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Abstract
This paper deals with the structural properties of the solution set for a class of
nonlinear evolution inclusions with nonlocal conditions. For the nonlocal problems
with a convex-valued right-hand side it is proved that the solution set is compact Rδ ;
it is the intersection of a decreasing sequence of nonempty compact absolute
retracts. Then for the cases of a nonconvex-valued perturbation term it is proved that
the solution set is path connected. Finally some examples of nonlinear parabolic
problems are given.
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1 Introduction
In this paper, we study the structural properties of the solution set for a class of nonlinear
evolution inclusions initiated in [] with nonlocal conditions. The nonlocal Cauchy prob-
lems of evolution inclusions were investigated by Aizicovici and Lee [], Aizicovici and
McKibben [], Aizicovici and Staicu [], García-Falset [], García-Falset and Reich [],
and Paicu and Vrabie [], and by the references therein. However, as far as we know, not
much work has been done for the topological structure of the solution set studied in this
paper. In the past the topological structure of the solution set of differential inclusions in
R

N has been investigated by Himmelberg and Van Vleck [] and DeBlasi and Myjak [].
Himmelberg and Van Vleck considered the topological structure of the solution set to the
following differential inclusions:

ẋ(t) ∈ F
(
t, x(t)

)
, x() = ,

and they showed that the solution set was an Rδ set (see page ). For the Cauchy problems
the topological structure of the solution set of evolution inclusions was examined primar-
ily by Papageorgiou and Shahzad [], Andres and Pavlǎcková [], Chen et al. [] and
Papageorgiou and Yannakakis [] in a Banach space. For the optimization of this subject,
we refer the reader to []. The corresponding work for multivalued evolution systems is
limited to the Cauchy or periodic problems. The paper is largely motivated by the work of
[] in which the existence of solutions for first-order nonlinear evolution inclusions were
proved. In [], they only showed that there exists at least one solution for the cases of a
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convex and of a nonconvex-valued perturbation term to the nonlocal problems, also prove
that, under appropriate hypotheses, the extremal solution set is dense in the solution set
of a system with a convexified right-hand side. However, it has to be noted that the topo-
logical structure of the solution set for this type of nonlinear evolution inclusions is an
interesting problem which we intend to study in this paper.

In this paper we first of all prove that the solution set of nonlinear time-dependent evo-
lution inclusions with a convex-valued right-hand side is compact Rδ ; it is the intersection
of a decreasing sequence of nonempty compact absolute retracts in C(I, H). Second, we
go further and show that the solution set is path-connected in C(I, H) for the case of a
nonconvex-valued orientor field. Finally, some examples are also given to illustrate the ef-
fectiveness of our results. In particular, control systems given in this paper with a prior
feedback, and systems with discontinuities, have a built-in multivalued character which is
modeled appropriately by evolution inclusions.

2 Preliminaries
In this section we recall some basic definitions and facts from multivalued analysis, which
will be needed later in this work. For further details we refer to the books of Hu and Pa-
pageorgiou [, ] and Zeidler []. Let X be a separable Banach space. The following
notations are needed:

Pf (X ) = {A ⊂X : A is a nonempty; closed subset of X },
Pfc(X ) = {A ⊂X : A is a nonempty; closed and convex subset of X }.

Definition . A multifunction H : � → Pf (X ) is called ‘measurable’, if for all y ∈ X , R+-
valued function x → d(y, H(x)) = inf{‖y – v‖, v ∈ H(x)} is measurable.

For given A, B ∈ Pf (X ), let

dH (A, B) = max
{

sup
a∈A

d(a, B), sup
b∈B

d(b, A)
}

.

The function dH : Pf (X ) × Pf (X ) → R+ is a metric on Pf (X ) and is called the ‘Hausdorff
metric’.

Definition . Let Z be a separable Banach space, a multifunction H : X → Z \∅ is called
‘h-upper semicontinuous’ (h-usc) if, for every x ∈ X , the function x′ → dH (H(x′), H(x)) is
continuous.

Let Z be a complete metric space, also H : X → Pf (Z) is called ‘h-continuous’ (resp.
‘h-Lipschitz’) if it is continuous (resp. Lipschitz) as a function from Z into Pf (Z, dH ). For
details refer to [].

Let (V , H , V ∗) be an evolution triple where the embedding V → H → V ∗ is compact. Let
〈·, ·〉∗ denote the pairing of an element x ∈ V ∗ and an element y ∈ V . Let 〈··〉 be the inner
product on H , then 〈·, ·〉∗ = 〈··〉, if x, y ∈ H . The dual space of Lp(I, V ) is Lq(I, V ∗) where
 < q ≤ p < ∞, 

p + 
q = , and I is an interval in R. The norm in Banach space Lp(I, V )

will be denoted by ‖ · ‖Lp(I,V ). Due to the reflexivity of V , both Lp(I, V ) and Lq(I, V ∗) are
reflexive Banach spaces (see Zeidler [], p.).
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We define a Banach space Wpq(I) = {x : x ∈ Lp(I, V ), ẋ ∈ Lq(I, V ∗)} furnished with the
norm ‖x‖W = ‖x‖Lp(I,V ) +‖ẋ‖Lq(I,V∗). The pairing between Lp(I, V ) and Lq(I, V ∗) is denoted
by 〈·, ·〉∗∗.

By Sp
G we denote the set of all Lp(I, H)-selectors of a multifunction G, i.e. Sp

G = {f ∈
Lp(I, H) : f (x) ∈ G(x) a.e. for x ∈ I}. We say that the set Sp

G is decomposable if χAf +χAc f ∈
Sp

G where (f, f, A) ∈ Sp
G × Sp

G × �.
We recall some of the topological concepts which will be used to characterize the solu-

tion set of the evolution inclusion.

Definition . A subset A⊂X is called ‘path connected’, if for every x, y ⊂A, there exists
a path h : [, ] →A which joins x to y.

For A⊂X nonempty, we claim that A is a retract of X , if there exists a continuous map
f : X →A such that f |A= identity. It is clear to see that a retract A⊂X is closed.

Definition . A closed subsetA ofX is called an absolute retract, if for any closed subset
C in every metric space Y , every continuous map f : C → A can be extended to be a
continuous function, f̂ : Y →A.

Definition . A subset A of a metric space X is said to be contractible, if and only if
there exist a continuous function g : [, ] × A → X and a point a ∈ A such that for all
x ∈A we have g(, x) = a and g(, x) = x.

A subset A of a metric space X is said to be simply connected if every closed path in it
is contractible to a point. A contractible set is both simply connected and path connected.

Definition . A subset A of a metric space is called an Rδ set if there exists a decreasing
sequence {An} of compact and contractible sets such that

A =
∞⋂

n=

An.

It is well known that any Rδ set is nonempty, compact, and connected. The following ap-
proximation result that we shall need can be proved as Proposition . of [] with minor
obvious modifications to accommodate the presence of t ∈ I := [, T].

Lemma . If F : I × H → Pfc(V ∗) is measurable in t, h-usc in x, and |F(t, x)| ≤ ψ(t)
for almost all t ∈ I with ψ(t) ∈ Lq(I), then there exists a sequence of multifunctions Fn :
I × H → Pfc(V ∗), n ≥ , such that for every t ∈ I there exist μ(t) >  and ε >  such that
if x, x ∈ Bε(x) = {y ∈ H : ‖y – x‖H ≤ ε}, then dH (Fn(t, x), Fn(t, x)) ≤ μ(t)ψ(t)‖x – x‖H

for almost all t ∈ I (i.e., Fn(t, x) is locally h-Lipschitz), F(t, x) ⊆ · · · ⊆ Fn(t, x) ⊆ Fn+(t, x) ⊆
· · · , |Fn(t, x)| ≤ ψ(t), n ∈ N, Fn(t, x) −→ F(t, x) as n −→ ∞ for every (t, x) ∈ I × H , and
there exists un : I × H → H , measurable in t, locally Lipschitz in x (as Fn(t, x)) and
un(t, x) ∈ Fn(t, x) for every (t, x) ∈ I ×H . Moreover, if F(t, ·) is h-continuous, then t → Fn(t, x)
is measurable (hence (t, x) → Fn(t, x) is measurable too; see []).
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3 Main results
Let I = [, T] and (V , H , V ∗) be an evolution triple of spaces. Consider a nonlocal problems
of evolution inclusions in the form

ẋ(t) + B
(
t, x(t)

)
+ Dx(t) ∈F

(
t, x(t)

)
a.e. for t ∈ I,

x() = τ (x),
(.)

where B : I × V → V ∗ is a nonlinear operator, D : V → V ∗ is a bounded linear operator,
τ : C(I, H) → H is a continuous map, and F : I × H → V∗ is a multifunction to be given
later. Some classical examples for τ are

(i) τ (x) = x(T);
(ii) τ (x) = –x(T);

(iii) τ (x) = 
T

∫ T
 x(t) dt;

(iv) τ (x) =
∑n

i= θix(ti), where  ≤ t < · · · < tn ≤ T are arbitrary, but fixed and
∑n

i= |θi| ≤ .
We investigate the solutions of (.) in the weak sense. Let u be a solution of problem

(.), we mean a function u ∈ Wpq(I) and there exists a function f (t) ∈F (t, u) such that

〈
u̇(t), v

〉
∗ +

〈
B
(
t, u(t)

)
, v

〉
∗ +

〈
Du(t), v

〉
∗ =

〈
f (t), v

〉
∗,

where u() = τ (u) for all v ∈ V and almost all t ∈ I .
From [], the existence of solution x ∈ Wpq(I) ∩ C(I, H) of problem (.) is obtained. Let

S denote the solution set of problem (.) defined as

S =
{

x ∈ Wpq(I) ∩ C(I, H) : x is the solution of (.)
}

.

In this paper, we can study the first structural property of the solution set S ⊂ C(I, H) of
(.). We show that S is an Rδ set in C(I, H).

We need the following hypotheses on the data of (.).
(H) B : I × V → V ∗ is an operator such that

(i) t → B(t, u) is measurable;
(ii) for almost all t ∈ I , there exists a constant C >  such that

〈
B(t, u) – B(t, u), u – u

〉
∗ ≥ C‖u – u‖p

H

for all u, u ∈ V , and the map s �→ 〈B(t, u + sz), y〉∗ is continuous on [, ] for
all u, y, z ∈ V , and p > ;

(iii) there exist a constant C > , a function a(·) ∈ Lq
+(I) where q is the conjugate of

p > , and a nondecreasing continuous function α(·) such that
‖B(t, u)‖V∗ ≤ a(t) + Cα(‖u‖V ) for all u ∈ V , a.e. for t ∈ I ;

(iv) there exist C > , C > , b(·) ∈ L(t) such that

〈
B(t, u), u

〉
∗ ≥ C‖u‖p

V – C‖u‖p–
V

+


T
∥
∥u()

∥
∥ – b(t) a.e. t ∈ I,∀u ∈ V ,  < p ≤ ,
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and

〈
B(t, u), u

〉
∗ ≥ C‖u‖p

V – C‖u‖p–
V – b(t) a.e. t ∈ I,∀u ∈ V , p > .

(H)
(i) D : V → V ∗ is a bounded linear self-adjoint operator such that 〈Du, u〉∗ ≥ , for

all u ∈ V , for almost all t ∈ I ;
(ii) there exists a continuous function τ : C(I, H) → H such that

∥∥τ (u) – τ (u)
∥∥

H ≤ ‖u – u‖C(I,H), ∀u, u ∈ C(I, H),

and τ () = .
For every f ∈ Lq(I, H), consider the following nonlinear evolution equation:

u̇(t) + B
(
t, u(t)

)
+ Du(t) = f (t), a.e. for t ∈ I,

u() = τ (u),
(.)

where B : I × V → V ∗ is a nonlinear map, D : V → V ∗ is a bounded linear map, τ :
C(I, H) → H is a continuous map. If hypotheses (H), (H) hold, then for every f ∈
Lq(I, H), from [], the problem (.) has a unique solution u ∈ Wpq(I) ⊂ C(I, H), moreover,
‖u‖C(I,H) ≤ M, for some constant M > . Let us define an operator L : Wpq(I) → Lq(I, H)
as L(u(t)) = u̇(t) + B(t, u(t)) + Du(t) and u() = τ (u). By Theorem . of [], then L is one-
to-one and surjective. Thus the inverse mapping P : Lq(I, H) → Wpq(I) is well defined.
From (H)(ii) and (H), it is easy to deduce that L : Wpq(I) → Lq(I, H) is continuous. So
P : Lq(I, H) → Wpq(I) is continuous. Because Wpq(I) embeds continuously into C(I, H) (see
Proposition . of []), we see that P : Lq(I, H) → C(I, H) is continuous. Let Lq(I, H)w

denote the Lebesgue-Bochner space furnished with the weak topology.
Let us give a proposition which is essential for our results.

Proposition . If hypotheses (H) and (H) hold, then P : Lq(I, H)w → C(I, H) is sequen-
tially continuous.

Proof Let

W =
{

v ∈ Lq(I, H) :
∥∥v(t)

∥∥
H ≤ ψ(t) a.e. for t ∈ I

}
,

with ψ(t) ∈ Lq
+(I). Similar to the step  of Theorem . in [], we will show that there is

a prior bound to problem (.) for each f ∈ W . Let fn ∈ W for every n ≥ . From the
definition of W , {fn}n≥ is uniformly bounded in Lq(I, H). By the Dunford-Pettis theorem,
passing to a subsequence if necessary, we may assume that fn −→ f weakly in Lq(I, H) for
some f ∈ W as n −→ ∞. For the possible solution un = P(fn), we have

u̇n(t) + B
(
t, un(t)

)
+ Dun(t) = fn(t) a.e. for t ∈ I.

It follows that

〈u̇n, un〉∗∗ +
〈
B(t, un), un

〉
∗∗ + 〈Dun, un〉∗∗ = 〈fn, un〉∗∗.
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From (H)(iv) and

∫ T



〈
u̇n(t), un(t)

〉
dt =



∥∥un(T)

∥∥
H –



∥∥un()

∥∥
H ,

〈fn, un〉∗∗ ≤ ‖fn‖Lq(I,V∗)‖un‖Lp(I,V ),

we derive

C‖un‖p
Lp(I,V ) ≤ C‖un‖p–

Lp(I,V ) + ‖fn‖Lq(I,V∗)‖un‖Lp(I,V ) + ‖b‖L ,

with p > , and

C‖un‖p
Lp(I,V ) ≤ C‖un‖p–

Lp(I,V ) + ‖fn‖Lq(I,V∗)‖un‖Lp(I,V ) + ‖b‖L + ‖un‖
Lp(I,V ),

with  < p ≤ . Hence, we have, for all n ∈N, ‖un‖Lp(I,V ) ≤ M where M > . From (.), it is
easy to deduce that, for all n ∈ N, ‖un‖Lq(I,V∗) ≤ M where M > . So we see that {un}n≥ is
uniformly bounded in Wpq(I). Due to the boundedness of the sequence {un}n≥ ⊂ Wpq(I),
it follows that the sequence {un}n≥ ⊂ Lq(I, V ∗) is uniformly bounded. So passing to a
subsequence if necessary, we may assume that u̇n −→ v weakly in Lq(I, V ∗). Obviously,
v = u̇ and un −→ u weakly in Wpq(I). Since the embedding V → H is compact, the em-
bedding Wpq(I) → Lp(I, H) is compact. Thus, we have un −→ u in Lp(I, H). Since the
operator B is hemicontinuous and monotone and D is a continuous linear operator, we
have B(t, xn) −→ B(t, x), Dxn −→ Dx weakly in Lq(I, V ∗) as n −→ ∞. Therefore, we ob-
tain u̇(t) + B(t, u(t)) + Du(t) = f (t). Since the embedding Wpq(I) → C(I, H) is continu-
ous, the sequence {un}n≥ ⊂ C(I, H) is uniformly bounded. Also, {un}n≥ is equicontin-
uous. By the Arzela-Ascoli theorem, passing to a subsequence, we may assume un −→ u
in C(I, H). Since τ : C(I, H) → H is continuous, we have un() = τ (un) −→ u() = τ (u).
Hence, u = P(f ). Because of Wpq(I) ⊂ C(I, H), one has un – u ∈ C(I, H). Note that

〈
u̇n(t) – u̇(t), un(t) – u(t)

〉 ≤ 〈
fn(t) – f (t), un(t) – u(t)

〉
.

Integrating the above inequality over [, t], by hypotheses (H), (H), for arbitrary t ≤ T
we find

∥∥un(t) – u(t)
∥∥

H ≤ 
∫ t



〈
fn(s) – f (s), un(s) – u(s)

〉
ds +

∥∥un() – u()
∥∥

H .

By

∫ t



〈
fn(s) – f (s), un(s) – u(s)

〉
ds

≤ 
∫ T



∥∥fn(t)
∥∥

H

∥∥un(t) – u(t)
∥∥

H dt + 
∫ T



∥∥f (t)
∥∥

H

∥∥un(t) – u(t)
∥∥

H dt

≤ 
∫ T



∣∣ψ(t)
∣∣∥∥un(t) – u(t)

∥∥
H dt,
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it follows that

∥∥un(t) – u(t)
∥∥

H ≤ 
∫ T



∣∣ψ(t)
∣∣∥∥un(t) – u(t)

∥∥
H dt +

∥∥un() – u()
∥∥

H

≤ 
∫ T



∣
∣ψ(t)

∣
∣
∥
∥un(t) – u(t)

∥
∥

H dt +
∥
∥τ (un) – τ (u)

∥
∥

H

≤ ‖ψ‖Lq‖un – u‖Lp(I,H) +
∥
∥τ (un) – τ (u)

∥
∥

H

−→  (.)

as n −→ ∞.
Then we get

max
t∈I

∥
∥un(t) – u(t)

∥
∥

H −→  as n −→ ∞.

So, un −→ u in C(I, H), i.e. P : Lq(I, H)w −→ C(I, H) is sequentially continuous. �

To prove such a structural result for the solution set of (.) we need the following hy-
potheses on F (t, x):

(H) F : I × H → H is a multifunction with closed and convex values such that
(i) (t, u) →F (t, u) is graph measurable;

(ii) for almost all t ∈ I , u →F (t, u) has a closed graph;
(iii) there exist a function b(·) ∈ Lq

+(I) and a constant C >  such that

∣
∣F (t, u)

∣
∣ = sup

{‖f ‖H : f ∈F (t, u)
}

≤ b(t) + C‖u‖k–
H , ∀x ∈ H , a.e. for t ∈ I,

where  ≤ k < p.

Theorem . Under assumptions (H)-(H), S is an Rδ set in C(I, H).

Proof From the prior estimation executed in the proof of Theorem . in [], without loss
of generality, we may suppose that, for almost all t ∈ I , all u ∈ H , and all h(t) ∈ F (t, u),
we have ‖h(t)‖H ≤ ψ(t) where ψ ∈ Lq

+(I). Applying Lemma ., we can obtain a sequence
of multifunctions Fn : I × H → Pfc(H). For every n ≥ , consider the following evolution
inclusion:

u̇(t) + B
(
t, u(t)

)
+ Du(t) ∈Fn

(
t, u(t)

)
, a.e. for t ∈ I,

u() = τ (u).
(.)

From Theorem . of [], we see that the solution set Sn ⊆ Wpq(I) ⊂ C(I, H) of problem
(.) is compact in C(I, H). The following two steps are needed to complete the proof.

Step . This set Sn is contractible.
Let wn(t, u) be measurable selector of Fn(t, u) generated by Lemma ., the locally Lip-

schitz continuous in u ∈ H . Fixing wn(t, u) ∈ Fn(t, u), let û = P(wn(t, u)) ∈ Sn, where P is
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defined as before. Consider the following Cauchy problem:

ż(t) + B
(
t, z(t)

)
+ Dz(t) = wn(t, z) a.e. for t ∈ [δT , T],

z(δT) = δu(δT) + ( – δ)̂u().
(.)

It is easy to check the existence of solution in (.) (see []). Because B is hemicontinu-
ous and monotone, D is a continuous linear operator and wn(t, u) be the locally Lipschitz
continuous in u ∈ H , the solution of (.) is unique. For every δ ∈ [, ] and every u ∈ Sn,
let z(δ, u)(t) ∈ Wpq(I) be the unique solution of (.). In order for this set Sn to be con-
tractible, for given û ∈ Sn, we only need to find a continuous function μ : [, ] × Sn → Sn

such that, for all u ∈ Sn, we have μ(, u)(t) = û(t) and μ(, u)(t) = u(t). So we can define
μ : [, ] × Sn → Sn by

μ(δ, u)(t) =

(
δu(t) + ( – δ)̂u() for t ∈ [, δT],

z(δ, u)(t) for t ∈ (δT , T].

)

If δ = , by (H) and (H), we know that z(t) = û(t) for every t ∈ I . So μ(, u)(t) = û. From
the definition of μ(δ, u)(t), obviously, μ(, u)(t) = u(t) for every u(t) ∈ Sn. We show that
μ(δ, u)(t) ∈ Sn for each (δ, u) ∈ [, ]×Sn. Note that for each u ∈ Sn, there exists f̃ ∈Fn(t, u),
such that u = P(̃f ). Let

v(t) = f̃ χ[,δT](t) + wnχ(δT ,T](t) for t ∈ I,

where χ is the characteristic function. SinceFn(t, u) is closed and convex-valued, from the
definition of a decomposable value (see Section ), we see that Fn(t, u) is decomposable,
from which one deduces v ∈ Fn(t, u). Obviously, P(v) = u(t) for all t ∈ [, δT] and P(v) =
z(δ, u)(t) for all t ∈ (δT , T], which means P(v) = μ(δ, u) for any δ ∈ [, ]. Hence, μ(δ, u) ∈
Sn.

To prove that Sn is contractible, we first note that μ : [, ]×Sn → Sn and μ(, u)(t) = û(t)
and μ(, u)(t) = u(t) for every u ∈ Sn. Next, it remains to show that μ(δ, u)(t) is continuous
in [, ] ×C(I, H). To this aim, let (δm, um) −→ (δ, u) in [, ] ×Sn. Next, we will distinguish
two distinct cases to proceed.

I: δm ≥ δ for every m ≥ . Let vm(t) = μ(δm, um)(t), for t ∈ I . Obviously, vm ∈ Sn, m ≥ .
Due to the compactness of the solution set Sn in C(I, H), by passing to a subsequence
if necessary, we may suppose that vm −→ v in C(I, H) as m −→ ∞. Next, we only need
to check v(t) = μ(δ, u)(t). Clearly, [, δT] ⊆ [, δmT], by the definition of μ(δ, u), one has
vm(t) = δmum(t) + ( – δm )̂u() for  ≤ t ≤ δmT . As (δm, um) → (δ, u) in [, ] × C(I, H), we
obtain v(t) = δu(t) + ( – δ)̂u() for  ≤ t ≤ δT . Also let y ∈ Wpq(I) be the unique solution
of the following equation:

ẏ(t) + B
(
t, y(t)

)
+ Dy(t) = wn(t, v) a.e. for t ∈ [δT , T],

y(δT) = v(δT).
(.)

Let m ≥ N be large enough for some constant N > , by (.), vm(·) satisfies

v̇m(t) + B
(
t, vm(t)

)
+ Dvm(t) = wn

(
t, vm(t)

)
a.e. for t ∈ [δmT , T]. (.)
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Exploiting the monotonicity of the operator B(t, ·) and D, and combining (.) with (.),
we find

〈
ẏ(t) – v̇m(t), y(t) – vm(t)

〉

≤ 〈
wn

(
t, v(t)

)
– wn

(
t, vm(t)

)
, y(t) – vm(t)

〉
a.e. for t ∈ [δN T , T].

Taking the integral over the above inequality from δN T to t (t ≤ T ), we have

∥
∥y(t) – vm(t)

∥
∥

H

≤ ∥∥y(δN T) – vm(δN T)
∥∥

H + 
∫ t

δN T

∥∥wn
(
s, v(s)

)
– wn

(
s, vm(s)

)∥∥
H

∥∥y(s) – vm(s)
∥∥

H ds.

By Brezis [], p., we obtain

∥
∥y(t) – vm(t)

∥
∥

H ≤ ∥
∥y(δN T) – vm(δN T)

∥
∥

H +
∫ t

δN T

∥
∥un

(
s, v(s)

)
– un

(
s, vm(s)

)∥∥
H ds.

Passing to the limit as m −→ ∞, and recalling that vm −→ v in C(I, H) and wn(t, u) is locally
Lipschitz continuous in u, we get ‖y(t) – v(t)‖H ≤ ‖y(δN T) – v(δN T)‖H for δN T ≤ t ≤ T .
Since y(t) is the solution in (.), y ∈ C(I, H). So y(t) is continuous with respect to t. Finally,
y(δN T) → v(δT) and v(δN T) → v(δT) in H as N −→ ∞, in the limit we get y(t) = v(t) for
every δT ≤ t ≤ T . So

v̇(t) + B
(
t, v(t)

)
+ Dv(t) = wn

(
t, v(t)

)
a.e. for t ∈ [δT , T],

v(δT) = δu(δT) + ( – δ)̂u(),

hence v = μ(δ, u). Therefore μ(δm, um) −→ μ(δ, u) in C(I, H) as (δm, um) −→ (δ, u).
II: δm ≤ δ for every m ≥ . Keeping the notation as in case I, we have [, δmT] ⊆ [, δT].

By the definition of μ(δ, u), one has vm(t) = δmum(t) + ( – δm )̂u() for  ≤ t ≤ δmT . As
(δm, um) −→ (δ, u) in [, ] × C(I, H), we get v(t) = δu(t) + ( – δ)̂u() for  ≤ t ≤ δT . Also
let y ∈ Wpq(I) be the unique solution of the following equation:

ẏ(t) + B
(
t, y(t)

)
+ Dy(t) = wn(t, v) a.e. for t ∈ [δT , T],

y(δT) = v(δT).
(.)

Let m ≥ N large enough for some constant N > , by (.), vm(·) satisfies

v̇m(t) + B
(
t, vm(t)

)
+ Dvm(t) = wn

(
t, vm(t)

)
a.e. for t ∈ [δN T , T]. (.)

Due to the monotonicity of the operator B(t, ·) and D, and combining (.) with (.), we
have

〈
ẏ(t) – v̇m(t), y(t) – vm(t)

〉

≤ 〈
wn

(
t, v(t)

)
– wn

(
t, vm(t)

)
, y(t) – vm(t)

〉
a.e. for t ∈ [δT , T].
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Integrating the above inequality over [δT , t), t ≤ T , we have

∥
∥y(t) – vm(t)

∥
∥

H

≤ ∥∥y(δT) – vm(δT)
∥∥

H + 
∫ t

δT

∥∥wn
(
s, v(s)

)
– wn

(
s, vm(s)

)∥∥
H

∥∥y(s) – vm(s)
∥∥

H ds.

As before, we obtain

∥∥y(t) – vm(t)
∥∥

H ≤ ∥∥y(δT) – vm(δT)
∥∥

H +
∫ t

δT

∥∥wn
(
s, v(s)

)
– wn

(
s, vm(s)

)∥∥
H ds.

Taking the limit as m −→ ∞, and recalling that vm −→ v in C(I, H) and wn(t, x) is the locally
Lipschitz continuous in x ∈ H , we get ‖y(t) – v(t)‖H ≤ ‖y(δT) – v(δT)‖H for δT ≤ t ≤ T .
Since y(t) is the solution in (.), y(δT) = v(δT). Finally, in the limit we get y(t) = v(t) for
every δT ≤ t ≤ T . So

v̇(t) + B
(
t, v(t)

)
+ Dv(t) = wn

(
t, v(t)

)
a.e. for t ∈ [δT , T],

v(δT) = δu(δT) + ( – δ)̂u(),

hence v = μ(δ, u). Therefore μ(δm, um) −→ μ(δ, u) in C(I, H) as (δm, um) −→ (δ, u).
In fact, we can always get a subsequence of {δm}m≥ conforming to I or II. Thus we have

established the continuity of μ(δ, u). Therefore, for every n ≥ , Sn ⊆ C(I, H) is compact
and contractible.

Step . S =
⋂

n≥ Sn.
Evidently, S ⊆ ⋂

n≥ Sn. Let u ∈ ⋂
n≥ Sn. Then through definition u = P(fn), where fn ∈

Sq
Fn(·,un(·)) (the set of all Lq(I, H)-selectors of Fn), n ≥ . By passing to a subsequence if nec-

essary, we may assume that fn −→ f weakly in Lq(I, H). Then f ∈ Sq
F (·,u(·)) (see Theorem .

of []). So u = P(f ) with f ∈ Sq
F (·,u(·)) from which we conclude that S =

⋂
n≥ Sn. Finally, by

Steps  and , Hyman’s result [] implies that S is an Rδ set in C(I, H). �

An immediate conclusion of Theorem . is the following result for the multivalued
problem (.).

Remark . Assume (H)-(H), then for every t ∈ I , S(t) = {x(t)|x ∈ S} (the reachable set
at time t ∈ I) is compact and connected in H .

We can establish an analogous result for the topological structure of a nonconvex evolu-
tion inclusion (i.e., F (t, u) has nonconvex values) provided we strengthen our assumption
on the continuity of F (t, u). In fact, in this case we can see that the solution set is path
connected.

To prove such a structural result for the solution set of (.) we need the following hy-
potheses on F (t, x) and τ :

(H) F : I × H → Pf (H) is a multifunction such that
(i) t →F (t, u) is measurable;

(ii) for every u, u ∈ H , h(F (t, u),F (t, u)) ≤ z(t)‖u – u‖H a.e. with
z(t) ∈ Lq

+(I);
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(iii) there exist a function b(·) ∈ Lq
+(I) and a constant C >  such that

∣
∣F (t, u)

∣
∣ = sup

{‖f ‖H : f ∈F (t, u)
} ≤ b(t) + C‖u‖k–

H ∀u ∈ V a.e. for t ∈ I

with  ≤ k < p.
(H)

(i) D : V → V ∗ is a bounded linear self-adjoint operator such that 〈Du, u〉∗ ≥ ,
for all u ∈ V , a.e. for t ∈ I ;

(ii) there exists a continuous function τ : C(I, H) → H such that

∥∥τ (u) – τ (u)
∥∥

H ≤L‖u – u‖C(I,H), ∀u, u ∈ C(I, H),

where L ∈ [, ), τ () = .

Theorem . If hypotheses (H), (H), and (H) are satisfied, then S ⊆ C(I, H) is
nonempty and path connected.

Proof The prior estimation conducted in the three part of the proof of Theorem .
in [] is still valid here. So according to it, we see that without any loss of generality
we may suppose that |F (t, u)| ≤ ψ(t) a.e. with ψ(t) ∈ Lq

+(I). Let Wα = {g ∈ Lq(I, H) :
‖g(t)‖H ≤ ψ(t) a.e. for t ∈ I}, and the multifunction N : Wα → Pf (Lq(I, H)) be defined by
N(g) = Sq

F (·,P(g)(·)) (here P(g) is defined as before). Next, we present a new norm on Lq(I, H)
defined by

‖g‖q =
(∫ T


exp–r

∫ t
 zq(s) ds∥∥g(t)

∥
∥q

H dt
) 

q
,

where r is a number satisfying r > T
q
p , p > , and q is the conjugate of p. It is easy to check

that the norm ‖ ·‖q is the equivalent of ‖ ·‖Lq(I,H). Denote by dq(·, ·) and dĤ (·, ·) the distance
function and Hausdorff metric, respectively, generated by ‖·‖q. Let f , g ∈ Wα and v ∈ N(g).
Let ε >  and define

Dε(t) =
{

w ∈F
(
t, P(f )

)
:
∥
∥v(t) – w(t)

∥
∥

H ≤ d
(
v(t), F

(
t, P(f )(t)

))
+ ε

}
.

Let b(t, w) = d(v(t),F (t, P(f ))) – ‖v – w‖H + ε. Obviously, for every t ∈ I , Dε(t) �= ∅
and Gr Dε = {(t, w) ∈ GrF (t, P(f )(t)) : b(t, w) ≥ }. In fact, because of (H)(i) and (ii),
(t, u) → F (t, u) is measurable, thus t → F (t, P(f )(t)) is measurable. So, (t, w) → b(t, w)
is a Carathéodory function, thus jointly measurable. Hence Gr Dε ∈ B(I) × B(H). Apply
Aumann’s selection theorem to get w : I → H measurable such that w(t) ∈ Dε(t) a.e. for
t ∈ I . Then we find

dq
(
v, N(f )

) ≤ ‖v – w‖q

=
(∫ T


‖v – w‖q

H exp–r
∫ t

 zq(s) ds dt
) 

q

≤
(∫ T



[
d
(
v(t),F

(
t, P(f )(t)

))]q
exp–r

∫ t
 zq(s) ds dt

) 
q

+ (T)

q ε
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≤
(∫ T



[
h
(
F

(
t, P(g)(t)

)
,F

(
t, P(f )(t)

))]q
exp–r

∫ t
 zq(s) ds dt

) 
q

+ (T)

q ε

≤
(∫ T


zq(t)

∥∥P(f )(t) – P(g)(t)
∥∥q

H exp–r
∫ t

 zq(s) ds dt
) 

q
+ (T)


q ε. (.)

For every y ∈ C(I, H), consider the following differential inclusion:

ẋ(t) + B
(
t, x(t)

)
+ Dx(t) = f (t), a.e. for t ∈ I,

x() = τ (y),
(.)

where f (t) ∈F (t, x(t)). Let S(y) denote the solution set of (.), by Theorem . in [], we
have S(y) �= ∅. Since B(t, ·) is monotone, D is a continuous linear map, and P(f )() = P(g)()
(P(f ), P(g) ∈ S(y)), we have



∥∥P(f )(t) – P(g)(t)

∥∥
H ≤

∫ t



∥∥P(f ) – P(g)
∥∥

H

∥∥f (s) – g(s)
∥∥

H ds. (.)

Hence, we obtain ‖P(f )(t) – P(g)(t)‖H ≤ ∫ t
 ‖f (s) – g(s)‖H ds for all t ∈ I (see Brezis [],

p.), then ‖P(f )(t) – P(g)(t)‖q
H ≤ T

q
p
∫ t

 ‖f (s) – g(s)‖q
H ds. From (.), it follows that

dq
(
v, N(f )

) ≤
(

T
q
p

∫ T


zq(t)

∫ t



∥∥f (s) – g(s)
∥∥q

H ds exp–r
∫ t

 zq(s) ds dt
) 

q
+ (T)


q ε

≤
(

–

r

T
q
p

∫ T



∫ t



∥∥f (s) – g(s)
∥∥q

H ds
d
dt

(
exp–r

∫ t
 zq(s) ds)dt

) 
q

+ (T)

q ε

≤
(


r

T
q
p

∫ T


exp–r

∫ t
 zq(s) ds∥∥f (t) – g(t)

∥∥q
H dt

) 
q

+ (T)

q ε

≤
(


r

) 
q

T

p
∥∥f (t) – g(t)

∥∥
q + (T)


q ε. (.)

Let ε →  to get dq(v, N(f )) ≤ ( 
r )


q T


p ‖f (t)–g(t)‖q. Exchanging the roles of f and g we also

get dq(u, N(g)) ≤ ( 
r )


q T


p ‖f (t) – g(t)‖q. Thus, finally, dĤ (N(f )(t), N(g)(t)) ≤ ( 

r )

q T


p ‖f (t) –

g(t)‖q where ( 
r )


q T


p < . Set � = {g ∈ Wα : g ∈ N(g)}. From Nadler’s fixed-point theorem

[] we get � �= ∅, and then from Theorem  in [] we see that � is an absolute retract
in Lq(I, H). Since an absolute retract is path connected, we see that � is path connected.
Then P(�) is path connected in C(I, H). However, note that P(�) = S(y), to conclude that
S(y) is nonempty and path connected in C(I, H). For every y, y ∈ C(I, H), we see that
there exist x(t) ∈ S(y), x(t) ∈ S(y) such that

dH
(
S(y), S(y)

)
=

∥
∥x(t) – x(t)

∥
∥

C(I,H). (.)

Note that

xi(t) =
∫ t


ẋi(s) ds + τ

(
yi(t)

)
,
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for i = , . By (.), one has

x(t) – x(t) +
∫ t



(
B
(
s, x(s)

)
– B

(
s, x(s)

))
ds +

∫ t



(
Dx(s) – Dx(s)

)
ds

= τ (y) – τ (y) (.)

for every y, y ∈ C(I, H). Taking the inner product over (.) with x(t) – x(t), by (H)(ii)
and (H)(i), then

〈
x(t) – x(t), x(t) – x(t)

〉 ≤ 〈
τ
(
y(t)

)
– τ

(
y(t)

)
, x(t) – x(t)

〉
.

It follows that

‖x – x‖C(I,H) ≤ ∥∥τ (y) – τ (y)
∥∥

H .

By (H)(ii), we have

‖x – x‖C(I,H) ≤L‖y – y‖C(I,H).

From (.), one has

dH
(
S(y), S(y)

) ≤L‖y – y‖C(I,H).

Since L ∈ [, ), from Nadler’s fixed-point theorem [] and Theorem  in [], we know
that S = {y : y ∈ S(y)} is an absolute retract in C(I, H), which shows that S is path connected
in C(I, H). The proof is completed. �

Remark . In [], it is proved that the set of extremal solutions of a differential inclusion
in R

N is path connected based on the Baire category method.

4 Examples
To reveal the effectiveness of the previous results, we introduce two examples. Our exam-
ples are inspired directly by the work of [], Examples, and [], but here our boundary
value conditions more general. Furthermore, we obtain the results which are new on the
structural properties of solution set for the following examples. Let � ⊂R

N be a bounded
domain with smooth boundary ∂�, I = [, T],  < T < ∞. Let q be the conjugate of p and
p > . Let  =

∑N
k=

∂

∂x
k

. We first consider a nonlinear evolution equation with a discon-
tinuous right-hand side of the form

∂u(t, x)
∂t

– div
(∣∣∇u(t, x)

∣
∣p–∇u(t, x)

)
+

∣
∣u(t, x)

∣
∣p–u(t, x) – u(t, x)

= g
(
t, x, u(t, x)

)
for (t, x) ∈ I × �,

u(t, x) =  for (t, x) ∈ I × ∂�,

u(, x) =
θ

T

∫ T


u(t, x) dt + θu(T , x) for x ∈ �,

(.)
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where p > , θ, θ ∈ [–, ], and |θ| + |θ| ≤ . In general, the function g(t, x, ·) is discon-
tinuous. In order to obtain the nonemptiness of the solution set for (.), we change to
a multivalued problem by, generally speaking, cramming the gaps at the discontinuous
points of g(t, x, ·). To this end, we introduce the functions g(t, x, u) and g(t, x, u) defined
by

g(t, x, u) = lim inf
ξ→u

g(t, x, ξ ) and g(t, x, u) = lim sup
ξ→u

g(t, x, ξ ).

For all (t, x) ∈ I × �, we can define the set-valued function F(t, x, u) by

F(t, x, u) =
[
g(t, x, u), g(t, x, u)

]
=

{
v ∈R : g(t, x, u) ≤ v ≤ g(t, x, u)

}
.

Next, corresponding to (.), we consider the following evolution inclusion:

∂u(t, x)
∂t

– div
(∣∣∇u(t, x)

∣∣p–∇u(t, x)
)

+
∣∣u(t, x)

∣∣p–u(t, x) – u(t, x)

∈ F
(
t, x, u(t, x)

)
for (t, x) ∈ I × �,

u(t, x) =  for (t, x) ∈ I × ∂�,

u(, x) =
θ

T

∫ T


u(t, x) dt + θu(T , x) for x ∈ �.

(.)

To get the topology structure of the solution set of (.), we need the following hypothe-
ses on g .

(H) g : I × � ×R→R is a function such that
(i) if u : I × � → R is a measurable function, then so are

(t, x) → g(t, x, u(t, x)), g(t, x, u(t, x));
(ii) for almost all (t, x) ∈ I × � and all u ∈ R, there exist a(t, x) ∈ Lq

+(I, L(�)) and
ĉ(x) ∈ L∞(�) such that

∣∣g(t, x, u)
∣∣ ≤ a(t, x) + ĉ(x)|u|k–,

with  ≤ k < p.
The evolution triple is, in this case, H = L(�), V = W ,p

 (�), and V ∗ = W –,q(�). Due to
the Sobolev embedding theorem, we know that all embeddings are compact. Let us define
the following operator on W ,p

 (�):

〈
B(u)(t), v

〉
∗ =

∫

�

(|∇u|p–∇u · ∇v + |u|p–uv
)

dx.

By the monotone property of p-Laplacian, it is easy to deduce that B satisfies our hypoth-
esis (H). Also we define the operator D by

〈
D(u)(t), v

〉
∗ =

∫

�

∇u · ∇v dx.

Evidently, (H)(i) holds. Next, let F : I × H → Pfc(H) be defined by

F (t, u) =
{

v ∈ L(�) : g(t, x, u) ≤ v(x) ≤ g(t, x, u)
}

.



Cheng et al. Boundary Value Problems  (2016) 2016:26 Page 15 of 17

Hypothesis (H) shows that (H) is satisfied. Since g(t, x, ·) is lower semicontinuous,
g(t, x, ·) is upper semicontinuous, and so F(t, x, ·) is upper semicontinuous (see [], Ex-
ample ., p.]). Finally, let τ : C(I, L(�)) → L(�) be defined by τ (u) = θ

T
∫ T

 u(t, x) dt +
θu(T , x), we have

∥∥τ (u) – τ (u)
∥∥

L ≤ |θ|
T

∥
∥∥
∥

∫ T


max

t∈I

∣∣u(t, x) – u(t, x)
∣∣dt

∥
∥∥
∥

L

+ |θ|max
t∈I

∥
∥u(t, x) – u(t, x)

∥
∥

L

≤ ‖u – u‖C(I,L(�)),

for every u, u ∈ C(I, L(�)), which means τ satisfies our hypothesis (H)(ii). Then we
solve equivalently (.) as (.), with B, D, and F as above. Finally, we can use Theorem .
on problem (.) and obtain the following consequence.

Theorem . If hypothesis (H) is satisfied, then the solution set S of (.) is nonempty and
compact Rδ in C(I, L(�)). Moreover, it is compact and connected in C(I, L(�)).

Second, we offer an example of a quasilinear control system, with a prior feedback. Let
I = [, T] where  < T < ∞, and � ⊆ R

N a bounded domain with C-boundary ∂�. Let
Dk = ∂

∂xk
, D = (D, . . . , DN ),  =

∑N
k=

∂

∂x
k

. We examine the following control system:

∂u(t, x)
∂t

–
N∑

k=

DkBk
(
t, x, u(t, x), Du(t, x)

)
– u(t, x)

= f
(
t, x, u(t, x)

)
v(t, x) for (t, x) ∈ I × �,

u(t, x) =  for (t, x) ∈ I × ∂�,

u(, x) =


T

∫ T


u(t, x) dt for x ∈ �,

v(t, x) ∈ U
(
t, x, u(t, x)

)
for (t, x) ∈ I × �.

(.)

The following hypotheses on (.) are needed:
(H) Bk(k = , , . . . , N) : I × � ×R×R

N →R are functions such that
(i) (t, x) → Bk(t, x, u, ξ ) is measurable on I × � for every (u, ξ ) ∈R×R

N ,
(u, ξ ) → Bk(t, x, u, ξ ) is continuous on R×R

N for almost all (t, x) ∈ I × �;
(ii) |Bk(t, x, u, ξ )| ≤ α̂(t, x) + ĉ(x)(|u| + |ξ |) with a function α̂ ∈ L

+(I, L(�)) and
ĉ(z) ∈ L∞(�) for almost all t ∈ I ;

(iii)
∑N

k=(Bk(t, x, u, ξ ) – Bk(t, x, u, ξ ′))(ξk – ξ ′
k) ≥ |ξ – ξ ′| for almost all t ∈ I ;

(iv) Bk(t, x, , ) =  for all (t, x) ∈ I × �.
(H) The functions f : I × � ×R→ R satisfies

(i) for all u ∈R, (t, x) → f (t, x, u) is measurable;
(ii) for all (t, x) ∈ I × �, u → f (t, x, u) is continuous;

(iii) for almost all (t, x) ∈ I × � and all u ∈R, we have

∣∣f (t, x, u)
∣∣ ≤ η(t, x) + η(x)|u|,

where η ∈ L(I, L(�)), η ∈ L∞
+ (�).
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(H) U : I × � ×R→ Pf (R) is a multifunction such that
(i) for all u ∈R, (t, x) → U(t, x, u) is measurable;

(ii) for almost all (t, x) ∈ I × � and all u, u ∈ L(�),
dH (U(t, x, u), U(t, x, u)) ≤ z(t)‖u – u‖L with z(t) ∈ L

+(I);
(iii) for almost all (t, x) ∈ I × � and all u ∈R, |U(t, x, u)| ≤ M, where M > .

Let (V , H , V ∗) be an evolution triple with compact embeddings where V = H
(�), H =

L(�), V ∗ = H–(�). Let B : I × V → V ∗, D : V → V ∗ be the operators defined by

〈
B(t, u), w

〉
=

∫

�

N∑

k=

Bk
(
t, x, u(t, x), Du(t, x)

)
Dkw(x) dx,

〈Du, w〉 =
∫

�

N∑

k=

Dku(t, x)Dkw(x) dx

for all w ∈ H
(�). Let τ : C(I, L(�)) → L(�) be defined by τ (u) = 

T
∫ T

 u(t, x) dt. Evi-
dently, by hypotheses (H), it is forthright to verify that B, D, τ satisfy hypotheses (H),
(H). Also, let F : I × L(�) → Pf (L(�)) be defined by

F
(
t, u(t)

)
=

{
w ∈ L(�) : w(t, x) = g

(
t, x, u(t, x)

)
v(x), v(x) ∈ U

(
t, x, u(t, x)

)
, for x ∈ �

}
.

According to hypotheses (H) and (H), it is easy to verify that F satisfies hypotheses
(H).

Convert problem (.) to the following equivalent form:

∂u
∂t

+ B
(
t, u(t)

)
+ Du(t) ∈F

(
t, u(t)

)
for t ∈ I,

u() = τ (u).
(.)

By applying Theorem . on problem (.), we obtain the following theorem.

Theorem . If hypotheses (H)-(H) are satisfied, then the solution set S of (.) is
nonempty and path connected in C(I, L(�)).
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