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Abstract

By constructing an adequate real functional and choosing an appropriate admissible
function space, the existence of multiple solutions to a four-point boundary value
problem, which may be taken as an extension of Sturm-Liouville boundary value
problems, is proved via a variational approach for a second-order differential system
with a p-Laplacian.
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1 Introduction
The variational approach, together with the critical point theory, is one of the important
methods in the study of two-point boundary value problems of ordinary differential equa-
tion [1-5], as well as impulsive differential equations [6—9]. However, this approach is
much more effective in the study of boundary value problems of differential systems [10—
12].

Mawhin and Willem [10] studied the existence of periodic solutions of convex Hamilto-

nian system in the form

Ju'(¢) + VH(t,u(¢)) = 0,
u(0) —u(T) =0,

where H : [0, T] x R? — R and proved that the problem has at least one periodic solution
if

T
(It),u) <H(t,u) < %Iul2 +y(0), / H(t,u)dt — oo, as|u| — oo,
0

with « € (0, 27”) ([10], Theorem 3.1). Also, they proved the system

(Mt Wi (8)) = 5 (VuME, i), u') + VE(t,u) = f(2),

u(0) —u(T) =u/(0) -/ (T) =0,
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has at least one periodic solution if |F(t, u)| + |VE(t, u)| < h(t), (M(t, u)u',u') > o|u'|?, and
M is T;-periodic in #; ([10], Theorem 4.3).
Tian and Ge [11] discussed the differential system with a p-Laplacian

oo/ () + VE(t,u(?) = 0,
u(0) — u(T) = u/'(0) - u/(T) = 0,

where ¢, (x) = [x|?~%x for x € R”, and they obtained an existence theorem of periodic so-
lutions under the condition

- 2 T
(l(t), |u|pTzu) <F(t,u) < a—|u|” +y(2), / F(t,u)dt — oo, as|u| — oo.
p 0

The result extended that given by Mawhin and Willem ([10], Theorem 3.5).
Graef et al. studied in [12] the existence of at least three classical solutions to the multi-
point value system

(¢p()) + AF(t,u) + nG(t,u) =0, O0<t<l,
M(O) = Z}rzl aju(tj), u(l) = Z;Zl b]u(t])r

where ¢,(s) = (¢p, (51), Pp, (52)5 ..., Py, (5,)) With @, (si) = sk P25y, prc > 1, a,beR, F,G:
[0,1] x R” — R, A, u > 0. By use of the existence theorem of three critical points given by
Ricceri [13], they obtained sufficient conditions for the existence of three solutions to the
discussed system, when the parameter A is defined in a certain interval [0, §].

In this paper, we are to study the existence of multiple solutions to the following four-
point boundary value problem (BVP for short):

: (P(t)x') = VF(t,x), O0<t<l, W

%'(0) = ax(%), x'(1) = Bx(n),

where P: [0,1] — R"™" is a continuously symmetric matrix, i.e., PT(¢) = P(t) being con-
tinuous in ¢ F : [0,1] x R” — R is measurable in ¢ for each x € R” and continuously dif-
ferentiable in x fora.e. £ € [0,1; &, B € R, 0< &, n < 1.

Clearly, BVP (1.1) becomes a classic Sturm-Liouville BVP if § — 0 and n — 1.

Without loss of generality, we suppose & < 7. Let {p;(£)} be the eigenvalue of P(t). As-

sume

(Hl) O<a< minoftfl minliisnpj(t) < MaXp<¢<1 maxlfjfy,pj(t) < b;
(H2) F(t,0) =0, F(t,—x) = F(t,x), and there are ¢, M > 0 such that

F(t,x) > c|x|* = M.

Condition (H1) implies that P(t) is an invertible matrix for each ¢ € [0,1].
We are to show in this paper the following results via variational methods.

Theorem 1.1 Suppose assumptions (H1) and (H2) hold. BVP (1.1) has mn pairs of non-
trivial solutions if there are d,r > 0, m € N*, such that

(VF(t,x),x) < —d|x|* < —4bm*n?|x|?, (1.2)

when |x| <r.
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Theorem 1.2 Suppose assumptions (H1) and (H2) hold. Then BVP (1.1) has infinitely
many pairs of nontrivial solutions if there are d,r > 0 and o € (0,1), such that

(VF(t,x),x) < —d|x|**7, 1.3)
for|x| <r.
When condition (1.3) is replaced by a limitation condition, we have the following.

Theorem 1.3 Suppose assumptions (H1) and (H2) hold. Then BVP (1.1) has infinitely
many pairs of nontrivial solutions if

. (VF(4,%),%)
n—- - =

lim mi

—00. 1.4
|x|—0 0<t<1 |x|2 (1.4)

This paper is organized as follows. In Section 2, we discuss the relation of the critical
point of functional ® and the solution to BVP (1.1). In Section 3, we show that ® satisfies
the (PS)-condition. Based on Sections 2 and 3 we prove in Section 4 the theorems given
above. Finally, an example is given in Section 5 to illustrate our result.

To prove the above results we need the following.

Theorem A [14] Suppose X is a Banach space and ® : X — R a continuously differentiable

functional with ®(0) = 0 and ® even, bounded from below and satisfying (PS)-condition. If
there is a set K C X such that K is homeomorphic to S by an odd map, and supy ® < 0.
Then ® possesses at least m distinct pairs of critical points.

2 Critical point of functional and solution of BVP
Suppose X is a Banach space and @ : X — R a differentiable functional with derivative

given by
(d>/(u), v)

with u,v € X. Let Y C X be a closed subspace. If there is #y € X such that
(<I>/(u0),v> =0

holds for all v € Y, then u is called a critical point of ® with respect to Y. Furthermore,
u is called simply a critical point of ® if Y = X.

Obviously, uy is a critical point of ® with respect to Y if it is that of ®.

Let X = H'([0,1],R"). Equip X with the norm || - || defined by

1 1 1
||x||:[ /0 Ix(0) 2 de + /0 |x/(t)|2dtr

for each x € X. Then X is a reflexive Banach space. Define

1

1
D(x) = /0 |:§(P(t)x’(t),x'(t)) + F(t,x(t)):| dt - %SﬂZ(P(l)x(n),x(n))

250 (P(O)~(8),x(6)) 2.1)
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for x € X, where § is a constant.
It is easy to verify that ®(0) = 0 and ®(—x) = d(x).

Furthermore, we have the following.

Lemma2.1 Ifuisa critical point of ®(x), defined in (2.1) with respectto Y = {x € X : x(0) =
—adx(&),x(1) = Bdx(n)}, then u = u(t) is a solution to BVP (1.1).

Proof The properties of F and P ensure & is continuously differentiable and the derivative

of ® is in the form
(@5} = [ (PO 0.0) + (VF(ex0).0)
— (P(V)Bx(n), 8By(n)) — (P(0)arx(), Seey(£)), (2.2)
x € X,y € Y. Then the assumption that u is a critical point of ® respect to Y means that
(®(w),y)=0, yeY. (2.3)
Let Z = {x € C([0,1], R") : x(0) = #(£) = x(7) = x(1) = 0}, then Z C Y. Furthermore, let

le{er:x(t):Ofor“;‘ftfl},

Zy

{er:x(t):OforlftEEornftgl},

Zgz{er:x(t):0f0r0§t§n},

and T7 = [0,&], T2 = [§, 1], T5 = [n,1]. Clearly equation (2.3) implies

and then

0= /T [(Prow')2(0) + (VF(t0),20)]
= /T | [~((POu 1), 2()) + (VE(t,u(t)),2(2))] dt
__ fT i((P(t)u’(t))/ VE(tu(0)), (1)) dt.
So one gets
(POu'(t)) = VE(t,u(t)), ae.teT,

since z € Z; is arbitrary. Take i = 1,2, 3, then we have

(P& () = VE(t,u(t)), ae.tel0,1]. (2.5)
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The equality (2.5) means (Pu')(t) is continuous on [0,1] and as a critical point of ® with

respect to Y, we have

1
0= /0 [P (2),y (8)) + (VE(t, u(t)), y(t))] de
- 8% (P(W)u(n), y(n)) - 8* (P(0)u(£), y(£))
1
= (P(t)u’(t),y(t))|;— /0 (PO () = VE(t,ult)),y(t)) dt

=8B (Pu(n), y(1)) — dar* (P(0)u(8), ¥(§))
= (P (1), y(1)) = (P(0)u'(0),5(0)) ~ (P()Bu(n), 8y(n)) ~ (P(O)u(§), Sery(£)),

foryeY.
Especially, wheny € Y1 = {y €Y :y(0) =y(§) = O}, one gets

0= (P)u'(1),y(1)) - (PW)Bu(n), 38y(n))
= (P (' (1) - Bu(m),y(1)),

and then

(P)(/' (1) - Bu(n)),y(1)) = 0.
M/(l) = ,BM(U)»

since y(1) € R” is arbitrary and P(1) is invertible. At the same time the case y € Y, = {y €
Y:y(n)=yQ) = O} implies

u'(0) = au(§).

So u = u(t) is a solution to BVP (1.1).

Therefore our task is to discuss the existence of critical points of ® in X. O

Lemma 2.2 Foreachx € X,
|x(6)] < 21| (2.6)
Proof From
1
i(e) — | < / x(0)| de,
0
one has

1
Ix(t) — 7| < /0 W ()] de,
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where x; = fol x;(t)dt and x = fol x(t)dt. Then

1
] .
|x(t)<s|x|+/0 Iw/()] d

1 1
d "(t)|d
5/0 1x()| t+/(; W ()] de
1 ) 3 1 ) 7
d ! d
5[/0 1x(0)| t] +[/0 )| t]

1 2
< 2[/0 (| + ¥ @) dt]

=2l O

3 A lemma on the (PS)-condition

We show at first a lemma which will be applied in the proof of our main results.

Lemma 3.1 The functional ®, defined in (2.1), satisfies the (PS)-condition if assumptions
(H1)-(H2) hold.

Proof Suppose {ux} C X is a sequence such that {®u;} is bounded and ®'(x;) — 0 as
k — 00. We are to show that there is in {u;} a subsequence which converges in X.

To this end, let & = min{F, c} > 0 and choose

seflo 9
E( '2b(a2+,82)>

in the functional (2.1). Then

2B (P ) ) — 0 (PO ), e (6))
1 2 2
36/0 [ O] + o)) de - M
2 8[ (POw), 1(0) + 02 (PO &), 1k ©)) |

Notice that

1
)] < i+ [ (0]

1 1
5/0 |uk(t)|dt+/0 (1) e

1 3 1 3
5(/0 |uk(t)|2dt> +(/0 |u;<(t)|2dt) :
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and then
2 1 2 2
)| szfo [ + @) 2] e = 2l (31)
Similarly,
2 1 2 2
1 ©)| 52/0 [ + @) 2] e = 2l (3.2)

Therefore, we have
2 1 2 2 2
() > 0 |ull —Zab(a + B lue)* - M
P TPR LIy
= — u — ,
9 k

which implies {i} is bounded in X. Going, if necessary, to a subsequence, we assume that
ur — uin X and u; — u in C([0,1],R"”). Then

(dD’(uk) — &' (u), uy - u) —0 ask— oco. (3.3)
Using (2.2) and assumptions (H1)-(H2), we have
(@ (i) — ' (u), usc — 1)

1
= /O [(P() (s (£) — s (8)) wy (0) — ware(2))
+ (VE(t, () = VE(t,u(®)), ui(e) - u(r)) ] de

=3[ (P B (ux(n) — u()), B(ur(n) — u(n)))
+ (P(O)or (s (&) — u(§)), o (e () — u(§)))]

< a/1|u}((t) - L/(t)|2 de + /I(VF(t, ur(£)) = VE(&u(t)), ue(t) - u(t)) dt
0 0
— 8B B2 |ux(m) - un)|* + & |ur (§) - u(®)|’). (3.4)

The fact that u; — u in C([0,1],R") implies

/I(VF(t, u(t)) = VE(t,u(0)), u(6) — u(t)) dt — 0,
0
k() —u()| =0, |ux(&) - u(§)| > 0,

1
/ | (@) - () |* dt — o0,
0

as k — oco. Then from (3.3) and (3.4) we get

1
‘/|u}<(t)—u/(t)|2dt—>0 as k — oo.
0
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Therefore, we have
Uy —>u inX.
Then & satisfies the (PS)-condition.

4 Proof of theorems

Proof of Theorem 1.1 First we show that ®(x) is bounded from below.

From the definition of ® in (2.1), one has
! ’ 2 2 1 2 2 2 2
<I>(x)20/ (<O + <0 de ~ 2~ Z5b(8” )| + & ) )
0
2 1 2 2 2 2
=0|lx]] —§5h(ﬁ lx()|” + o?[x(8)|") - M
> 0|x|* - %Sb(ﬁ2 +a)||x|> - M
1 2
> S0llxl” - M,
2

which implies that ®(x) is bounded from below.
Second, we prove the existence of a set K C X such that K is homeomorphic to S""~! by

an odd map, and supy ® < 0.
To this end we choose the linear space X,,, in the following way.

Let {e;} be the orthogonal basis of R”. As Banach space H' is a subspace of L}([0,1], R"),

its element can be expressed in the form

o0
x(t) = ap + Z(cos 2kmt - ay +sin2kwt-by), 0<t<l,
k=1

where ag, ax, by € R”. In this case, let

x(0) =x(0%), x(1) = x(17),

and
S wD-a0) 1 .
#(0) = lim === = lim - (x(t) - %(07)),
/ . (1)_ (t) . 1 _
X ()= lim T = lim o (5(10) - 2(0)

Let Xy = {x(t) = Y i, sin2km ¢ - by, by € R"}. Then dim X,,,, = mn. For a function x(¢) =

Y ey sin2kmt - by, one gets

x'(t) = Z 2k cos2kmt - by
k=1
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and

/l| OF =13
x(t t=— Kl
0 255

(4.1)
1 m 1
/ I (0) de = %Z(zkmbkﬂ < 4 f w0 de.
0 k=1 0
It follows that
%] = L 2(1 + 4k %) |be]* < l(1 +4m*7?) Z |
o= 2 k=1
and
1 1 1
N /0 @) de = @2

Now choose K = {x € X,s, > iy |bx|* = =7*}. Obviously, K is closed in X with dimK =
mn — 1. Furthermore, for each x € K,

1
®(x) 5/0 |:§|x/(t)|2 +F(t,x(t))i| de,

%) < 1bel < /m (Z |bk|2> =1 (4.3)

k=1 k=1

At the same time we have, from (4.3),
F(t,x(t)) = F(t,%(¢)) - F(£,0)
1
= f (VE(t,sx(t)), x(2)) ds
0
1
= / ;(VF(t, sx(t)),sx(t)) ds
0
1
—4bmPm* *d
< m°w /0 s|x(t)| s

= 2bm’n? |x(t)

)

which yields

1
/ F(t,x(2)) dt < —2bm*n / |x(t)| dt
0

and

1 1
() < é/ ’x/(t)lzdt—2bm2n2/ ‘x(t)‘zdt
2 Jo 0

1 1
< 2bm’n? f |x(2)|* dt — 26m 7 / lx(2)|* dt
0 0

=0.



Ge and Zhao Boundary Value Problems (2016) 2016:69 Page 10 of 12

Then we have

sup® < 0.
K

Finally, define the odd mapping G : K — S~ in the following way. For a function x € K

with the expression

x(t) = Z sin2kwt - by,
k=1

let x(f) — G(x) = (%bl, %bz,..., %bm), where p = (37, Ibklz)%. Then G is a homeomor-
phism between K and §”!. It is clear that G is an odd mapping.
Then Theorem A gives the conclusion of Theorem 1.1. O

Proof of Theorem 1.2 1t suffices to show that for any m € N, condition (1.3) implies that
there is 7 > 0 such that the condition holds for r € (0, 7).

In fact, from limy .o+ [%|1*°/|x|? = +00, we know that there is 7 € (0,7) such that
2

dlx|"*° > 4hm2n2|x(t) O<|xl <.

In this case, we have
(VF(t,x),x) < —d|x|**7 < —4bm2n2|x(t)|2, 0<lx| <7,

which implies, by Theorem 1.1, that BVP(1.1) has at least mn pairs of distinct nontrivial

solutions. O

Proof of Theorem 1.3 Condition (1.4) implies that for any m € N there is r > 0 such that
(VF(t,x),x) < —-4b(m + 1)2772|x(t)|2 < —4bm*m?|x)?, O<|x|<r.

Then the conclusion comes from Theorem 1.1. d

5 Example
Example 5.1 Suppose x1,%; : (0,1) — R. Then the BVP

5 + 30 = [~(1+ sin® £)(x2 + 2x2) 7% + 6(1 + £2)(24% + 2) 2y,
3a) + 5% = [-2(1 + sin® £) (x? + 2x§)‘% +3(1+£2)(2%% + x%)%]xz,
%(0)=3x1(3),  *(1) =3:(3),

x(0)=3x1(3),  #5,(1) =30:(3),

(5.1)

has infinitely many solutions.

Proof Let M(t) = [g:], a=3,8= é, &= %, n= %, X = (;21), F(t,x) = —%(1 + sin? t)(xf +
Zx%)% +(L+£2)(2xF + x%)% , then BVP (5.1) is a special case of BVP (1.1) with = 2.
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Obviously, the eigenvalues of M are 2 and 8, which means
O<a=2, b=28.

On the other hand, we have

lim F(t,x) = +00, F(t,0) =0, F(t,—x) = F(t,x),

|x]— 00

(VE(t,x),x)

l]—o0 ]2

and
8 o2 a3 2.2\
F(t,x(t)) > —g(x1 +x5) % + (] +x3)

2—§(1+xf+x§) +3(x%+x2)—27

1 89
= g(x% +x%) - ?.

Letc= % and M = 83—9. Then Theorem 1.3 gives the conclusion. O
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