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Abstract
This paper studies a class of nonlinear fourth-order Schrödinger equations. By
constructing a variational problem and the so-called invariant of some sets, we get
global existence and nonexistence of the solutions.
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1 Introduction
This paper concerns the initial value problems for the nonlinear fourth-order Schrödinger
equations

{
i∂tu + �u = |u|pu,
u(, x) = u(x), x ∈R

n,
(.)

where  < p < 
(n–)+ (we use the convention: 

(n–)+ = +∞ when  ≤ n ≤ ; 
(n–)+ = 

n–
when n ≥ ), u(t, x) : R × R

n → C, n ≥ , is the unknown function and � is the Laplace
operator, t ∈ [, +∞).

Problem (.) was first introduced by Karpman []. Karpman and Shagalov [] con-
sidered the conditions for existence and stability of solutions about the fourth-order
Schrödinger equation

i∂t� +


�� +



γ�� + |�|p� = , (.)

where p is an integer and

p ≥ , � = ∇α∇α , α = , . . . , n, n = , , .

Pausader [] established the global well-posedness for the energy critical fourth-order
Schrödinger equation

i∂tu + �u + ε�u + f
(|u|)u =  (.)
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in the radial case by Strichartz-type estimates, while a specific nonlinear fourth-order
Schrödinger equation as above (.) had been recently discussed by Fibich et al. []. They
described various properties of the equation in the subcritical regime.

Moreover, for f (|u|)u = |u|p–u one could also consider the focusing equation

i∂tu + �u – ε�u – |u|p–u = 

and proved that the solutions blow up in finite time for large data [, ].
Motivated by the above works, Pausader and Xia [] proved the scattering theory for the

defocusing fourth-order Schrödinger equation

{
i∂tu + �u – ε�u + |u|p–u = ,
u() = u ∈ H

x (Rn),

in low spatial dimensions ( ≤ n ≤ ) by a virial-type estimate and Morawetz-type esti-
mate.

Recently, Wang [] proved the small data scattering and large data local well-posedness
for the fourth-order nonlinear problem

{
i∂tu + �u = μ|u|pu,
u(, x) = u(x),

(.)

where μ = ±, in critical Hsc space and in particular, for some sc ≤  by Fourier restriction
theory and Strichartz-type estimates, but the sharp conditions of the global existence and
blow up for the problem by potential well theory is still not considered for μ = . In this
paper we try to solve this problem by a concavity method and potential well theory. Re-
cently, the concavity method and potential well theory were applied by Shen et al. [] to
study the initial boundary value problem for fourth-order wave equations with nonlinear
strain and source terms at high energy level. For other related results, we refer the reader
to [–].

The plan of this paper is as follows. In the second section, we state some propositions,
lemmas, and definitions and prove some invariant sets. In the third section, we state the
sharp condition for the global existence and nonexistence of problem (.).

Throughout this paper, the H(Rn)-norm will be designated by ‖ · ‖H , also, the Lp(Rn)-
norm will be denoted by ‖ · ‖Lp (if p = , ‖ · ‖L is denoted ‖ · ‖). For simplicity, hereafter,∫
Rn ·dx is denoted

∫ ·.

2 Preliminaries
For problem (.), we define the energy space in the course of nature by

H =
{

u ∈ H(
R

n)∣∣∣ ∫ |x||u| < ∞
}

. (.)

Proposition . ([, ]) Let u ∈ H . Then there exists a unique solution u of the Cauchy
problem (.) in C([, T]; H) for some T ∈ (,∞] (maximal existence time). Furthermore,
we can get alternatives: T = ∞ or T < ∞ and

lim
t→T

‖u‖H = ∞.
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Moreover, u satisfies
∫

|u| =
∫

|u|, (.)

E(t) =



∫ (
|�u| –


p + 

|u|p+
)

≡ E(). (.)

From [, ], we can get the following lemma.

Lemma . Suppose u ∈ H , u ∈ C([, T); H) be a solution to problem (.). Let J(t) =∫ |x||u|, then

J
′′
(t) = 

∫ (
|�u| –

np
(p + )

|u|p+
)

. (.)

Furthermore, we consider the following steady-state equation:

–�ϕ + ϕ + ϕ|ϕ|p = , ϕ ∈ H . (.)

For any solution of (.), we define the following functionals:

P(ϕ) =



∫ (
|�ϕ| – |ϕ| –


p + 

|ϕ|p+
)

, (.)

I(ϕ) =
∫ (|�ϕ| – |ϕ| – |ϕ|p+). (.)

When ϕ ∈ H and ϕ are a solution of problem (.) in C([, T]; H), we have

P(ϕ) ≡ P(ϕ), (.)

and we define the set

M =
{
ϕ ∈ H \ {}|I(ϕ) = 

}
.

Now, we study the following constrained variational problem:

d = inf
ϕ∈M

P(ϕ). (.)

By a similar argument to [], we get the following lemmas.

Lemma . Solution of (.) belongs to M.

Proof Let ϕ(x) be a solution of steady-state equation (.). Then we get
∫ (|�ϕ| – |ϕ| – |ϕ|p+) = , (.)

from which

I(ϕ) = .

Hence ϕ ∈ M. �
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Lemma . When ϕ(x) ∈ M, we have d > .

Proof By (.) and (.), on M we get

P(ϕ) =
p

(p + )

∫
|ϕ|p+. (.)

Combined with (.), we obtain the conclusion. �

Lemma . Let ϕ ∈ H , λ > , and ϕλ(x) = λϕ(x). Then there exists a unique λ∗ >  (depend-
ing on ϕ) such that I(ϕλ∗ ) =  and I(ϕλ) > , for λ ∈ (,μ); I(ϕλ) < , for λ > λ∗. Furthermore,
P(ϕλ∗ ) ≥ P(ϕλ), for any λ > .

Proof From ϕλ = λϕ, (.) and (.), we have

I(ϕλ) = λ
∫ (|�ϕ| – |ϕ| – λp|ϕ|p+) (.)

and

P(ϕλ) =
λ



∫ (|�ϕ| – |ϕ|) –
λp+

p + 

∫
|ϕ|p+. (.)

Furthermore, there exists a unique positive constant λ∗ >  (depending on ϕ) such that
I(ϕλ∗ ) =  and we can easily see that

I(ϕλ) >  for λ ∈ (
,λ∗)

and

I(ϕλ) <  for λ > λ∗.

Combining

d
dλ

P(ϕλ) = λ–I(ϕλ)

with

I(ϕλ∗ ) = ,

we obtain

P(ϕλ∗ ) ≥ P(ϕλ), for any λ > .

This completes the proof of the lemma. �

Now we discuss the invariant sets of solution for problem (.).
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Theorem . Let

V =
{
ϕ ∈ H \ {}|P(ϕ) < d, I(ϕ) < 

}
. (.)

If u ∈ V , then the solution u(x, t) of problem (.) also belongs to V for any t in the interval
[, T).

Notice that on the basis of Theorem . one says that V is an invariant set of problem
(.).

Proof Let u ∈ V . By Proposition . there exists a unique u(x, t) ∈ C([, T); H) with T < ∞
such that u(x, t) is a solution of problem (.). As (.) shows,

P(u) = P(u), t ∈ [, T).

It means that P(u) < d is equivalent to P(u) < d for any t ∈ [, T).
If u ∈ V , then we have u ∈ V for t ∈ [, T). Indeed, if it was false, there exists a first time

t ∈ (, T) such that I(u(x, t)) = . By (.), (.), and

P
(
u(x, t)

)
> ,

we have u(x, t) �= . Otherwise P(u(x, t)) = , which contradicts P(u(x, t)) > . From
(.), it follows that P(u(x, t)) ≥ d. This contradicts P(u(x, t)) < d for any t ∈ [, T), since
I(u(x, t)) < . In other words, u(x, t) ∈ V for any t ∈ [, T). So, V is an invariant manifold
of (.). �

By a proof similar to that of Theorem ., we can obtain the following theorem.

Theorem . Define

W =
{
ϕ ∈ H \ {}|P(ϕ) < d, I(ϕ) > 

} ∪ {}, (.)

Then W is an invariant set of problem (.).

3 The conditions for global well-posedness
Theorem . (Global existence) Let u ∈ W , then the existence time of solution u(x, t) for
problem (.) is infinite.

Proof If u ∈ W , from Theorem ., we know that u(x, t) ∈ W for t ∈ [, T). For fixed
t ∈ [, T), we denote u(x, t) = u. Then we have P(u) < d, I(u) > . It follows from (.) and
(.) that

(



–


p + 

)∫ (|�u| – |u|)

<



∫ (
|�u| – |u| –


p + 

|u|p+
)

< d,
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which indicates∫ (|�u| – |u|) <
(p + )

p
d. (.)

From Proposition . and (.), we know that u globally exists on t ∈ [,∞).
Let u = . From (.), we have u = , which shows that u is a trivial solution of problem

(.). �

Lemma . Assume that ϕ ∈ H and λ∗ >  satisfy I(ϕλ∗ ) = . Suppose λ∗ < , then it follows
that

P(ϕ) – P(ϕλ∗ ) ≥ 


I(ϕ). (.)

Proof From the proof of Lemma . we know

I(ϕλ) = aλ – bλp+, (.)

P(ϕλ) = a
λ


– b

λp+

p + 
, (.)

where a =
∫

(|�ϕ| + |ϕ|), b =
∫ |ϕ|p+.

Notice that I(ϕλ∗ ) =  requires

aλ∗ = bλ∗p+. (.)

Observe that ϕ = ϕλ∗= and I(ϕ) = a – b, using (.), we get

P(ϕ) – P(ϕλ∗ ) =



I(ϕ) +
bp

(p + )
(
 – λ∗p+), (.)

and the result of Lemma . is obtained from (.) since λ∗ <  and  < p < 
n– . Lemma .

is proved. �

Theorem . (Blow up in finite time) Let p > , n > (p+)
p , u ∈ V , E() < d, then any

solution u(x, t) to problem (.) blows up in finite time.

Proof Since u ∈ V , for t ∈ [, T), from Theorem . we have u(x, t) ∈ V , i.e., I(u) < .
Then we obtain

I(u) < , P(u) < d, t ∈ [, T). (.)

Since u ∈ L(Rn), u ∈ L(Rn), by Lemma . it follows that

d

dt

∫
|x||u| ≤ 

(
I(u) +

∫
|u|

)
. (.)

For fixed t ∈ [, T), u = u(t). Let λ∗ >  be such that

I(uλ∗ ) = .



Peng et al. Boundary Value Problems  (2016) 2016:25 Page 7 of 8

Since I(u) < , we know from Lemma . that λ∗ < . Because

P
(
u∗

λ

) ≥ d, P(u) = P(u).

By Lemma ., we get

I(u) ≤ 
(
P(u) – d

)
< . (.)

By (.), (.), and E() < d, it follows that

J ′′(t) =
d

dt

∫
|x||u|

≤ 
(


(
P(u) – d

)
+

∫
|u|

)

= –d + 
∫ (

|�u| – |u| –


p + 
|u|p+

)
+ 

∫
|u|

= –d + E()

= –c,  ≤ t < T , (.)

where c is a positive constant. Furthermore, we can get

J ′(t) ≤ –ct + J ′(),  ≤ t < T .

Hence there exists a t ≥ , such that J ′(t) < J ′() <  for t > t and

J(t) < J ′(t)(t – t) + J(t), t < t < T , (.)

since J() >  (by I(u) < ). From (.), we know that there exists a T >  such that
J(t) >  for t ∈ [, T),

lim
t→T

J(t) = . (.)

From (.), the Hölder inequality, and the Hardy inequality, we have

‖u‖ = ‖u‖ =
∫ |u|

|x| |x||u|

≥
(∫ |u|

|x|
) 


(∫

|x||u|
) 



≥ C‖∇u‖J

 t,

and it follows that

lim
t→T

∥∥∇u(t)
∥∥ = ∞,



Peng et al. Boundary Value Problems  (2016) 2016:25 Page 8 of 8

which contradicts T = +∞. Finally, we can get

lim
t→T

∥∥u(t)
∥∥

H = +∞.

i.e. the solution of problem (.) blows up in finite time. �
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