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Abstract
In this paper, we are concerned with the local existence of strong solutions to the k-ε
model equations for turbulent flows in a bounded domain � ⊂ R

3. We prove the
existence of unique local strong solutions under the assumption that the turbulent
kinetic energy and the initial density both have lower bounds away from zero.

MSC: 35Q35; 76F60; 76N10

Keywords: k-ε model equations; strong solution; local well-posedness

1 Introduction
Turbulence is a natural phenomenon, which occurs inevitably when the Reynolds number
of flows becomes high enough ( or more). In this paper, we consider the k-ε model
equations [, ] for turbulent flows in a bounded domain � ⊂ R

 with smooth boundary,

ρt + ∇ · (ρu) = , (.)

(ρu)t + ∇ · (ρu ⊗ u) – �u – ∇(∇ · u) + ∇p = –


∇(ρk), (.)

(ρh)t + ∇ · (ρuh) – �h = pt + u · ∇p + Sk , (.)

(ρk)t + ∇ · (ρuk) – �k = G – ρε, (.)

(ρε)t + ∇ · (ρuε) – �ε =
CGε

k
–

Cρε

k
, (.)

(ρ, u, h, k, ε)(x, ) =
(
ρ(x), u(x), h(x), k(x), ε(x)

)
, (.)

(
u · �n, h,

∂k
∂�n ,

∂ε

∂�n
)∣∣

∣∣
∂�

= (, , , ), (.)

with

Sk =
[
μ

(
∂ui

∂xj
+

∂uj

∂xi

)
–



δij

∂uk

∂xk

]
∂ui

∂xj
+

μt

ρ
∂p
∂xj

∂ρ

∂xj
, (.)

G =
∂ui

∂xj

[
μe

(
∂ui

∂xj
+

∂uj

∂xi

)
–



δij

(
ρk + μe

∂uk

∂xk

)]
, (.)

p = ργ , (.)
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where δij =  if i �= j, δij =  if i = j, and μ, μt , μe, C, and C are five positive constants
satisfying μ + μt = μe, and �n is the unit outward normal to ∂�.

Equations (.)-(.) are derived from combining the effect of turbulence on the time-
averaged Navier-Stokes equations with the k-ε model equations. The unknown functions
ρ , u, h, k, and ε denote the density, velocity, total enthalpy, turbulent kinetic energy, and the
rate of viscous dissipation of turbulent flows, respectively. The expression of the pressure
p has been simplified here, which indeed has no bad effect on our study.

In partial differential equations, the k-ε equations belong to the compressible ones. In
this regard, we will refer to the classical compressible Navier-Stokes equations and com-
pressible MHD equations, which are also research mainstreams, to carry out our study.

For compressible isentropic Navier-Stokes equations, the first question provoking our
interest is the existence of the weak solutions. Lions [, ] proved the global existence of
weak solutions under the condition that γ > n

n+ , where γ is the same as in (.) and n
is the dimension of space. Later, Feireisl [, ] improved his result to γ > n

 . The condi-
tion satisfied by γ is to prove the existence of renormalized solutions, which were intro-
duced by DiPerna and Lions []. When the initial data are general small perturbations of
non-vacuum resting state, Hoff [] proved the global existence of weak solutions provided
γ > . The existence of strong solutions is another problem provoking our interest in the
research of Navier-Stokes equations. It has been proved that the density will be away from
vacuum at least in a small time interval provided the initial density is positive. If the initial
data have better regularity, the compressible isentropic Navier-Stokes equations will admit
a unique local strong solution under various boundary conditions [–]. However, when
the initial vacuum is allowed, it was shown recently in [] that the isentropic one will have
a local strong solution in the case that some compatibility conditions are satisfied initially.
Choe and Kim [] obtained the unique local strong solutions for full compressible poly-
tropic Navier-Stokes equations under a similar condition in []. In [], the technique the
authors used is mainly the standard iteration argument and the key point of their success
is the estimate for the L norm of the gradient of the pressure. In the process of studying
the condition of a local solution becoming a global one, Xin [] proved that the smooth
solutions will blow up in finite time when an initial vacuum is allowed.

As for compressible MHD equations, the research directions, which mainly contain first
the existence of weak and strong solutions and second the condition of weak solutions be-
coming a strong or even classical one and the local becoming a global one, are similar
to that of Navier-Stokes equations. For example, Hu and Wang [–] obtained the lo-
cal existence of weak solutions to the compressible isentropic MHD equations. Rozanova
[] proved the local existence of classical solutions to the compressible barotropic MHD
equations provided both the mass and energy are finite. Fan and Yu in [] proved the ex-
istence and uniqueness of strong solutions to the full compressible MHD equations. The
method Fan and Yu [] used is similar to that in [], for example, they are both depen-
dent on the standard iteration argument and the estimate for the L norm of the gradient
of the pressure.

In this paper, we consider the existence of strong solutions to the k-ε model equa-
tions (.)-(.) in a bounded domain � ⊂ R

. Our method is similar to that in []
and []. However, in the process of applying the method to the k-ε model equations, we
find that the regularity of the solutions should be higher, which is induced by the higher
nonlinearity in the compressible Navier-Stokes equations and compressible MHD equa-
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tions than that in [] and []. In fact, when we make the difference of the nth and the
(n + )th cases of equation (.) and integrating the result, we inevitably arrive at the term
∫

∂jρ
n+∂jρ

n+ · hn+. Therefore, we have to use integration by parts, which leads to two
terms as

∫
ρn+∂j∂jρ

n+ · hn+ and
∫

ρn+∂jρ
n+ · ∂jh

n+. Then, by the Hölder and Young in-
equalities, it turns out that ‖∇ρn+‖L and ‖∇ρn+‖L∞ should be bounded. Thus, we need
‖ρ‖H to be bounded for an a priori estimate. Therefore, from the mass equation enough
regularity of the velocity field should be imposed. Moreover, due to the strong-coupling
property of the k-ε equations, we need a corresponding high regularity of the unknown
functions k and ε.

Stated simply, the high nonlinearity of the k-ε equations leads to the necessity of high
regularity of some unknown functions and thus leads to much difficulties for the a priori
estimates. Besides, physically, when the turbulent kinetic energy k vanish, the turbulence
will disappear and the k-ε model equations will degenerate into the Navier-Stokes equa-
tion. Therefore, without loss of generality, we assume throughout this paper that the tur-
bulent kinetic energy k has a positive lower bound away from zero, namely,  < m < k with
m a constant.

To conclude this introduction, we give the outline of the rest of this paper: In Section ,
we consider a linearized problem of the k-ε equations and derive some local-in-time es-
timates for the solutions of the linearized problem. In Section , we prove the existence
theorem of the local strong solution of the original nonlinear problem.

2 A priori estimates for a linearized problem
Using the density equation (.), we could change (.)-(.) into the following equivalent
form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + ∇ · (ρu) = ,

ρut + ρu · ∇u – �u – ∇ div u + ∇p = – 
∇(ρk),

ρht + ρu · ∇h – �h = pt + u · ∇p + Sk ,

ρkt + ρu · ∇k – �k = G – ρε,

ρεt + ρu · ∇ε – �ε = CGε

k – Cρε

k ,

(ρ, u, h, k, ε)(x, ) = (ρ(x), u(x), h(x), k(x), ε(x)),

(u · �n, h, ∂k
∂�n , ∂ε

∂�n )|∂� = (, , , ).

(.)

Then we consider the following linearized problem of (.):

ρt + ∇ · (ρv) = , (.)

ρut + ρv · ∇u – �u – ∇ div u + ∇p = –


∇(ρπ ), (.)

ρht + ρv · ∇h – �h = pt + u · ∇p + S′
k , (.)

ρkt + ρv · ∇k – �k = G′ – ρθ , (.)

ρεt + ρv · ∇ε – �ε =
CG′θ

π
–

Cρθ

π
, (.)

(ρ, v, h,π , θ )(x, ) =
(
ρ(x), u(x), h(x), k(x), ε(x)

)
, (.)

(
v · �n, h,

∂π

∂�n ,
∂θ

∂�n
)∣∣

∣∣
∂�

= (, , , ), (.)
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with

S′
k =

[
μ

(
∂vi

∂xj
+

∂vj

∂xi

)
–



δij

∂vk

∂xk

]
∂vi

∂xj
+

μt

ρ
∂p
∂xj

∂ρ

∂xj
,

G′ =
∂vi

∂xj

[
μe

(
∂vi

∂xj
+

∂vj

∂xi

)
–



δij

(
ρπ + μe

∂vk

∂xk

)]
,

where v, π , and θ are known quantities on (, T) × � with T > .
Here we also impose the following regularity conditions on the initial data:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

 < m < ρ, ρ ∈ H(�),

u ∈ H(�),

(h, k, ε) ∈ H(�),

(u · �n, h, ∂k
∂�n , ∂ε

∂�n )|∂� = (, , , ),

 < m < k.

(.)

For the known quantities v, π , θ , we assume that v() = u, π () = k, θ () = ε, and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup≤t≤T (‖v‖H + ‖π‖H + ‖θ‖H )

+
∫ T

 (‖π‖
H + ‖vt‖

H + ‖πt‖
H + ‖θt‖

H ) dt ≤ c,

sup≤t≤T ‖v‖H ≤ c,

sup≤t≤T ‖v‖H ≤ c,
∫ T

 ‖v‖
H dt ≤ c,

sup≤t≤T ‖π‖H ≤ c,

sup≤t≤T ‖θ‖H ≤ c,

(.)

for some fixed constants ci satisfying  < c < ci (i = , , . . . , ) and some time T > . Here

c =  +
∥∥(ρ, u)

∥∥
H +

∥∥(h, k, ε)
∥∥

H .

For simplicity, we set another small time T as T = min{c–γ –
 c–

 c–
 c–

 c–
 c–

 c–
 , T, T}

and all of the T in Section  are defined as this.

Remark . Here it should be emphasized that throughout this paper, C denotes a generic
positive constant which is only dependent on m, γ , and |�|, but independent of ci (i =
, , , . . . , ).

Remark . From the physical viewpoint, we assume that the turbulent kinetic energy k
has a positive lower bound away from zero, namely,  < m < k with m a constant. We do
not know whether  < m < k holds afterwards if the initial turbulent kinetic energy k > m.

In this section we aim to prove the following local existence theorem of the linearized
system (.)-(.).
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Theorem . There exists a unique strong solution (ρ, u, h, k, ε) to the linearized problem
(.)-(.) and (.) in [, T] satisfying the estimates (.) and (.) as well as the reg-
ularity

ρ ∈ C
(
, T ; H), ρt ∈ C

(
, T ; H), u ∈ C

(
, T ; H) ∩ L(, T ; H),

ut ∈ L(, T ; H), k ∈ C
(
, T ; H) ∩ L(, T ; H), kt ∈ L(, T ; H),

ε ∈ C
(
, T ; H), εt ∈ L(, T ; H), h ∈ C

(
, T ; H), ht ∈ L(, T ; H),

(
√

ρut ,
√

ρkt ,
√

ρεt ,
√

ρht) ∈ L∞(
, T ; L).

In the following part, we decompose the proof of Theorem . into some lemmas.

Lemma . There exists a unique strong solution ρ to the linear transport problem (.)
and (.) such that

ρ ≥ m
e

, ‖ρ‖H(�) ≤ Cc, ‖ρt‖H(�) ≤ Ccc (.)

for  ≤ t ≤ T .

Proof First, applying the particle trajectory method to the equation (.), we easily deduce

ρ ≥ ρ exp

(
–

∫ T


‖∇v‖L∞ dt

)
≥ ρ exp(–cT) ≥ ρ

e
≥ m

e

and thus


ρ

≤ e
m

≤ C.

Second, by simple calculation, we have

d
dt

‖ρ‖H ≤ C‖v‖H‖ρ‖H + C
∥∥∇v

∥∥
L ,

applying the Gronwall and Hölder’s inequalities, one gets

‖ρ‖H ≤
[

exp

(
C

∫ t


‖v‖H dt

)](
‖ρ‖H + C

∫ t


‖v‖H dt

)
≤ Cc

for  ≤ t ≤ T .
Next, from the equation (.), one obtains

‖ρt‖H =
∥
∥∇ · (ρv)

∥
∥

H ≤ C‖ρ‖H‖v‖H ≤ Ccc

for  ≤ t ≤ T .
Thus, we complete the proof of Lemma .. �

Next, we estimate the velocity field u.
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Lemma . There exists a unique strong solution u to the initial boundary value problem
(.) and (.) such that

‖√ρut‖
L + ‖u‖

H +
∫ t


‖∇ut‖

L ds ≤ Cc+γ
 , ‖u‖H ≤ Cc


 +γ

 c
 , (.)

‖u‖H ≤ Cc

 +γ

 c
 cc,

∫ t


‖u‖

H ds ≤ Cc+γ
 c

 c
 (.)

for  ≤ t ≤ T .

Proof We only need to prove the estimates. Differentiating the equation (.) with respect
to t, then multiplying both sides of the result by ut and integrating over �, we derive that




d
dt

∫
ρu

t dx + ‖∇ut‖
L + ‖div ut‖

L

= –
∫

ρtv · ∇u · ut –
∫

ρvt · ∇u · ut – 
∫

ρv · ∇ut · ut

–
∫

∇pt · ut –



∫ [∇(ρπ )
]

t · ut

= I + I + I + I + I, (.)

where we have used the equation (.) and integration by parts. We will estimate Ii (i =
, , . . . , ) item by item.

First, because ρ has a lower bound away from zero, we easily deduce ‖ut‖L ≤
C‖√ρut‖L . Therefore, using the Hölder, Sobolev, and Young inequalities and (.), we
have

I ≤ C‖v‖L∞‖ρt‖L‖∇u‖L‖ut‖L ≤ C‖v‖L∞‖ρt‖L‖∇u‖L
(‖√ρut‖L + ‖∇ut‖L

)

≤ Cc
c

‖∇u‖
L + C‖√ρut‖

L +


‖∇ut‖

L , (.)

I ≤ C‖ρ‖ 

L∞‖v‖L∞‖∇ut‖L‖√ρut‖L ≤ Ccc

‖
√

ρut‖
L +



‖∇ut‖

L , (.)

I ≤ C‖ρ‖ 

L∞‖vt‖L‖∇u‖L‖√ρut‖L ≤ Cη–c‖∇u‖

L + η‖vt‖
H‖√ρut‖

L , (.)

where η >  is a small number to be determined later.
Next, to evaluate ‖∇u‖

L in (.), we can first the Sobolev interpolation inequality to
get

‖∇u‖
L ≤ C‖∇u‖L‖∇u‖L ≤ C‖∇u‖L‖∇u‖H . (.)

Then applying the standard elliptic regularity result to the equation (.) and using (.),
we have

‖∇u‖H ≤ Ccγ

(‖√ρut‖L + ‖v‖L‖∇u‖ 


L‖∇u‖ 


H + ‖∇ρ‖L

+ ‖∇ρ‖L‖π‖L + ‖∇π‖L
)
,
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thus the Young inequality and (.) yield

‖∇u‖H ≤ Ccγ


(‖√ρut‖L + c
‖∇u‖L + cc

)
. (.)

Combining (.), (.), and (.), and using the Young inequality, we get

I ≤ Cη–cγ +


(‖√ρut‖
L + c

‖∇u‖
L + c

c

)

+ η‖vt‖
H‖√ρut‖

L . (.)

By integration by parts, we have

I =
∫

pt div ut ≤ Ccγ –
 ‖ρt‖L‖∇ut‖L ≤ Ccγ

 c
 +



‖∇ut‖

L , (.)

I =



∫
ρtπ∇ · ut –




∫
πt∇ρ · ut –




∫
ρ∇πt · ut

≤ C‖ρt‖L‖π‖L‖∇ut‖L + Cc


 ‖∇ρ‖L‖πt‖L‖√ρut‖L + Cc



 ‖∇πt‖L‖√ρut‖L

≤ Cc
c

 c
 + Cη–c

 + Cη‖πt‖
H‖√ρut‖

L +


‖∇ut‖

L . (.)

On the other hand, we easily have

d
dt

∫
|∇u| = 

∫
∇u · ∇ut ≤ 


‖∇ut‖

L + C‖∇u‖
L (.)

and

d
dt

∫
|u| ≤ Cc



 ‖√ρut‖L‖u‖L ≤ Cc‖√ρut‖

L + C‖u‖
L . (.)

Combining (.)-(.) and (.)-(.), we get

d
dt

(‖√ρut‖
L + ‖u‖

H
)

+ ‖∇ut‖
L

≤ C
(
c

c
 + η–cγ +

 c
 + η‖πt‖

H + η‖vt‖
H

)(‖√ρut‖
L + ‖u‖

H
)

+ C
(
cγ

 c
 c

 + η–cγ +
 c


)
, (.)

setting η = 
c

and using the Gronwall inequality, we derive

‖√ρut‖
L + ‖u‖

H +
∫ t


‖∇ut‖

L ds ≤ Cc+γ
 (.)

for  ≤ t ≤ T , where we have used the fact that limt→(‖√ρut‖
L + ‖u‖

H ) ≤ Cc+γ
 .

Next, by (.) and (.), we deduce

‖∇u‖H ≤ Cc

 +γ

 c
 , (.)

which implies (.) by (.).
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Next, we will estimate
∫ t

 ‖u‖
H dt. By the standard elliptic regularity result of the equa-

tion (.), we have

∥∥∇u
∥∥

L ≤ ‖ρut‖H + ‖ρv · ∇u‖H + ‖∇p‖H +
∥
∥∥
∥



∇(ρπ )

∥
∥∥
∥

H
. (.)

By simple calculation, the first term of the right-hand side of (.) can be controlled as

‖ρut‖H ≤ C
(‖ρut‖L + ‖ρ‖H‖ut‖H

) ≤ Cc‖ut‖H . (.)

In order to estimate ‖∇ut‖L , differentiating the equation (.) with respect to t yields

�ut + ∇ div ut = ρtut + ρutt + ρtv · ∇u + ρvt · ∇u + ρv · ∇ut + ∇pt

+



(∇ρtπ + ρt∇π + ∇ρπt + ρ∇πt), (.)

applying the standard elliptic regularity result to (.) and using (.), one obtains

∥∥∇ut
∥∥

L ≤ C
(‖ρt‖L‖ut‖L + ‖ρutt‖L + ‖ρt‖L‖v‖L∞‖∇u‖L

+ ‖ρ‖L∞‖vt‖L‖∇u‖L + ‖v‖L∞‖ut‖H + ‖ρ‖γ

H‖ρt‖H + ‖π‖L∞‖ρt‖H

+ ‖ρt‖L‖∇π‖L + ‖∇ρ‖L‖πt‖L + ‖ρ‖L∞‖∇πt‖L
)

≤ C
(‖ρutt‖L + c


 +γ

 c
 c

c + c

 +γ

 c
‖vt‖H

+ cc‖ut‖H + c‖πt‖H
)
, (.)

therefore, the key point is to estimate ‖ρutt‖L . Because we have the fact ‖ρutt‖L ≤
C‖√ρutt‖L , we could first estimate ‖√ρutt‖L as follows.

Multiplying both sides of (.) by utt and integrating the result over � yield

∫
ρu

tt dx +



d
dt

‖∇ut‖
L +




d
dt

‖div ut‖
L

= –
∫

ρtut · utt –
∫

ρtv · ∇u · utt –
∫

ρvt · ∇u · utt –
∫

ρv · ∇ut · utt –
∫

∇pt · utt

–



∫
(π∇ρt + ρt∇π + πt∇ρ + ρ∇πt) · utt

= J + J + J + J + J + J. (.)

Using the Hölder, Sobolev, and Young inequalities and (.) and (.), we get

J ≤ Cc


 ‖ρt‖L‖ut‖L‖√ρutt‖L ≤ Cc



 ‖ρt‖L

(‖√ρut‖L + ‖∇ut‖L
)‖√ρutt‖L

≤ Cc
c

‖∇ut‖
L + Cc+γ

 c
 +




‖√ρutt‖
L , (.)

J ≤ Cc


 ‖√ρutt‖L‖ρt‖L‖v‖L∞‖∇u‖L ≤ Cc+γ

 c
 c

 +



‖√ρutt‖

L , (.)

J ≤ Cc


 ‖√ρutt‖L‖vt‖L‖∇u‖L ≤ Cc+γ

 c
 ‖vt‖

H +



‖√ρutt‖

L , (.)
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J ≤ Cc


 ‖v‖L∞‖√ρutt‖L‖∇ut‖L ≤ Ccc

‖∇ut‖
L +




‖√ρutt‖
L , (.)

J ≤ Cc


 ‖√ρutt‖L‖∇pt‖L ≤ Ccγ +

 c
 +




‖√ρutt‖
L , (.)

J ≤ Cc


 ‖π‖L∞‖√ρutt‖L‖∇ρt‖L + Cc



 ‖√ρutt‖L‖∇π‖L‖ρt‖L

+ Cc


 ‖√ρutt‖L‖∇ρ‖L∞‖πt‖L + Cc



 ‖√ρutt‖L‖∇πt‖L

≤ Cc
c

c
 + Cc

‖πt‖
H +



‖√ρutt‖

L , (.)

inserting (.)-(.) to (.), then integrating the result over (, t), we derive

∫ t



∫

�

ρu
tt dx dt + ‖∇ut‖

L ≤ Cc+γ
 c

 c
, (.)

where we have used the equation (.) to get limt→ ‖∇ut(t)‖
L ≤ Ccγ +

 .
So, combining (.), (.), and (.), we obtain

∫ t


‖ρut‖

H ≤ Cc+γ
 c

 c
. (.)

In the following, we shall estimate the rest terms of the inequality (.).
For the second term of the inequality (.), direct calculation yields

‖ρv · ∇u‖H ≤ C‖ρ‖H‖v‖H‖u‖H ≤ Ccc‖u‖H , (.)

therefore, we have to evaluate ‖u‖H . In fact, applying the standard elliptic regularity result
to the equation (.), we obtain

∥∥∇u
∥∥

L ≤ C
(‖ρut‖H + ‖ρv · ∇u‖H + ‖∇p‖H +

∥∥∇(ρπ )
∥∥

H
)
, (.)

we could estimate the right-hand side of (.) item by item.
First, from (.), we have ‖ut‖L ≤ Cc


 +γ

 , thus

‖ρut‖H ≤ Cc‖ut‖L + ‖∇ρ‖L∞‖ut‖L + Cc‖∇ut‖L

≤ Cc

 +γ

 + Cc‖∇ut‖L . (.)

Second, using the Sobolev interpolation inequality and the Young inequality, we get

‖ρv · ∇u‖H

≤ C
(‖ρv · ∇u‖L +

∥∥∇(ρv · ∇u)
∥∥

L
)

≤ C
(
c‖v‖L∞‖∇u‖L + ‖∇ρ‖L∞‖v‖L∞‖∇u‖L + c‖∇v‖L‖∇u‖ 


L

∥
∥∇u

∥
∥



L

+ c‖v‖L∞
∥
∥∇u

∥
∥

L
)

≤ Cc

 +γ

 c
 c +




‖u‖H . (.)
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Third, due to (.), we easily derive

‖∇p‖H ≤ Cc
. (.)

Last, by simple calculation, one gets

∥
∥∇(ρπ )

∥
∥

H ≤ C‖ρ‖H‖π‖H ≤ Ccc. (.)

Combining (.) and (.)-(.), we deduce

‖u‖H ≤ Cc

 +γ

 c
 cc. (.)

Next, by simple calculation, the third and fourth terms on the right-hand side of (.) can
be estimated as

‖∇p‖H ≤ Cc
,

∥∥∇(ρπ )
∥∥

H ≤ Cc‖π‖H . (.)

Combining (.), (.), (.), (.), and (.)-(.), one deduces

∫ t


‖u‖

H dt ≤ Cc+γ
 c

 c
, (.)

for  ≤ t ≤ T .
Thus, we complete the proof of Lemma .. �

In the following part, we estimate the turbulent kinetic energy k.

Lemma . There exists a unique strong solution k to the initial boundary value problem
(.) and (.) such that

‖√ρkt‖
L + ‖k‖

H +
∫ t


‖∇kt‖

L ds ≤ Cc
, (.)

‖k‖H ≤ Cc


 cc

,
∫ t


‖k‖

H ds ≤ Cc
, (.)

for  ≤ t ≤ T .

Proof We only need to prove the estimates. Differentiating the equation (.) with respect
to t, then multiplying both sides of the resulting equation by kt and integrating over �, we
get




d
dt

‖√ρkt‖
L + ‖∇kt‖

L = –
∫

ρtv · ∇k · kt –
∫

ρvt · ∇k · kt – 
∫

ρv · ∇kt · kt

+
∫

G′
t · kt –

∫
ρtθ · kt –

∫
ρθt · kt

=
∑

i=

Ki, (.)

we could evaluate Ki (i = , . . . , ) as follows.
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First, using a similar method to deriving (.), (.), (.), respectively, one has

K ≤ Cc
c

‖∇k‖
L + C‖√ρkt‖

L +



‖∇kt‖

L , (.)

K ≤ Cη–cγ +


(‖√ρkt‖
L + c

‖∇k‖
L + c

c
 c


)

+ η‖vt‖
H‖√ρkt‖

L , (.)

K ≤ Ccc
‖

√
ρkt‖

L +



‖∇kt‖

L . (.)

Next, differentiating G′ with respect to t and inserting the result thus obtained into K

yield

K ≤ C
∫

|∇vt||∇v||kt| + C
∫

|ρ||π ||∇vt||kt| + C
∫

|ρt||π ||∇v||kt|

+ C
∫

|ρ||πt||∇v||kt|

≤ Cc


 ‖√ρkt‖L‖∇vt‖L‖∇v‖L∞ + Cc



 ‖π‖L∞‖∇vt‖L‖√ρkt‖L

+ C‖π‖L∞‖ρt‖L‖∇v‖L‖kt‖L + Cc


 ‖√ρkt‖L‖πt‖L‖∇v‖L

≤ Cη–cc
c

 + Cc
c

 c
c

 + C‖√ρkt‖
L + Cη

(‖vt‖
H + ‖πt‖

H
)‖√ρkt‖

L

+



‖∇kt‖

L . (.)

Last, direct calculation leads to

K ≤ ‖ρt‖L‖θ‖L‖kt‖L ≤ Cc
c

 c
 + C‖√ρkt‖

L +



‖∇kt‖

L , (.)

K ≤ Cc


 ‖√ρkt‖L‖θt‖L ≤ Cη–c + η‖θt‖

L‖√ρkt‖
L . (.)

On the other hand, we easily get

d
dt

‖∇k‖
L ≤ 


‖∇kt‖

L + C‖∇k‖
L , (.)

d
dt

‖k‖
L ≤ Cc‖√ρkt‖

L + C‖k‖
L . (.)

Combining (.)-(.), we obtain

d
dt

(‖√ρkt‖
L + ‖k‖

H
)

+ ‖∇kt‖
L

≤ C
(
c

c
 + η–cγ +

 c
 + η‖vt‖

H + η‖πt‖
H + η‖θt‖

L
)(‖√ρkt‖

L + ‖k‖
H

)

+ C
(
η–c

c
 c

c
c

 + c
c

 c
c


)
, (.)

setting η = c–
 and using the Gronwall inequality, we deduce

‖√ρkt‖
L + ‖k‖

H +
∫ t


‖∇kt‖

L ds ≤ Cc
 (.)

for  ≤ t ≤ T , where we have used the fact that limt→(‖√ρkt‖
L + ‖k‖

H ) ≤ Cc
.
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Then, by the standard elliptic regularity result of the equation (.) and using (.), we
have

‖∇k‖H ≤ Cc


 ‖√ρkt‖L + Cc‖v‖L∞‖∇k‖L + C‖∇v‖

L

+ Cc‖π‖L‖∇v‖L + Cc‖θ‖L

≤ Cc


 cc

 (.)

and

∥∥∇k
∥∥

H ≤ C
(‖ρkt‖H + ‖ρv · ∇k‖H +

∥∥G′∥∥
H + ‖ρθ‖H

)
. (.)

To evaluate
∫ t

 ‖k‖
H dt, we will estimate the right-hand side of (.) item by item.

In fact, we derive by using (.) and (.) that

‖ρkt‖H ≤ C
(‖ρkt‖L +

∥∥∇(ρkt)
∥∥

L
)

≤ Cc


 + Cc‖∇kt‖L , (.)

‖ρv · ∇k‖H ≤ C
(‖ρv · ∇k‖L +

∥∥∇(ρv · ∇k)
∥∥

L
)

≤ C
(
c‖v‖L∞‖∇k‖L + ‖∇ρ‖L∞‖v‖L∞‖∇k‖L

+ c‖∇v‖L‖∇k‖L + c‖v‖L∞
∥∥∇k

∥∥
L

)

≤ Cc


 cc

, (.)
∥∥G′∥∥

H ≤ C
(‖∇v‖

L + ‖∇v · ρ · π‖L +
∥∥∇v · ∇v

∥∥
L +

∥∥∇(∇v · ρ · π )
∥∥

L
)

≤ C
(‖∇v‖

L + c‖π‖L∞‖∇v‖L + ‖∇v‖L
∥∥∇v

∥∥
L + c‖π‖L∞

∥∥∇v
∥∥

L

+ ‖π‖L∞‖∇ρ‖L∞‖∇v‖L + c‖∇v‖L∞‖∇π‖L
)

≤ Cccc
cc, (.)

and

‖ρθ‖H ≤ C‖ρ‖H‖θ‖H ≤ Ccc. (.)

Therefore, inserting (.)-(.) to (.) and integrating the result thus obtained over
(, t), one gets

∫ t


‖k‖

H dt ≤ Cc
 (.)

for  ≤ t ≤ T .
Combining (.), (.), and (.), we complete the proof of Lemma .. �

In the next part, we estimate the viscous dissipation rates of the turbulent flows ε.
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Lemma . There exists a unique strong solution ε to the initial boundary value problem
(.) and (.) such that

‖√ρεt‖
L + ‖ε‖

H +
∫ t


‖∇εt‖

L ds ≤ Cc
, (.)

‖ε‖H ≤ Cc


 c

 c
 (.)

for  ≤ t ≤ T .

Proof We only need to prove the estimates. Differentiating the equation (.) with respect
to t, then multiplying both sides of the result by εt and integrating over �, one obtains




d
dt

‖√ρεt‖
L + ‖∇εt‖

L

= –
∫

ρtv · ∇ε · εt –
∫

ρvt · ∇ε · εt – 
∫

ρv · ∇εt · εt

+
∫ (

CG′θ
π

)

t
· εt –

∫ (
Cρθ

π

)

t
· εt

=
∑

i=

Ei. (.)

We could evaluate E and E in the first place. Because π has an upper and a lower bound
away from zero, direct calculation yields

E ≤ C
∫ (∣∣G′

tθ
∣∣ +

∣∣G′θt
∣∣ +

∣∣G′θπt
∣∣)|εt|

≤ C
∫ (|∇vt · ∇v| + |ρtπ∇v| + |ρπt∇v| + |ρπ∇vt|

)|θ ||εt|

+ C
∫ (|∇v| + |ρπ∇v|)|θt||εt| + C

∫ (|∇v| + |ρπ∇v|)|θ ||πt||εt|

≤ Cc


 ‖θ‖L∞‖∇v‖L∞‖∇vt‖L‖√ρεt‖L + Cc



 ‖π‖L∞‖√ρεt‖L‖ρt‖L‖∇v‖L‖θ‖L

+ Cc


 ‖√ρεt‖L‖πt‖L‖∇v‖L‖θ‖L + Cc‖π‖L∞‖θ‖L∞‖∇vt‖L‖√ρεt‖L

+ C‖√ρεt‖L‖θt‖L‖∇v‖
L∞ + Cc‖π‖L∞‖√ρεt‖L‖θt‖L‖∇v‖L∞

+ Cc


 ‖√ρεt‖L‖πt‖L‖∇v‖

L‖θ‖L∞ + Cc


 ‖π‖L∞‖√ρεt‖L‖πt‖L‖∇v‖L‖θ‖L

≤ Cη–cc
 c

c
c

c
 + Cc

c
 c

c
 + Cη

(‖∇vt‖
L + ‖πt‖

L + ‖θt‖
L

)‖√ρεt‖
L

+ C‖√ρεt‖
L (.)

and

E ≤ C
∫ ∣

∣ρtθ
εt

∣
∣ + C

∫
|θθtρεt| + C

∫ ∣
∣ρθπtεt

∣
∣

≤ C‖ρt‖L‖θ‖
L‖εt‖L + Cc



 ‖√ρεt‖L‖θt‖L‖θ‖L∞ + Cc



 ‖√ρεt‖L‖πt‖L‖θ‖

L∞
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≤ Cη–cc
 + Cc

c
 c

 + C‖√ρεt‖
L + Cη

(‖θt‖
L + ‖πt‖

L
)‖√ρεt‖

L

+


‖∇εt‖

L . (.)

Next, using an argument similar to that used in deriving (.), (.), (.), (.), and
(.), respectively, one gets

E ≤ Cc
c

‖∇ε‖
L + C‖√ρεt‖

L +



‖∇εt‖

L , (.)

E ≤ Cη–cγ +


(‖√ρεt‖
L + c

‖∇ε‖
L + c

 c

)

+ η‖vt‖
H‖√ρεt‖

L , (.)

E ≤ Ccc
‖

√
ρεt‖

L +



‖∇εt‖

L , (.)

d
dt

‖ε‖
L ≤ C‖ε‖

L + Cc‖√ρεt‖
L , (.)

and finally

d
dt

‖∇ε‖
L ≤ 


‖∇εt‖

L + C‖∇ε‖
L . (.)

Combining (.)-(.), one obtains




d
dt

(‖√ρεt‖
L + ‖ε‖

H
)

+ ‖∇εt‖
L

≤ C
(
c

c
 + η–cγ +

 c
 + η‖vt‖

H + η‖θt‖
H + η‖πt‖

H
)(‖√ρεt‖

L + ‖ε‖
H

)

+ Cη–cc
 c

c
c

c
 + Cc

c
 c

c
, (.)

setting η = c–
 and using the Gronwall inequality, one obtains

‖√ρεt‖
L + ‖ε‖

H +
∫ t


‖∇εt‖

L ds ≤ Cc
 (.)

for  ≤ t ≤ T , where we have used the fact that limt→(‖√ρεt‖
L + ‖ε‖

H ) ≤ Cc
.

Next, applying the standard elliptic regularity result to the equation (.) and using
(.), we have

‖∇ε‖H ≤ C
(
c



 ‖√ρεt‖L + c‖v‖L‖∇ε‖L + ‖∇v‖

L‖θ‖L

+ c‖∇v‖L‖θ‖L‖π‖L + c‖θ‖
L

)

≤ C
(
c

c
c

 + cc‖∇ε‖ 

L‖∇ε‖ 


L

)
, (.)

therefore, by the Young inequality and (.), one deduces

‖ε‖H ≤ Cc


 c

 c
.

Thus, we complete the proof of Lemma .. �

Finally, we estimate the total enthalpy h.
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Lemma . There exists a unique strong solution h to the initial boundary value problem
(.) and (.) such that

‖√ρht‖
L + ‖h‖

H +
∫ t


‖∇ht‖

L ds ≤ Cc
, (.)

‖h‖H ≤ Cc

 +γ

 c
 c

 (.)

for  ≤ t ≤ T .

Proof We only need to prove the estimates. Differentiating equation (.) with respect to t,
multiplying both sides of the result equation by ht and integrating over �, one obtains

d
dt

(‖√ρht‖
L + ‖h‖

H
)

+ ‖∇ht‖
L

= –
∫

ρtv · ∇h · ht –
∫

ρvt · ∇h · ht – 
∫

ρv · ∇ht · ht +
∫

ptt · ht

+
∫

ut · ∇p · ht +
∫

u · ∇pt · ht +
∫

S′
kt · ht

=
∑

i=

Hi. (.)

First of all, using similar methods of deriving the estimates (.), (.), and (.), re-
spectively, one has

H ≤ Cc
c

‖∇h‖
L + C‖√ρht‖

L +



‖∇ht‖L , (.)

H ≤ Cη–cγ +


(
c

c
 + ‖√ρht‖

L + c
‖∇h‖

L
)

+ η‖vt‖
H‖√ρht‖

L , (.)

H ≤ Ccc
‖

√
ρht‖

L +



‖∇ht‖L . (.)

Second, differentiating the equation (.) with respect to t yields

ρtt = –ρt∇ · v + ρ∇ · vt + vt · ∇ρ + v · ∇ρt . (.)

Therefore, by direct calculation and using (.), we derive

H =
∫ [

γ (γ – )ργ –ρ
t – γργ –(ρt∇ · v + ρ∇ · vt + vt · ∇ρ + v · ∇ρt)

] · ht

≤ Ccγ – 


 ‖ρt‖
L‖√ρht‖L + Ccγ – 


 ‖ρt‖L‖∇v‖L‖√ρht‖L

+ Ccγ – 


 ‖√ρht‖L‖∇vt‖L + Ccγ – 


 ‖√ρht‖L‖vt‖L‖∇ρ‖L

+ Ccγ – 


 ‖∇ρt‖L‖v‖L∞‖√ρht‖L

≤ C
(
cγ +

 c
 + η–cγ

 + ‖√ρht‖
L + η‖vt‖

H‖√ρht‖
L

)
+




‖∇ht‖
L . (.)
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Third, simple calculation and (.) lead to

H ≤ Ccγ – 


 ‖√ρht‖L‖∇ρ‖L‖ut‖L ≤ Ccγ – 


 ‖√ρht‖L‖∇ρ‖L
(‖ut‖L + ‖∇ut‖L

)

≤ Ccγ +
 ‖√ρht‖

L + Ccγ +
 + C‖∇ut‖

L . (.)

Next, by direct calculation, we know that ∇pt = γ (γ – )ργ –ρt∇ρ + γργ –∇ρt . There-
fore,

H ≤ Ccγ –


∫
|ρt||u||∇ρ||ht| + Ccγ –



∫
|u||∇ρt||ht|

≤ Ccγ –
 ‖∇ρ‖L∞‖ρt‖L‖u‖L

(‖√ρht‖L + ‖∇ht‖L
)

+ Ccγ –
 ‖u‖L‖∇ρt‖L

(‖√ρht‖L + ‖∇ht‖L
)

≤ Cc+γ
 c

 + C‖√ρht‖
L +




‖∇ht‖
L . (.)

Last, simple calculation yields |S′
kt| ≤ C|∇v||∇vt| + Cργ –|ρt||∇ρ| + Cργ –|∇ρt||∇ρ|,

thus

H ≤ C
∫

|∇vt||∇v||ht| + Ccγ –


∫
|ρt||∇ρ||ht| + Ccγ –



∫
|∇ρt||∇ρ||ht|

≤ Cc


 ‖∇v‖L∞‖∇vt‖L‖√ρht‖L + Ccγ – 


 ‖ρt‖L‖∇ρ‖

L‖√ρht‖L

+ Ccγ – 


 ‖∇ρ‖L∞‖∇ρt‖L‖√ρht‖L

≤ C
(
η–cc

 + c+γ
 c

 + η‖∇vt‖
L‖√ρht‖

L + ‖√ρht‖
L

)
. (.)

Furthermore, we easily have

d
dt

‖h‖
L ≤ Cc‖√ρht‖

L + C‖h‖
L (.)

and

d
dt

‖∇h‖
L ≤ C‖∇h‖

L +



‖∇ht‖

L . (.)

Consequently, combining (.)-(.), one deduces

d
dt

(‖√ρht‖
L + ‖h‖

H
)

+ ‖∇ht‖
L

≤ C
(
cγ +

 c
 + η–cγ +

 c
 + η‖vt‖

H
)(‖√ρht‖

L + ‖h‖
H

)

+ C
(
c+γ

 c
 + η–c+γ

 c
c


)
, (.)

setting η = c–
 and using the Gronwall inequality, we get

‖√ρht‖
L + ‖h‖

H +
∫ t


‖∇ht‖

L ds ≤ Cc
 (.)

for  ≤ t ≤ T , where we have used the fact that limt→(‖√ρht‖
L + ‖h‖

H ) ≤ Cc
.
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Next, using (.) and the standard elliptic regularity result of the equation (.), one
obtains

‖∇h‖H ≤ C
(
c



 ‖√ρht‖L + c‖v‖L‖∇h‖L + cγ –

 ‖ρt‖L + cγ –
 ‖u‖L‖∇ρ‖L

+ ‖∇v‖
L + cγ –

 ‖∇ρ‖
L

)

≤ Cc

 +γ

 c
 + Ccc‖∇h‖ 


L‖∇h‖ 


H , (.)

then the Young inequality and (.) yield

‖h‖H ≤ Cc

 +γ

 c
 c

.

Thus, we have finished the proof of Lemma .. �

Next, let us define ci (i = , . . . , ) as follows:

c = Cc+γ
 , c = Cc


 +γ

 c
 , c = Cc



 cc

,

c = Cc


 c

 c
, c = Cc


 +γ

 c
 cc, c = Cc+γ

 c
 c

,

then we conclude from Lemma . to Lemma . that
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sup≤t≤T (‖u‖H + ‖k‖H + ‖ε‖H )

+
∫ T

 (‖k‖
H + ‖ut‖

H + ‖kt‖
H + ‖εt‖

H ) dt ≤ c,

sup≤t≤T ‖u‖H ≤ c, sup≤t≤T ‖u‖H ≤ c,
∫ T

 ‖u‖
H dt ≤ c,

sup≤t≤T ‖k‖H ≤ c, sup≤t≤T ‖ε‖H ≤ c,

(.)

and
⎧
⎪⎪⎨

⎪⎪⎩

‖ρ‖H(�) ≤ Cc, ‖ρt‖H(�) ≤ Ccc,

‖√ρht‖
L + ‖h‖

H +
∫ t

 ‖∇ht‖
L ds ≤ Cc

,

‖h‖H ≤ Cc

 +γ

 c
 c

,

(.)

for  ≤ t ≤ T .
Using a standard proof as that in [], we complete the proof of Theorem .. �

3 Existence of strong solutions to the k-ε equations
Theorem . There exist a small time T∗ >  and a unique strong solution (ρ, u, h, k, ε) to
the initial boundary value problem (.)-(.) such that

ρ ∈ C
(
, T∗; H), ρt ∈ C

(
, T∗; H), u ∈ C

(
, T∗; H) ∩ L(, T∗; H),

ut ∈ L(, T∗; H), k ∈ C
(
, T∗; H) ∩ L(, T∗; H),

kt ∈ L(, T∗; H), ε ∈ C
(
, T∗; H), εt ∈ L(, T∗; H),

h ∈ C
(
, T∗; H), ht ∈ L(, T∗; H),

(
√

ρut ,
√

ρkt ,
√

ρεt ,
√

ρht) ∈ L∞(
, T∗; L).

(.)
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Proof Our proof will be based on the iteration argument and on the results in the last
section (especially Theorem .).

First, using the regularity effect of the classical heat equation, we can construct functions
(u = u(x, t), k = k(x, t), ε = ε(x, t)) satisfying (u(x, ), k(x, ), ε(x, )) = (u(x), k(x),
ε(x)) and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sup≤t≤T (‖u‖H + ‖k‖H + ‖ε‖H )

+
∫ T

 (‖k‖
H + ‖u

t ‖
H + ‖k

t ‖
H + ‖ε

t ‖
H ) dt ≤ c,

sup≤t≤T ‖u‖H ≤ c, sup≤t≤T ‖u‖H ≤ c,
∫ T

 ‖u‖
H dt ≤ c,

sup≤t≤T ‖k‖H ≤ c, sup≤t≤T ‖ε‖H ≤ c.

Therefore it follows from Theorem . that there exists a unique strong solution (ρ, u,
h, k, ε) to the linearized problem (.)-(.) with v, π , θ replaced by u, k, ε, respec-
tively, which satisfies the regularity estimates (.) and (.). Similarly, we construct
approximate solutions (ρn, un, hn, kn, εn), inductively, as follows: assuming that un–, kn–,
εn– have been defined for n ≥ , let (ρn, un, hn, kn, εn) be the unique solution to the lin-
earized problem (.)-(.) with v, π , θ replaced by un–, kn–, εn–, respectively. Then it
follows from Theorem . that there exists a constant C̃ >  such that

sup
≤t≤T

(∥∥ρn∥∥
H +

∥∥ρn
t
∥∥

H
)

+ sup
≤t≤T

(∥∥un∥∥
H +

∥∥kn∥∥
H +

∥∥εn∥∥
H +

∥∥hn∥∥
H

)

+ sup
≤t≤T

(∥∥
√

ρnun
t
∥
∥

L +
∥
∥
√

ρnhn
t
∥
∥

L +
∥
∥
√

ρnkn
t
∥
∥

L +
∥
∥
√

ρnεn
t
∥
∥

L
)

+
∫ T



(∥∥un
t
∥
∥

H +
∥
∥hn

t
∥
∥

H +
∥
∥kn

t
∥
∥

H +
∥
∥εn

t
∥
∥

H +
∥
∥un∥∥

H +
∥
∥kn∥∥

H
) ≤ C̃ (.)

for all n ≥ . Throughout the proof, we denote by C̃ a generic constant depending only
on m, M, γ , |�|, and c, but independent of n. Next, we will show that the full sequence
(ρn, un, hn, kn, εn) converges to a solution to the original nonlinear problem (.)-(.) in
a strong sense.

Define ρn+ = ρn+ –ρn, un+ = un+ – un, hn+ = hn+ – hn, kn+ = kn+ – kn, εn+ = εn+ –εn,
pn+ = pn+ – pn = (ρn+)γ – (ρn)γ .

Then, by equations (.)-(.), we deduce that (ρn+, un+, hn+, kn+, εn+, pn+) satisfy
the following equations:

ρn+
t + ∇ · (ρn+un + ρnun) = , (.)

ρn+un+
t + ρn+un

t + ρn+un · ∇un+ + ρn+un · ∇un + ρnun · ∇un

– �un+ – ∇(∇ · un+) + ∇pn+ =
–


∇(
ρn+kn + ρnkn), (.)

ρn+hn+
t + ρn+hn

t + ρn+un · ∇hn+ + ρn+un · ∇hn + ρnun · ∇hn – �hn+

= pn+
t + un+ · ∇pn+ + un · ∇pn+ + S′

k,n+ – S′
k,n, (.)

ρn+kn+
t + ρn+kn

t + ρn+un · ∇kn+ + ρn+un · ∇kn + ρnun · ∇kn – �kn+

= G′
n+ – G′

n –
(
ρn+εn – ρnεn–), (.)
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ρn+εn+
t + ρn+εn

t + ρn+un · ∇εn+ + ρn+un · ∇εn + ρnun · ∇εn – �εn+

= C

(
G′

n+ε
n

kn –
G′

nε
n–

kn–

)
– C

(
ρn+(εn)

kn –
ρn(εn–)

kn–

)
, (.)

where

S′
k,n+ =

[
μ

(
∂jun

i + ∂iun
j
)

–


δijμ∂kun

k

]
∂jun

i +
μt

(ρn+) ∂jpn+∂jρ
n+, (.)

G′
n+ = ∂jun

i

[
μe

(
∂jun

i + ∂iun
j
)

–


δij

(
ρn+kn + μe∂lun

l
)]

. (.)

To evaluate ‖ρn+‖L , multiplying both sides of the equation (.) by ρn+ and integrating
the result over �, we get




d
dt

∥∥ρn+∥∥
L

= –
∫

∇ · (ρn+un + ρnun) · ρn+

= –
∫ (

ρn+)∇ · un + ρn+un · ∇ρn+ + ρnρn+∇ · un + ρn+un · ∇ρn. (.)

Applying integration by parts to the second term of the second equality of (.) and
using the Hölder, Sobolev, and Young inequalities yield

d
dt

∥∥ρn+∥∥
L ≤ C

(∥∥∇un∥∥
L∞

∥∥ρn+∥∥
L +

∥∥∇un∥∥
L

∥∥ρn+∥∥
L +

∥∥un∥∥
L

∥∥∇ρn∥∥
L

∥∥ρn+∥∥
L

)

≤ C̃
(
 + η–)∥∥ρn+∥∥

L + C̃η
∥
∥∇un∥∥

H , (.)

where (.) has been used and  < η <  is a small constant to be determined later.
Next, multiplying both sides of (.) by un+ and integrating the result thus derived

over �, one obtains




d
dt

∥∥
√

ρn+un+∥∥
L +

∥∥∇un+∥∥
L +

∥∥∇ · un+∥∥
L

= –
∫

ρn+un
t · un+ –

∫
ρn+un · ∇un · un+ –

∫
ρnun · ∇un · un+ –

∫
∇pn+ · un+

+
∫ –


∇(

ρn+kn + ρnkn+) · un+

=
∑

i=

Li. (.)

Using the Hölder, Sobolev, and Young inequalities and (.), we estimate L, L, and L,
respectively, as follows:

L ≤ C
∥
∥ρn+∥∥

L

∥
∥un

t
∥
∥

L

∥
∥un+∥∥

L ≤ C
∥
∥ρn+∥∥

L

∥
∥un

t
∥
∥

L
(∥∥

√
ρn+un+∥∥

L +
∥
∥∇un+∥∥

L
)

≤ C̃
∥∥un

t
∥∥

L

∥∥ρn+∥∥
L + C̃

∥∥
√

ρn+un+∥∥
L +



∥∥∇un+∥∥

L , (.)
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L ≤ C
∥∥ρn+∥∥

L

∥∥un∥∥
L

∥∥∇un∥∥
L

∥∥un+∥∥
L

≤ C̃
∥∥ρn+∥∥

L + C̃
∥∥
√

ρn+un+∥∥
L +



∥∥∇un+∥∥

L , (.)

L ≤ C
∥∥un∥∥

L

∥∥∇un∥∥
L

∥∥
√

ρn+un+∥∥
L ≤ C̃η–∥∥

√
ρn+un+∥∥

L + η
∥∥un∥∥

H . (.)

Then one deduces by integration by parts that

L =
∫

pn+∇ · un+ ≤ C
∫

ρn+∇ · un+ ≤ C̃
∥∥ρn+∥∥

L +


∥∥∇un+∥∥

L (.)

and

L =



∫
ρn+kn∇ · un+ – kn∇ρn · un+ – ρn∇kn · un+

≤ C
∥
∥ρn+∥∥

L

∥
∥∇un+∥∥

L + C
∥
∥kn∥∥

L

∥
∥∇ρn∥∥

L

∥
∥
√

ρn+un+∥∥
L

+ C
∥∥∇kn∥∥

L

∥∥
√

ρn+un+∥∥
L

≤ C̃
(
 + η–)(∥∥ρn+∥∥

L +
∥∥
√

ρn+un+∥∥
L

)
+



∥∥∇un+∥∥

L + C̃η
∥∥kn∥∥

H . (.)

Inserting (.)-(.) to (.) and using inequality ‖un+‖L ≤ C̃‖√ρn+un+‖L , one has

d
dt

∥∥
√

ρn+un+∥∥
L +

∥∥un+∥∥
H ≤ C̃

(
 + η– +

∥∥un
t
∥∥

L
)(∥∥ρn+∥∥

L +
∥∥
√

ρn+un+∥∥
L

)

+ C̃η
∥∥kn∥∥

H + C̃η
∥∥un∥∥

H . (.)

Then, multiplying both sides of (.) by hn+ and integrating the result thus got over �,
one obtains




d
dt

∥
∥
√

ρn+hn+∥∥
L +

∥
∥∇hn+∥∥

L

= –
∫

ρn+hn
t · hn+ –

∫
ρn+un · ∇hn · hn+ –

∫
ρnun · ∇hn · hn+

+
∫ (

pn+
t + un+ · ∇pn+ + un · ∇pn+) · hn+ +

∫ (
S′

k,n+ – S′
k,n

) · hn+

=
∑

i=

Mi. (.)

First, using similar methods of deriving (.), (.), and (.), respectively, one easily
obtains

M ≤ C̃
∥∥hn

t
∥∥

L

∥∥ρn+∥∥
L + C̃

∥∥
√

ρn+hn+∥∥
L +




∥∥∇hn+∥∥
L , (.)

M ≤ C̃
∥∥ρn+∥∥

L + C̃
∥∥
√

ρn+hn+∥∥
L +




∥∥∇hn+∥∥
L , (.)

M ≤ C̃η–∥∥
√

ρn+hn+∥∥
L + η

∥
∥un∥∥

H . (.)
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Second, simple calculation leads to

M =
∫ [

γ
(
ρn+)γ –

ρn+
t – γ

(
ρn)γ –

ρn
t
] · hn+ +

∫
un+ · ∇pn+hn+

+
∫

un · ∇pn+hn+. (.)

By the differential mean value theorem, the first integral of (.) can be controlled as

∫ [
γ
(
ρn+)γ –

ρn+
t – γ

(
ρn)γ –

ρn
t
] · hn+

≤ C
∫ ∣∣ρn+∣∣∣∣ρn+

t
∣∣∣∣hn+∣∣ +

∫
γ
(
ρn)γ –

ρn+
t · hn+. (.)

By the equation (.), the second integral on the right-hand side of (.) can be estimated
as

∫
γ
(
ρn)γ –

ρn+
t · hn+

= –
∫

γ
(
ρn)γ –∇ · (ρn+un + ρnun) · hn+

≤ C
∫ ∣∣∇ρn∣∣∣∣hn+∣∣∣∣ρn+∣∣∣∣un∣∣ + C

∫ ∣∣ρn+∣∣∣∣un∣∣∣∣∇hn+∣∣

+ C
∫ (∣∣∇ρn∣∣

∣
∣un∣∣ +

∣
∣ρn∣∣

∣
∣∇un∣∣)

∣
∣hn+∣∣. (.)

Then the second integral on the right-hand side of (.) can be controlled as

∫
un+ · ∇pn+hn+ ≤ C

∫ ∣
∣un+∣∣

∣
∣∇ρn+∣∣

∣
∣hn+∣∣. (.)

Next, applying integration by parts to the third integral on the right-hand side of (.),
we easily get

∫
un · ∇pn+hn+ ≤ C

∫ ∣∣∇un∣∣∣∣ρn+∣∣∣∣hn+∣∣ + C
∫ ∣∣un∣∣∣∣ρn+∣∣∣∣∇hn+∣∣. (.)

Consequently, combining (.)-(.) and using the Hölder, Sobolev, and Young inequal-
ities and (.), one obtains

M ≤ C̃
(
 + η–)(∥∥ρn+∥∥

L +
∥∥
√

ρn+hn+∥∥
L

)

+



∥
∥un+∥∥

H +



∥
∥∇hn+∥∥

L + C̃η
∥
∥un∥∥

H . (.)

Finally, we evaluate M. Direct calculation yields

M ≤ C
∫ (∣∣∇un∣∣ +

∣
∣∇un–∣∣)

∣
∣∇un∣∣

∣
∣hn+∣∣ + C

∫ ∣
∣ρn+∣∣

∣
∣∇ρn+∣∣∣∣hn+∣∣

+
∫

μt

(ρn) ∂jpn+∂jρ
n+ · hn+ +

∫
μt

(ρn) ∂jpn∂jρ
n+ · hn+
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≤ C
∫ (∣∣∇un∣∣ +

∣∣∇un–∣∣)∣∣∇un∣∣∣∣hn+∣∣ + C
∫ ∣∣ρn+∣∣∣∣∇ρn+∣∣∣∣hn+∣∣

+ C
∫ ∣

∣∇ρn∣∣
∣
∣∇ρn+∣∣

∣
∣ρn+∣∣

∣
∣hn+∣∣ + C

∫ ∣
∣∇ρn+∣∣

∣
∣ρn+∣∣

∣
∣hn+∣∣

+ C
∫ ∣∣∇ρn+∣∣∣∣ρn+∣∣∣∣∇hn+∣∣ + C

∫ ∣∣∇ρn∣∣∣∣ρn+∣∣∣∣hn+∣∣

+ C
∫ ∣∣∇ρn∣∣∣∣ρn+∣∣∣∣hn+∣∣ + C

∫ ∣∣∇ρn∣∣∣∣ρn+∣∣∣∣∇hn+∣∣. (.)

Then, applying a similar method to deriving (.), one deduces

M ≤ C̃
(
 + η–)(∥∥ρn+∥∥

L +
∥
∥
√

ρn+hn+∥∥
L

)
+ η

∥
∥un∥∥

H +



∥
∥∇hn+∥∥

L . (.)

Consequently, inserting (.)-(.), (.), and (.) into (.), one gets

d
dt

∥
∥
√

ρn+hn+∥∥
L +

∥
∥hn+∥∥

H ≤ C̃
(
 + η– +

∥
∥hn

t
∥
∥

L
)(∥∥ρn+∥∥

L +
∥
∥
√

ρn+hn+∥∥
L

)

+



∥
∥un+∥∥

H + C̃η
∥
∥un∥∥

H . (.)

For the turbulent kinetic energy k, using a similar method of deriving (.), one easily
deduces from equation (.) that




d
dt

∥∥
√

ρn+kn+∥∥
L +

∥∥∇kn+∥∥
L

= –
∫

ρn+kn
t · kn+ –

∫
ρn+un · ∇kn · kn+

–
∫

ρnun · ∇kn · kn+ +
∫ (

G′
n+ – G′

n
) · kn+ –

∫ (
ρn+εn – ρnεn–) · kn+

=
∑

i=

Ni. (.)

We first evaluate N. Using the inserting items technique, one easily gets

N ≤ C
∫ (∣∣∇un∣∣ +

∣∣∇un–∣∣)∣∣∇un∣∣∣∣kn+∣∣

+ C
∫ (∣∣∇un∣∣ +

∣
∣∇un–∣∣

∣
∣ρn+∣∣ +

∣
∣∇un–∣∣

∣
∣kn∣∣)

∣
∣kn+∣∣. (.)

Using the Hölder, Sobolev, and Young inequalities and (.), we have

N ≤ C̃
(
 + η–)(∥∥ρn+∥∥

L +
∥
∥
√

ρn+kn+∥∥
L

)
+ C̃η

∥
∥kn∥∥

H + C̃η
∥
∥un∥∥

H . (.)

Second, we estimate N. Using a similar method to deriving (.) and (.), we have

N =
∫ (

ρn+εn + ρnεn) · kn+ ≤ C
(∥∥ρn+∥∥

L

∥∥εn∥∥
L∞ +

∥∥εn∥∥
L

∥∥ρn∥∥
L

)∥∥
√

ρn+kn+∥∥
L

≤ C̃
(
 + η–)(∥∥

√
ρn+kn+∥∥

L +
∥∥ρn+∥∥

L
)

+ C̃η
∥∥εn∥∥

H . (.)



Yuan and Qin Boundary Value Problems  (2016) 2016:27 Page 23 of 26

Next, using a similar method to deriving the estimates of (.), (.), and (.), re-
spectively, one easily gets

N ≤ C̃
∥∥kn

t
∥∥

L

∥∥ρn+∥∥
L + C̃

∥∥
√

ρn+kn+∥∥
L +



∥∥∇kn+∥∥

L , (.)

N ≤ C̃
∥
∥ρn+∥∥

L + C̃
∥
∥
√

ρn+kn+∥∥
L +



∥
∥∇kn+∥∥

L , (.)

N ≤ C̃η–∥∥
√

ρn+kn+∥∥
L + η

∥∥un∥∥
H . (.)

Consequently, inserting (.)-(.) to (.), one deduces

d
dt

∥
∥
√

ρn+kn+∥∥
L +

∥
∥kn+∥∥

H ≤ C̃
(
 + η– +

∥
∥kn

t
∥
∥

L
)(∥∥

√
ρn+kn+∥∥

L +
∥
∥ρn+∥∥

L
)

+ C̃η
(∥∥kn∥∥

H +
∥∥un∥∥

H +
∥∥εn∥∥

H
)
. (.)

Next, multiplying both sides of (.) by εn+ and integrating the result over �, one gets




d
dt

∥
∥
√

ρn+εn+∥∥
L +

∥
∥∇εn+∥∥

L

= –
∫

ρn+εn
t · εn+ –

∫
ρn+un · ∇εn · εn+

–
∫

ρnun · ∇εn · εn+ + C

∫ (
G′

n+ε
n

kn –
G′

nε
n–

kn–

)
· εn+

– C

∫ [
ρn+(εn)

kn –
ρn(εn–)

kn–

]
· εn+

=
∑

i=

Qi. (.)

Using an argument similar to that used in deriving (.), (.), and (.), respectively,
we obtain

Q ≤ C̃
∥∥εn

t
∥∥

L

∥∥ρn+∥∥
L + C̃

∥∥
√

ρn+εn+∥∥
L +



∥∥∇εn+∥∥

L , (.)

Q ≤ C̃
∥
∥ρn+∥∥

L + C̃
∥
∥
√

ρn+εn+∥∥
L +



∥
∥∇εn+∥∥

L , (.)

Q ≤ C̃η–∥∥
√

ρn+εn+∥∥
L + C̃η

∥∥un∥∥
H . (.)

Next, direct calculation leads to

Q ≤ C
∫ (∣∣∇un∣∣∣∣∇un∣∣ +

∣∣∇un∣∣∣∣∇un–∣∣)∣∣εn∣∣∣∣εn+∣∣

+ C
∫ (∣∣εn∣∣ +

∣
∣εn–∣∣

∣
∣kn∣∣)

∣
∣∇un–∣∣∣∣εn+∣∣

–
C


δij

∫ (∂jun
i ρ

n+knεnkn– – ∂jun–
i ρnkn–εn–kn)

knkn– · εn+

≤
∫ (∣∣∇un∣∣

∣
∣∇un∣∣ +

∣
∣∇un∣∣

∣
∣∇un–∣∣)

∣
∣εn∣∣

∣
∣εn+∣∣
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+ C
∫ (∣∣εn∣∣ +

∣∣εn–∣∣∣∣kn∣∣)∣∣∇un–∣∣∣∣εn+∣∣

+ C
∫ (∣∣∇un∣∣ +

∣
∣∇un–∣∣

∣
∣ρn+∣∣ +

∣
∣∇un–∣∣

∣
∣kn∣∣)

∣
∣εn∣∣

∣
∣εn+∣∣

+ C
∫ (∣∣εn∣∣ +

∣∣εn–∣∣∣∣kn∣∣)∣∣∇un–∣∣∣∣εn+∣∣

≤ C̃
(
 + η–)(∥∥

√
ρn+εn+∥∥

L +
∥
∥ρn+∥∥

L
)

+ C̃η
(∥∥un∥∥

H +
∥∥kn∥∥

H +
∥∥εn∥∥

H
)

+


∥∥∇εn+∥∥

L . (.)

Finally, using a similar method of deriving the estimate of Q, one deduces

Q ≤ C̃
(
 + η–)(∥∥

√
ρn+εn+∥∥

L +
∥
∥ρn+∥∥

L
)

+ C̃η
∥
∥∇εn∥∥

L +


∥
∥∇εn+∥∥

L . (.)

Consequently, inserting (.)-(.) to (.), one derives

d
dt

∥∥
√

ρn+εn+∥∥
L +

∥∥εn+∥∥
H

≤ C̃
(
 + η– +

∥
∥εn

t
∥
∥

L
)(∥∥

√
ρn+εn+∥∥

L +
∥
∥ρn+∥∥

L
)

+ C̃η
(∥∥kn∥∥

H +
∥
∥un∥∥

H +
∥
∥εn∥∥

H
)
. (.)

In the end, combining (.), (.), (.), (.), and (.), and setting ϕn+(t) =
‖ρn+‖

L + ‖√ρn+un+‖
L + ‖√ρn+hn+‖

L + ‖√ρn+kn+‖
L + ‖√ρn+εn+‖

L , we get

d
dt

ϕn+(t) +
∥∥un+∥∥

H +
∥∥hn+∥∥

H +
∥∥kn+∥∥

H +
∥∥εn+∥∥

H

≤ C̃
(
 + η– +

∥
∥un

t
∥
∥

L +
∥
∥hn

t
∥
∥

L +
∥
∥kn

t
∥
∥

L +
∥
∥εn

t
∥
∥

L
)
ϕn+(t)

+ C̃η
(∥∥un∥∥

H +
∥
∥kn∥∥

H +
∥
∥εn∥∥

H
)
. (.)

Setting In
η (t) = C̃( + η– + ‖un

t ‖
L + ‖hn

t ‖
L + ‖kn

t ‖
L + ‖εn

t ‖
L ) and applying the Gronwall

inequality to (.) yield

ϕn+(t) ≤ C̃η

[
exp

(∫ t


In
η (s) ds

)](∫ t



(∥∥un∥∥
H +

∥∥kn∥∥
H +

∥∥εn∥∥
H

)
ds

)
, (.)

where it should be noted that ϕn+() = .
Since

∫ t


In
η (s) ds ≤ C̃t + C̃η–t + C̃, (.)

setting T̃ ≤ η < , we have

∫ t


In
η (s) ds ≤ CC̃ (.)

for t ≤ T̃ .
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By (.)-(.), integrating (.) from [, t], one derives

ϕn+(t) +
∫ t



(∥∥un+∥∥
H +

∥∥hn+∥∥
H +

∥∥kn+∥∥
H +

∥∥εn+∥∥
H

)
ds

≤ CC̃η

(∫ t



(∥∥un∥∥
H +

∥∥kn∥∥
H +

∥∥εn∥∥
H

)
ds

)[(∫ t


In
η (s) ds

)
exp

(∫ t


In
η (s) ds

)
+ 

]

≤ Cη exp(C̃)
∫ t



(∥∥un∥∥
H +

∥∥kn∥∥
H +

∥∥εn∥∥
H

)
ds (.)

for T∗ := min{T , T̃}.
Therefore, we have

∞∑

n=

sup
≤t≤T

ϕn+(t) +
∞∑

n=

∫ t



(∥∥un+∥∥
H +

∥∥hn+∥∥
H +

∥∥kn+∥∥
H +

∥∥εn+∥∥
H

)
ds

≤ Cη exp(C̃)
∞∑

n=

∫ t



(∥∥un∥∥
H +

∥∥kn∥∥
H +

∥∥εn∥∥
H

)
ds. (.)

Thus, choosing η such that Cη exp(C̃) ≤ 
 , one deduces

∞∑

n=

sup
≤t≤T

ϕn+(t) +
∞∑

n=

∫ t



∥∥hn+∥∥
H ds +




∞∑

n=

∫ t



(∥∥un+∥∥
H +

∥∥kn+∥∥
H +

∥∥εn+∥∥
H

)
ds

≤ CC̃ < ∞. (.)

Therefore, we conclude that the full sequence (ρn, un, hn, kn, εn) converges to a limit (ρ, u, h,
k, ε) in the following strong sense: ρn → ρ in L∞(, T ; L(�)); (un, hn, kn, εn) → (u, h, k, ε)
in L(, T ; H(�)). It is easy to prove that the limit (ρ, u, h, k, ε) is a weak solution to the
original nonlinear problem. Furthermore, it follows from (.) that (ρ, u, h, k, ε) satisfies
the following regularity estimates:

sup
≤t≤T∗

(‖ρ‖H + ‖ρt‖H
)

+ sup
≤t≤T∗

(‖u‖H + ‖k‖H + ‖ε‖H + ‖h‖H
)

+ sup
≤t≤T∗

(‖√ρut‖L + ‖√ρht‖L + ‖√ρkt‖L + ‖√ρεt‖L
)

+
∫ T∗



(‖ut‖
H + ‖ht‖

H + ‖kt‖
H + ‖εt‖

H + ‖u‖
H + ‖k‖

H
) ≤ C̃ < ∞.

This proves the existence of a strong solution. Then we can easily prove the time continuity
of the solution (ρ, u, h, k, ε) by adapting the arguments in [, ]. Finally, we prove the
uniqueness. In fact, assume (ρ, u, h, k, ε) and (ρ, u, h, k, ε) be two strong solutions
to the problem (.)-(.) with the regularity (.). Let (ρ, u, h, k, ε) = (ρ – ρ, u – u, h –
h, k – k, ε – ε). Then following the same argument as in the derivations of (.), (.),
(.), (.), and (.), we can prove that

d
dt

(‖ρ‖
L + ‖√ρu‖

L + ‖√ρh‖
L + ‖√ρk‖

L + ‖√ρε‖
L

)

≤ R(t)
(‖ρ‖

L + ‖√ρu‖
L + ‖√ρh‖

L + ‖√ρk‖
L + ‖√ρε‖

L
)
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for some R(t) ∈ L(, T∗). Thus, by the Gronwall inequality, we conclude that (ρ, u, h, k, ε) =
(, , , , ) in (, T∗) × �. This completes the proof of Theorem .. �
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