)v – B(v, v)(t), (.)
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where

B(v, v)(t) :=
∫ t


T�,N (t – τ )̃P∇̃ · [v(τ ) ⊗ v(τ )

]
dτ . (.)

Proof of Theorem . Let α ∈ ( 
 – 

p , ] be given and fixed, and let Xα be a Banach space
endowed with the norm

‖v‖Xα := ‖v‖
L̃


–α (,∞;Ḃ


 –α, 

p –α

,p )
+ ‖v‖

L̃


+α (,∞;Ḃ

 +α, 

p +α

,p )
.

Applying Lemma . with σ = 
 and β = – + 

p leads to

∥
∥T�,N (t)v

∥
∥

Xα ≤ C‖v‖
Ḃ


 ,–+ 

p
,p

for some constant C >  and v ∈ Ḃ

 ,–+ 

p
,p (R).

Lemma . with σ = 
 and β = – + 

p gives, for v, w ∈ Xα and some constant C > ,

∥
∥B(v, w)

∥
∥

Xα =
∥
∥
∥
∥

∫ t


T�,N (t – τ )̃P∇̃ · [v(τ ) ⊗ w(τ )

]
dτ

∥
∥
∥
∥

Xα

≤ C
∥
∥∇̃ · [v(τ ) ⊗ w(τ )

]∥
∥

L̃(,∞;Ḃ

 ,–+ 

p
,p )

≤ C‖v‖Xα‖w‖Xα ,

where we have used Lemma . for getting the last inequality.

Then, by Lemma ., for any given v ∈ Ḃ

 ,–+ 

p
,p (R) satisfying

‖v‖
Ḃ


 ,–+ 

p
,p

≤ ε

C
with  < ε <


C

,

we immediately see that there exists a unique solution v of equation (.) in the ball with
center  and radius ε in the space Xα . Moreover, applying Lemmas .-. with α = ,
σ = 

 , and β = – + 
p implies that

‖v‖
L̃∞(,∞;Ḃ


 ,–+ 

p
,p )

≤ C‖v‖
Ḃ


 ,–+ 

p
,p

+ C‖v ⊗ v‖
L̃(,∞;Ḃ


 , 

p
,p )

≤ C‖v‖
Ḃ


 ,–+ 

p
,p

+ C‖v‖
Xα < ∞,

which ensures v ∈ [L̃∞(,∞; Ḃ

 ,–+ 

p
,p (R))]. Moreover, by using a standard density argu-

ment we can further infer that v ∈ [C([,∞), Ḃ

 ,–+ 

p
,p (R))]. This proves the global well-

posedness assertion in Theorem .. �
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