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Abstract

In this paper, we investigate the controllability on the IBVP for a class of wave
equations with dynamic boundary conditions by the HUM method as well as the
wellposedness for the related back-ward problems. After proving a new observability
inequality, we establish new wellposedness and controllability theorems for the IBVP.
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1 Introduction
In this paper, we consider the exact boundary controllability on the IBVP for wave equa-

tion with dynamic boundary condition as follows:

¢" - Ap+f(¢) =0, () e Q=8 x(0,7),
A1+ % =, onT; x (0, 7), (L1)
¢ =0, onTy x (0,7T), .

¢(0rx) = ¢o, ¢t(0rx) =¢, XE€ Q,

where Q2 C R” is a bounded domain with smooth boundary I'y U T, [oNT; =0, and Ap
is tangential Laplace operator. The boundary condition on I'; is called the static Wentzell

boundary condition and the dynamic Wentzell boundary condition is
” ¢
¢ - AT¢ + a_ =V, on 1—11 X (07 T) (12)
v

The system models an elastic body’s transverse vibration. For details, please see the paper
of Lemrabet [1]. In [1-7] and the references therein, one can find more details as regards
dynamic boundary conditions. Moreover, Heminna [3] gives the controllability for elas-
ticity system with two controls: both tangential and normal, under the assumption of the
wellposedness for the backward system, which is a key assumption for getting control-
lability. In this paper, we establish first of all the wellposedness theorem for back-ward
systems based on the transposition method (c¢f. [8]) and then obtain the controllability on
the IBVP for the wave equation above by using the method of HUM.
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2 Boundary controllability for Wentzell systems

For simplicity, we write
V=H (Q):={ve H(Q):vIr, e H(T),vIr, =0},  H=VxL*Q),
with the norm

2 2 2
lull3, = 1Vl 2oy + 1V rulZo s

2 2 2
|3, = 1l + 112 .
We study the controllability under the geometric condition:
Axg eR”, (x—xg)-v<0, onTy.

Take a look at the linear homogeneous system first,

u' —Au=0, (x,1)e Q=2 x(0,T),

~Aru+ =0, onTy x (0, 7), @)
u=0, onTy x (0,7),

u(0,x) = uy, u:(0,x) = u;, x€Q.

The wellposedness for the problem (2.1) is not hard to see. Define an operator A : D(A) —
‘H by

with

D(A) := {(u,v) eH:Auecl’(Q),veV,du—Aru= 0},
D(AZ) = {(u, W e D(A) : Alu,v)' € 7—[}.

Write
1 2 12 1 2
E@):== [ (IVuP+|«[")dx+ = | |Vrul*ds.
2 Jo 2 Jr,
Then it is clear that E(¢) = E(0).

Lemma 2.1 (Observability inequality) For T > 2R,

E(0) < C/ (u’z +ul+ |Voul* + |ATu|2) dsdt, (2.2)
%

where R = maX, g |¥ —%ol, £1 = (0, T) x I'y.
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Proof Multiply the equation with the radial multiplier (x — xo) - Vu + ”T_lu and integrate
by parts in Q. Then we obtain

T

-1
<u’,(x—x0)-Vu+ n2 u>

1/(’1/‘2+|Vu|2)dxdt+1/ |Vru|? dsdt +
2 Jq 25 0

1 0
= (x—x0)~v|u/|2dsdt+/ —u(x—xo)oVudsdt
=1 bl Jdv

2
-1 3 1 [T du”
+n / u—udsdt+—/ (x—xo)'v—u dsdt
2 o1 Jv 2 0 o Jv
1
+ 5/ (|VT14|2 — (x —x0) - vIVu|2) dsdt. (2.3)
P}
It is easy to see that
’ n-1 ! 2 2
u,(x—x9) - Vu + u)| <2RE(0)+¢(T) (u +u )dsdt.
0 P2}

Combining with the geometric condition (x —xp) - v < 0 on I'y, we deduce from (2.3) and
(2.1) that

bl
(T = 2R)E, §c1/ |u’|2dsdt+/ —M(x—xo)~Vudsdt
bt =1 av

-1 d 1
+c(T)/ W dsdt + " / u—u dsdt + — |Vru|? dsdt
bt 2 = av 2 bt

< C/ (}u’|2 +|Azul* +u® + |VTu|2) ds dt.
Py}

So, the observability inequality (2.2) holds. O
The observability inequality (2.2) enables us to define the following norm:
||(MOM1)“12: = L (|u/\2 +ATu? +u® + |VTu|2) dsdt,
1
and the corresponding inner product
((uo,ul), (vo,vl))F = / (u'v' + ATUATV + uv + VTuVTV) dsdt,

Py}

where u (or v) is the solution of (2.1) with initial data (o, 1) (or (vg,v1)). Let

F:={(uo,u1) € C®(Q) x C®(Q) : dyup — Aquug = o}H'”F. (2.4)

Then (F, (-,-)r) is a Hilbert space.
Now we consider the wellposedness for the linear backward problem

¢ —Ap=0, inQ,
% _Ar¢=v, onTyx(0,T), (2.5)
¢ =0, onTy x (0,7),
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with terminal data
é(T) = ¢o, ¢'(T)=¢1, ingQ, (2.6)
where
v(x,t) = =0 + Ar(Aru) — Aru+u
and 9, is taken in the following sense:
(=0, )=, ¥'), Yy e H'(0,T;L*(Q)).
For every
(0,6') € C((0, T +); D(A*)) N C'((0, T +£); D(A)) N C*((0, T +&); H)

with 6(0) = 6'(0) = 0, we say ¢ € L*°(0, T; V') is the solution of (2.5)-(2.6) if it satisfies the
following equality:

/Q ¢f dQ +(¢'(T),0(T)),, . —(&(T),0'(T)),.
=— /E 1(VTWTQ + ATuA76 + u'0’ + ub) dsdt, (2.7)
where
f=0"-A0€L0,T;V).

It is clear that 6 satisfies

0" — A =f, in Q,

30

P ATQ = O, on Fl, (28)
0= 0, on ro,

6(0) =0, 0’'(0)=0, inQ.

Theorem 2.2 In the sense of (2.7), the problem (2.5)-(2.6) has a unique solution ¢ satis-
Sying

¢ €L>(0,T; V).

Proof First of all, we give the energy estimate for the nonhomogeneous system (2.8).
For the general energy (the low-order energy), since

1d
——(/ 9’2+|V9|2dx+/ |VT0|2ds>=ff8¢dx
2dt Q I Q

and

E(T)=E(t) +/tT/Qf9/dxdt,
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we have
E(t) = CT(E(T) + ”~f||i2(0,T;L2(Q)))’ Vi e (0! T)
For the high-order energy, we have
1 712 2 1 72
Et)== | |VO'|" +|A01Pdx+ = | |Vr0'| ds
2 Ja 2 Jn,
and
T
El(T) =E1(t) +/ /.fAG/dxdt
¢ Ja
Hence,
T 90’ T
Ei(t) :El(T)+/ / f—dsdt—/ /VfVQ/dxdt
¢ Jag~ OV ¢ Ja

T T
:EI(T)+/ fATO/dsdt—/ /VfV@’dxdt
t I t Q

T : 3
=B [ ( ||va||2ds>§< / |vTe/|2ds) dt
t I r
T 3 3
2 712
+f¢ (/Q \i dx) (fg|ve| dx) dt

1
<E(T)+ |E(®) ”Zoo(o,T)"f”Ll(O,T;V)’

which implies that

E(6) < C(E(D) + ffr o ry0) O<t=<T.
Let 0 = 6; + 05, where 6; satisfies
6/ — A6, =0, in Q,
A7t =0, on %y,
91 =0, on Eo,

0(T)=6(T),  6)(T)=6"(T), ing,

and 6, satisfies

0y — A6, =f, in Q,
%—AT92=0, on 21,
92 =0, on Z(),

0,(T)=0,  6)(T)=0, in<.

Let

L(O(T),0'(T).f) = | (VruVr6 + ArulAr6 + u0,d + ub) dsdt.
Py}

Page 5 of 9
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Then we obtain

L(6(T),0'(T),f)
= /): (VruV70 + AruAr0 + u0; + ud) dsdt
1
< /): (VruVr + Arul g6y + u by + uby
1
+VruVrby + Arul76y + u'0; + u92) dsdt
= (e oD+ o) -

Therefore, L : F x L(0,T;V) — L*®(0,T;V’) x F' is a bounded operator. So 3¢ €
L*>®(0,T; V"), (p1,—po) € F' such that

fQ of dxdt — pu,6(T)) + (00,6 (T)

= / VruVro + AruAr6 + u'0 + ub dsdt,
1

where dxdt means (-, -) ;000 7.v).11(0 7-H1(q)) - Next, we prove that
Q L0, T;V"),LY(0,T;HY(R2)) P

&(T) = po, ¢'(T) = pr.

Let X be the eigenvalue for the A operator with mixed Wentzell, Dirichlet boundary con-
ditions and m be the corresponding eigenvector. The existence of eigenvalue for the A
operator with mixed Wentzell, Dirichlet boundary condition is based on the fact that
A71:12(Q) — V is a compact operator. That is,

—Am = m, in ,
%—’f -Arm=0, only,
m=0, on Iy.

Set f := g(t)m, where g is a smooth function in [0, T + ¢], and let 8 := h(¢)m. Then

W +Ah=g,
h(0) =0, K (0) = 0.

(2.9)
Claim 3g = gy such that

h(T)=H(T)=0, H'(T) #0.
If this is true, then

/Q bao(Omddt (o1, H(T)m) + o, (T}

= / (Aqulem —u"m+ VyuNem + mu)h(t) ds dt.
P}
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Since W' + Mh = gy, we have

T
/0 (@" + A, m)h(t) dt + (¢(T), ml'(T) — (¢'(T), m)h(T) + {1, m)h(T) — {po, m)h'(T)
= / Arulrmh(t) — u'mh(t) + VeuNVrmh(t) + umh(t) ds dt. (2.10)
1

Differentiate (2.10) with respect to T, we get

(6" + A, m)(T) + ($(T), m)'(T) + (@' (T), )l (T) — (¢ (T), mh(T)
—(¢/(T), M)l (T) + (1, MW (T) = {po, m)H(T)

= f (ATMATm —u'm+VruVrm + um) dsh(T).
I
Therefore
(B(T), m)l"(T) = {po, m)h"(T) = 0,
which implies that ¢(T) = po. Similarly, we obtain ¢'(T) = p1.

Now we prove the claim above. Write

) )

Then, by the Kalman condition [9], we know that (2.9) is controllable. Set X(¢) :=
(h(t), W' (£))T. Then 3gi(s), s € (0, L), such that X(£) = X, # 0. Write

T
2 (s - E) o= BT AT (=91 (—eA%Xo),
where w = | %T AT-)BRT A (T-9 g5 Then

¢ T
X(t) = eA(t_%)XQ + ﬁ eA(t_S)ng (S — 5) ds.
7
Clearly, X(T) = 0, X'(T) # 0. This proof is then complete. O

The following is our exact controllability theorem.

Theorem 2.3 Let T > 2R and F be the Hilbert space defined in (2.4). Then for every
(¢'(0),—¢(0)) € F', there are (ug, u1) € F and a control function

v(x, t) = -0, + Ar(Aru) — Aru + u,

where u is the solution to (2.1), such that the solution ¢(t) of system (2.5) with initial data
(¢(0), ¢'(0)) satisfies

¢(T)=0, ¢'(T)=0.
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For the nonlinear case, we assume that f € WIL’SO(R) satisfies f(0) = 0 and the super-

linear condition (see [10]):

AC>0,p>1: |f'(9)| =ClsP™", VseRwithp< + ifn>2. (2.11)
n—z+e

Proposition 2.4 Assume that f satisfies the super-linear condition (2.11). Then there exists
To > 0 such that for every T > T, there is a neighborhood w of (0,0) in V x L2(Q) such that
foreach (¢po, 1) € w, there exists a control v € H™2(T") such that the solution to (1.1) satisfies

¢(T)=0,  ¢'(T)=0.

Proof From the results for the nonlinear system of Neumann problems (see [10]), we see
that there exists a controllability v € L2(I';) such that the solution (¢, ¢’) of the following

system:

" - A¢p+f(p)=0, inQ,

9 _
Fi v, on 21,
¢ = O; on Eo,

$(0)=¢o,  ¢'(0)=¢, InQ,

satisfies (¢(T),¢'(T)) = (0,0), and ¢ € H?(Q2) where g < % — &. The regularity of ¢ for
Neumann problems can be found in Theorem 1.4 of [11]. Let v; = v — Ar¢. Then

d
_¢ - AT¢ =V,
ov
and v; € H2(I";) such that ¢(T) = 0, ¢'(T) = 0. O

Remark 2.1 For dynamic Wentzell systems with boundary condition (1.2), we can also
prove the results as Theorem 2.3 and Proposition 2.4 by similar arguments.
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