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Abstract

In this paper, we intend to study nonlocal problems for Langevin-type differential
equations with two fractional derivatives of orders «, 8 € (1, 2). By using Laplace
transform methods, formula of solutions involving Mittag-Leffler functions Aq g(w),
o, B €(1,2), w e R and nonlocal terms of such equations are presented by studying
the corresponding linear Langevin-type equations with two fractional derivatives.
Meanwhile, existence results of solutions are established by utilizing boundedness,
continuity, monotonicity, nonnegative of Mittag-Leffler function Ay (W), &, B € (1,2),
w € R, and fixed point methods. Finally, two examples are presented to illustrate our
theoretical results.
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1 Introduction
With the fractional-order derivatives being applied in more and more fields, the basic the-
ory of fractional differential equations (FDEs for short) also has a good development. The
qualitative properties of solutions to Langevin-type FDEs were studied in the significant
monographs [1-6] and recently have also been discussed in the literature [7-17] via fixed
point methods.

Recently, Wang et al. [14] and Zhao [17] studied impulsive problems for Langevin-type

equations with Caputo fractional derivatives of the form
D} (DY + p)x(t) = g(t), 1>0,a,8 € (0,1). (1)

Definition 1.1 The Caputo derivative of order p for a function v: [0, 00) — R can be writ-

ten as
n-1 tk
cDPv(t) =DV v(t)—Z—v(k)(O) , t>0,n-1<p<mn,
— k!
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where “DYv denotes the Riemann-Liouville derivative of order p with the lower limit zero
for a function v, that is,

1 ar [t v(s)
LDPu(t) = — | —Z -1 ,
:v(t) Ti—p) de" /0 (£ _syprin ds, t>0,n—l<p<n

For some suitable function g : I — R, [14] applied Laplace transform methods to derive
the general solution of (1) as follows:

*(0) = Au (=1 1)b - %[1 Au(-tu)]a+ /0 (= O A g (~( = 7 )g(0) b,

where I := [0,1], a, b are constants, A, g(w) := > ;o) 1“(#];13)’ o, B €(0,1) for w € R is the
Mittag-Leffler function, and A1 (w) := Ay (w). Then by applying the properties (continuity,
explicit boundedness, monotonicity, and nonnegativity) of A, g(w), , B € (0,1), for w < 0
and fixed point theorems, we can deduce some interesting existence results for a nonlinear
problem.

However, we will less study the theory of Langevin-type differential equation with two
Caputo fractional derivatives CDf (°Df + n)x(2), a, B € (1,2), and the properties of A, p(w),
o,Be(1,2), forw<0and w>0.

Let f: I x R — R be a given real-value function. We consider nonlocal problems for
Langevin-type equations with two Caputo fractional derivatives of the form

{ DYDY + )x(t) = f(6,%(2), tel:=[0,1,1<a,B<2, )
x(0) =1 an(t),  x(0)=b,  [Dfx(®)o=c,  [*Dfx(t)];, =d.

Here DY and CDE denote the Caputo fractional derivatives of orders o, B € (1,2) with the
lower limit zero, respectively, and the constants a; € R, i=1,...,m, b,c,d € R, u € R\ {0},
and 0=ty <t <+ <ty <bp =1
In the beginning of the paper, we first apply the Laplace transform method to derive that
the linear Cauchy problem
: D (°DE + w)x(t) =g(8), tel:=[0,1],u R\ {0}, )
x0)=a, ¥(0)=b  [DixO)ico=c,  [Dix()],_o=d,

has the unique solution

x(t) = aA, (—ut“) +DbtAy 5 (—,ut"‘) +(ap + O)t*Ag g (—,ut"‘)

+ (b + A Ag o (—pt®) + /0 (-0 P Agaup (-1t —7)*)g(r)dr,  (4)

where g: I — R is a linear function.

Then we go on studying the asymptotic behavior, boundedness, and continuity of the
Mittag-Leffler functions Ay g(w), o € (1,2], B >0, w € R (see Lemmas 3.2, 3.3, and 3.4),
which will further use to study nonlinear problems. In fact, the properties of Mittag-Leftler
functions A, g(w), o € (1,2], B > 0, w € R, presented in this paper can also used for other
possible problems. Finally, we apply fixed point methods to derive the existence of solution
to (2) under Lipschitz and growth conditions on the nonlinear term.
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2 Preliminaries

Let C(I,R) denote the Banach space of all continuous functions from I into R with the
standard norm ||u|l« = sup{|u(f)| : 0 <t <1} for u € C(I,R). We denote by L,(I,R) the
Banach space of all Lebesgue-measurable functions v: I — R with the norm ||v||z¢(;) < 00
defined as

(f,IV(t)qut)%, 1<g<oo,

Wllizagy = § .
infy(a)=0{Supser_a VI}, g =00,

where ((A) is the Lebesgue measure of A.
Before we study (2), we first introduce the following linear fractional initial value prob-
lem.

Lemma 2.1 Let g:1 — R be continuous. Then fractional initial value problem (3) has the

unique solution (4).

Proof From (5.3.3) of [2] we know that the Laplace transform of the Caputo fractional

derivative CDf x(s) satisfies the following equation:
-1
(LD} x)(s) = sP(Lx)(s) = Y sP712(0). (5)
j=0
Thus, we apply the Laplace transform to the first equation in (3) via (5) and derive
s (s"‘/lx(s) — % x(0) - S“‘zx'(O)) —sh1 [CD‘;‘x(t)]t:O — P2 [CD‘;‘x(t)];ZO
+ /L(sﬁﬁx(s) - s 7x(0) - s’s_zx’(O)) = Lg(s).
Furthermore, we obtain

-B B+a—1 B-1 Bra-2 B2 B-1 B2
Ex(s) _ S [Eg(s) +af(s + LS )+ b(s + Us ) +cs + dsP~] . (6)

¥+

Next we find x(¢). According to (1.10.9) of [2], we know that

wit) = P A p(-pt®) = Lwls) = S (7)

s¥+pt

From equality (7), by applying inverse Laplace transforms to (6) we get the unique solu-
tion of (3):

x(t) = aly (—1ut) + btAgp (—1ut*) + (ap + €)t* Ag st (—pt%)

t
+ (bl'L + d)tOHlAa,OHZ (_/'Lta) + / (t - T)a+ﬂ71Aa,oz+ﬂ (_M(t - T)a)g(f) dr.
0

The proof of the lemma is completed. d

At the end of this section, we introduce the following fixed point theorems.
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Lemma 2.2 Let W be a closed convex and nonempty subset of a Banach space X. Let G,
H be two operators such that (1) G(x) + H(y) € W for x,y € W; (ii) G is compact and con-
tinuous; (iii) H is a contraction mapping. Then there exists z € W such that z = Gz + Hz.

Lemma2.3 Let (X, | -||) be a Banach space, and B : X — X be a compact operator. Assume
that L : X — X is a bounded linear operator such that 1 is not an eigenvalue of L and
lim -0 WBx_Lxl _ 0. Then B has a fixed point in X.

llxl

3 Properties of Mittag-Leffler functions A, g, @ € (1,2], 8 >0
In order to give some results on the asymptotic behavior of Mittag-Leffler functions A, g,

a €(1,2], B >0, we need the following lemma.

Lemma 3.1 (see [18]) Let « € (0,2) and B € R be arbitrary. Then for [ = [g], the following
asymptotic expansions hold:

(i)

1 14 1 l wk -1
Aa,ﬁ(W)=aW @ exp(Wa)_Zm+O(w ) asw— oc;
k=1

(i)

! ok
Agpw) ==Y ————+0(Iw) asw— —oo.
kX:E I'(B — ak)

Define

Ay p(t,u) = tﬁ_lAa,ﬂ (—Mt“), o, B,u>0,

Qupr i) = V“T_ﬁ r*sin(mB) + wsin(w (8 — «))

r2@ + 2 cos(ma)r® + u?
rsin(m(1-B)) —wsin(@x(1- 8 +a))

r2 = 2rwcos(mra) + w2

Q(r,w) = Lr% exp(—ré)
Ta

Lemma 3.2 Let o € (1,2] and B > 0 be arbitrary. Then the following statements hold:
(i) Forall >0, we have

00 2t1—/3
Aa,f;(—,ut"‘) = /0 Qi(r,t)dr + —T exp(t/ui cos(%))

op

X cos|:tué sin<z> - z(,B - 1)],
a o

Qi(r,t) = r 2 ex ( rl) rsin(r(1— B)) + ut* sin(r 1 - B + ))
17, B Ta p r2 + 2rut® cos(mwa) + u2e2
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(if) For all u >0, we have

wy_ L B g 1 =
Agp(ut) = e £ Pexp(uet) + \ Qy(r,t)dr

2t1-8 1 T £ T
+ ——exp| tu® cos{ — ) | cos|tuea sin| — ) - —(B-1) ]|,
T CXp
apl~a o o o

rsin( (1 - B)) — ut*sin(wr (1 - B + )
r2 — 2rut® cos(mar) + pu2t2e

where

Q) = T exp(ort)
To

w=ut*>0

= Qrw).
Proof (i) By applying Proposition 2.1 of [19] for @ € (1,2), y > 0, we can deduce

ra

sin(ra) [
ta_lAaa —-y%t*) = — exp(—rt
’ ( 4 ) T /0 Pl )r2°‘ +2r¢y® cos(ra) + y2

2 T (T T
- ﬁexp(ty cos(—))cos[ty sm<—> + —]. (8)
ay o o o

Letting u = y%, (8) can be simplified as

Aty ) = 17 Ag o (-1t%)

sin(ra) [ r®
= exp(-rt) > 5 dr
T 0 2 4+ 2r*pcos(mwar) +

2 1 7 1, (7 T
1 exp(t;w cos(—)) cos|:t//,a sm(—) + —]
ap'~e o o o
> 2
:/ exp(—1t)Qu,a(r; 1) dr — T exp<t,u§cos<z)>
0 apult-a o

X cos|:tué sin<z) - z(oz - 1):|. 9)
o o

On the other hand, from Corollary 1 of [20], for all « € (1,2], 8 > 0, and ¢ > 0, we get

Aa,ﬂ(t) = Aa,ﬂ (tr 1)

= /OO exp(—rt)Qqp(r) dr + E exp (tcos(z))
0 o o
X cos[tsin(z) - z(f} - 1):|, (10)
o o

where Qu 4(r,1) = Qq,p(r).
By comparing formulas (9) and (10) we can derive a general formula of Ay g(t, 1) as

follows:

o0 2 1 T
Agp(t,u) = / exp(—rt)Qqp(r, ) dr + 5 exp(t,ua cos(—))
0 aul-a o

X cos[tu,é sin<z> - z(/3 —1)].
o o
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Let r = x“t*. The last equality can be simplified as

> 2t
Aa,ﬁ(—/,l,ta) = / Ql(r,t)dr+ —]exp<tuécos<2))
0 aMI_E o

X cos|:t,‘,ué sin<z) - z(ﬂ —1)},
o o

which proves part (i).
(ii) Due to Lemma 3.1(ii) via the previous result, changing —ut“ to ut*, we easily obtain

o 1 L8 1-B8 1 >
Agp(ut®) = owet exp(u@t) +/o Qu(r,t) dr

2118 1 T 1 (T T
+ —exp| tu@ cos| — ) Jcos|tpe sin| — ) - —=(B8-1)|,
1-2 o o o

ap @
where
Q1) = ir% exp(—ré) rsin(n2(1 - B)) —ut*sin(r(1- B +a))
To r2 = 2rut? cos(ma) + pu2t2e
The proof is finished. d

Lemma 3.3 Let > 0 be arbitrary. For any a € (1,2] and B > 0, we define

P(O{, ,B: M) = maX{Pl(ar ﬁ’ M),P2(0[: IB) M)};

where
|sin(B)| f;° PR exp(—rl)dr
Pl(Ot,,B,,U,)= .02 ’
sin®(wo)wo pu?
oo 1-8 1
| sin(r (B — )] re exp(~r«)dr
p2(a7 ,Br M) = /0 .

sin?(ra)rapn

(i) Forallt>0, we have

‘fﬂ T A (ut”) - é/t# eXP(ﬁL‘)‘

-p 1 1 2 1 T
<P, B, 1) t2oz—/3+1+ta—/3+l +oz,u1’$ exp| tue cos 2 )

In particular,

<Pla1 1 1 2 ; 1 T
<Pla,1,1) et +aﬂl_éexp e cos| — ) ).

1
Au(ut) - - exp(net)

(ii) Forallt> 0, we have

1 1 2 1 T
B-1 _ o E -
|t Aa.ﬁ( Ut )’ < P((Jt,,B,;L)(tM_ﬁ+1 + t“—f"fl) + aul’l exp(tu COS(a ))

o
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In particular,

1 1

2 1 T
|Aa(_“ta)| <P(a,1, 'u)(tz_“ + t_“> + aul‘é exp<t,ua cos<;)>.

Proof (i) From Lemma 3.2 we deduce

_ R T = 1
’tﬂ "Agp(nt*) - e exp(uat)’
o 2
= ‘tﬂ‘I/ Qx(r,t)dr + T exp(tuécos(z))
0 aul~e o
1. (T T
X cos[t,u,a sm(—) -—(B- 1)]‘
o o

<P ) 1 1 2 ; 1 T
=Pla, p, papr e +01M1_é expltpecost )

where we apply the same computation as in Lemma 2.5 of [16] to get the estimate of

157 [ Qo (r,8) i,
In particular,

Aa(ﬂt"‘) —éexp(uét)‘ < il + 21 1 exp(tlﬁ COS(%))y

o apl=

which proves part (i).
(ii) According to Lemma 3.2, we obtain

|77 A (12|

o 2
= ‘tﬂ_I/ Qi(r,t)dr + : exp(t;ulx cos<£>>
0 o{lul’a o
1 (T b4
X cosl:tpﬁ sm(—) -—(B —1):”
o o

1 1 2 1 T
= Pla, B, 1) f20—p+1 + =B+l + Otpblié exp| tue cos ; ’

where we applied the same computation as in Lemma 2.5 of [16] to get the estimate of

1t [5° Qu(r,t)drl.
In particular,

’Aa(ﬂta)| < P((X;LM) + 21 - eXp<L‘,bLé Cos<z)>'
o

£ -

The proof of the lemma is finished. O

We further state the continuity, monotonicity, and nonnegativity of Mittag-Leftler func-
tions Ay p, o € (1,2], B> 0.

Lemma 3.4 Let « € (1,2] and B > 0 be arbitrary. Then the functions A,(-), Ay (), and

Aq p(-) are nonnegative and have the following properties:
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(i) Forall u>0 and t,t1,t, €1 such that 0 <ty <1,

() < AuE),  Aup (i) < Aup(in),

1 1
Aa(—t“u) <1, Ay ( t /,L) < F( X Aa,ﬁ(—t“/i) < Tﬂ)

(i) Forall u>0 and ty,t, € I:=1[0,1],

Bu)—> A (fsn) asth— b,

ot
(- [ n) = Aq (—2g‘,u) ast, — ty,

A

Aq

Agp(Bi i) > Aap(tSn) ast— b,

Aap(-t 1) > Awp(-tin) asty— b.

Proof (i) Suppose that A,(w) and Ay g(w) are increasing functions for w > 0. It is easy

to get the first conclusion of (i). On the other hand, from Lemma 2.7 of [13] we know
Ag(—t*u) <land Ay o (—t%1) < 775 AsforAa,g( t* 1), we have

— (—t*p)!
;Falﬂf}
ot a, )\
:Z (=274 Blal+ o, B —a)

ol +a)T(B - )

(- taﬂ)l fl l+a—1 o
alra-11 _ ,Bald
Fal+a)T(B —a) 1-v) Y

EM8

1 @ ( t’aﬂ)l ol a—l fal
fo ZF(al+a)F(,3 o G-y

' (=)o) . foa-1
,/()Zral+a - Ol) A-v) v

- Al 0T [L - pectay

A (00 )
BV R
Bla,p-a) 1

T T(@l(B-a) TP

(ii) In this part, we verify the second conclusion of the lemma. Without loss of generality,
we only prove the third result of (ii). The remaining three results of (ii) can be proved by
a similar method.

By Lemma 3.2(ii), for all ; > 0, we have

1
Agp (1) = —M & 1P exp(uet) / Qu(rt

241-F 1 T b
+ T exp(t/w cos( >>cos[tua s1n( )——(,3—1)].
apl-a o o o
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Define

V(t) = r? = 2rt* ucos(mar) + u2t>®

and
W(t) = exp(tué cos(z)) cosl:tué sin(z) - z(,B - 1):|.
o a o
In fact,
r* = 2rt* pcos(mwa) + p Y — pP e sin® (o) = (r— cos(noa))2 >0,

so that
V(t) = r* = 2rt*pcos(ma) + u2t% > p2e% sin®(na).

Assume that #; > #, > 0 and 4 > 0. According to Lagrange’s mean value theorem, we
obtain

[ A (7 1) = Aayp (B3 1) |
1-8
= |i " exp(tin®) - & " exp(iont))|

T

~ rsin( (1 - B)) — ¢ usin(r(1- B +a))> dr‘ .\

+

1 /OOO 1-8 ( 1)(rsin(n(l—ﬂ))—i‘fusin(n(l—ﬁ+a))

@ exp(-re =% 3
r? = 2rtf peos(ma) + (%

[W(h) - W(k)]

2 = 2rt§ ucos(ma) + £3% 2 aul-a
18
1% -8 1 1-8 1 1 A ~
== [[@=B)n P exp(nue) +n'F pe exp(nue)](t - )|
1 [* 18 1
+ E/O r CXP(—I" )
y [(V(&y) — V(&)rsin(z (1 - B)] + [(V(R)E5 — V(R)E)usin(z (1 - B + )] ar
V(h)V(E)
2 1 A
T [@=B)p™? +2p" P ]l - 1)
apl-w
18
ne iy 1y 1 1y 4
=— |- B)nPexp(nue) +n' P pue exp(nue)| |t - B
1
+ ——
ma sin®(ma) 2o e
1 1 " n "o " A
X / re exp(-re)[r(V(R) - V@) + w(V@)E - V(E)E5) ] dr
0
1 ~ ~
+—— W= B + 20" P ||t - 1)
apul~a

< O(lty - 221)
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1

ma sin®(wa) u iR 82

[o¢]
/ S exp(—ré ) [r(ZaMZO‘"IMZ —2rpop®t cos(ma))
0

+ (& — 4arg® pcos(ra) + 3a&>* )] dr||h - 1|

1

wosin (ro) pt

< O(Ifl - 22|) + o (2M2“2/L2“‘1F(2a —B+1)
1 b

+2ua?pteos(ra) L Ba — B +1) + pa 6% 'M'(Ba — B +1)
+4p* e cos(ma)T (2a — B +1) + 3p°*E ' T - B +1)) &1 — Bo

= 0(|t - &)
as #; tends to #,. where n & p€ (£, 1). The proof of this part is completed. O

4 Existence results

4.1 Existence results for u >0

In this section, we mainly prove the existence and uniqueness of solutions for equation
(2). For convenience of the following presentation, set

k=1- ZﬂiAa,l (—utf) — Z ait] Ag it (—1ty),
i=1 i=1
p=b) atifus(~pntd) + (b +d) Y " aitf M Agaer(—uty) + ¢ Y it Aan (-utf),
i=1 i=1 i=1
_Ipl 2 || Ic] |bu + d|
N=15 (1 F(a+1)> T2 "T@+1) T@+2)

According to (3) and (4), we get a general expression of the solution for CDf (‘DY +
wx(t) =f(¢,x(¢), t e 1:=[0,1], 1 <, B < 2, as follows:

x(t) = %(0)Aq (—112”) + %' (0)tAq 2 (—t%)
+ [%(0)pe + [“DYx(8)],_, |t* Awaer (—1227)

+[¥ (0 + [CDg‘x(t)];o]t”‘*lAa,Mz(—,ut"‘)

+/0 (t = 1) P Agqap (1t = 7)) (1,2(x)) dr. (11)

In (2), since a = x(0) = Y_", a;x(t;), we obtain
m m m
x(0) = Za,uAa (—pctf‘) + Z aibti Ay (—utf‘) + Z a(an + c)tf‘Aaml(—utf‘)
i-1 i=1 i=1

+ Zai(bu“ + d)t?Jrlet,OHZ (_,U«t;x)

i=1

+ Zm/o (- D) P Ay g (—1u(ti = 0)%)f (v, x(1)) dt
i=1

=da.
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Furthermore, we derive:

P a g - D Al - D) (0 a(0) d
- .

(12)

On the other hand, in (2), we have
%'(0) = b, [Dex(8)],, = ¢ [*Dex()],_, = d. (13)

Thus, substituting (12) and (13) into (11), we get the following expression for the solution
of (2):

x(t) =

x| =

m t;
(Act,l (_Mta) + ,U«taAot,otH (_:uta)) (17 + Zui/ (ti - t)a+ﬂ71
i=1 0

X Agarp(—(ti = T))f (7, %(7)) dl')
+ btAg (—1t®) + ct*Ag g (1) + (b + AVt A gn (- pt”)

+/o (t—r)“*ﬁ_lAaMﬁ(—u(t— t)“)f(r,x(t)) dr.

Next, we introduce some conclusions about the existence and uniqueness of the solution
for equation (2). Before that, we make the following assumptions:

(A1) f:1x R— Ris continuous.

(Ay) There exists a positive constant L such that
[f(t,x) —f(t,fc)| <Llx—x| foralltelandxx¢eR.

(As) Set B >«. Suppose that 0 < Low < 1, where
1 1 2 1 b4
w=Pla,a+B,u)| ——+—-)+———|expluecos{—))-1)>0
B-a B} aucos(Z) o

~ mA( (o +1) + )
- [kIT (a + 1)

and
+1, Azmax{lai|,i=1,...,m},

where P(«, o + 8, ) is defined in Lemma 3.3.

Let

B, ={xe CUR): % <7},

where

- N+ Mow
~ 1-Low’

and denote M = max{|f(¢,0)| : t € I}.
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Theorem 4.1 Assuming that conditions (A;)-(As) are satisfied, equation (2) has a unique

solution on I.

Proof Define the operator F : B, — C(I,R) by
1 a f
(Fx)(t) = z(Aot,l (_ll«ta) + I’LtaAa,a-d (_Mta)) (19 + Zﬂi/ (ti - _L,)oz+ﬂ—1
=1 Y0

X Agarp(—p(ti = T))f (7, %(7)) dt)
+ btAg (—1t”) + ct*Ag g (—1t%) + (b + AVt A gn (- pt%)

t
+ / (t- r)“*ﬁ'lAamﬂ (—,u(t - T)“)f(r,x(t)) dr. (14)
0
According to (A;), we know that F is well defined on C(I, R). Next, we divide the proof

into two steps.
Step 1. In this step, we show that F(B,) C B,:

|(Fx)(2)|
<@( . M )+ b N Ic| +Ibpc+d|+F(a+l)+/L
=\ T+ T2 "Ta+) "T@+2) " kl@+1)

3 i ! i~ a+ﬁ71Aaa+ - i~ *
X;"l'/o [ty = ) A (s — )
X [(f(t,x(r)) —f(r,O)) +f(t,0):”d'(
+/0 |(t— I)O‘*ﬂ_lAamﬂ (—u(t— t)"‘)[(f(t,x(t)) —f(‘L',O)) +f(t,0)]|dt

<@<1+ I >+|b|+ el lbp+d M+l +p
~ k| IMNa +1) re) e+l TNa+2) |k|T (cx + 1)

“ fi 1 1
X ;Idil/o [P(a,a+ﬂ,u)<(ti_”a_ﬂ+l + (ti—r)l‘ﬂ>
+ 2 : exp((t,»—r)/ult c0s<z>):|dr +/t<P(a,a+ﬂ,u)
o[,ulfa o 0
1 1 2 1 b4
- ((t—r)&ﬂ” ' (t—r)lﬂ) "t exp(“”)“ ' ‘m(&))) d’}

X (Lllxlloo +M)
Ip| [z || le| lbu+d| T(e+1)+p
. W(“ F(a+1)) T T+ T2 raen =+ M)

" - B 2 1
X ;A[P(a,a + ﬂ,u)(ﬂt’_a + %) + aiy,cos(%) (exp<til” COS(%)) —1>]

L M)|P e
+ (Lll*lloo + )|: (oc,oz+,3,u)<’3_a+g>
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oo (0(5 () 1)

AT
= (m |(k|(ra;i)1+u) +1) Hieloo + M [P(“’“ﬂ’“)(ﬁ%a*%)

oo (0 (7)) )]

AT 1)
<N m ( «+D)+ +1)(Lr + M)w
|k|Foc+1
<N+o(lr+Mw
<r.

Step 2. In this step, we prove that F is a contraction mapping for x,y € B,. Foreach ¢ € I,
by Lemma 3.3(ii) and Lemma 3.4(ii) we get

|(Ex)() - (By)(t)|
o (St [ oot~ o)
x (f(r,%(x)) - f (x,9(1)))] dr)
+ /0t|(t =) P Ay (—1e(t = ) ||f (1, 2(2)) = f (z,3(x)) | de
SL% (z / "l = 0P A (- r)“)|dr) drllx =yl

t
. / (£ = O A (a8 = 1)) | Tl = Yl
0

(AT (@ +1) + 1) L
5L< PICES) ”)[P(“’“ﬁ"”(ﬂ—a+5>

2 1 T 1
* aricos(®) (e"p<’” COS(E» - ﬂ"x‘y I

<Low|x =l

which shows that F is a contraction mapping. By applying contraction mapping principles
and (A3) we obtain the conclusion of the theorem. The proof is completed. d

Next, we will use the Krasnoselskii fixed point theorem to derive the existence result for
equation (2). Before the derivation, we give a new assumption:

(A4) There exist 0 < g <1 and a real function m(-) € L% (I,R,) such that |[f(¢,x)| < m(t) for
all (¢,x) eI x R.

Let B; = {x € C(I,R) : ||x]|co <7}, where
l-¢q

A Ty

ofm| 1.
L4
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Theorem 4.2 Assume that (A,) and (Ay) hold. Then equation (2) has at least one solution
onl.

Proof Define two operators G and H on B; as follows:

(G8)0)= [ (6= 0" P A gp(-le = ) (e,0(0)) dr

(Aa,l(_ﬂta) + //«taAa,aﬂ(_/'Lta))
’ K

X (21: ai/O i(ti - T)a+ﬂ—1Aa,a+ﬂ (_M(ti - T)Dl)f(z',x(‘t)) d‘t),

(Hy)(t) = %(Aa,l (_:uta) + /'LtaAa,aJrl (_/'Lta)) + btAa,Z (_,u/ta) + CtaAa,oHl (_/'Lta)

+ (bt + ) A gn (—1%).

For any x,y € By and ¢ € I, we have

|(Gx)(2) + (Hy)(2)|
<@(1+ 2 )+ D] . Ic| +|bM+d|+F(<¥+1)+M
k| Mo +1) re) I'le+1l) T(ae+2) |kT(a+1)

x Z a /0 (6= O A (—ats = 7)) m(r) |

/\t—r)““‘f g (-1t = 7)) dr

<@(1+ 2 )+ D] . Ic| +|19M+6?!|
~ k| Mo +1) re) e+l TNa+2)

. a+1 +M a+p-1
T@+p) |k|F(a+1 Z'z'/ |t = O P m(7)| dr

1 a+B-1
7F(a+,3)/0 ’(t—r) m(r)‘dt

<@( [z )+|b|+ lel _, lbp+d]
k] Mo +1) re) e+l T(e+2)

1 (F((X + 1) + l/L) wife 1 % 1-q
1-‘(‘3["',3) |k|T (o +1) Z' ll(/ | -1) |dr)
(/ |(m(r)) qdr)

1 - ,
F(a+ﬂ)</o}(( 0 1)“’|dr) (/ |(m()) |qdf>

1 (T +1) + ) Al -gq) 1-¢
§N+F(a+l3)|: KT (e +1) §a+ﬂ—q+a+‘3—qi|”m”1~

1-¢g mA(T (a +1) + 1) 1
+F(oz+,8)(oz+ﬂ—q)|: [k|IT (o + 1) * ]”m”L;

Q=
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+ 1-4
F'a+p)a+p—q)

olmll 1
La

Rl

The inequality obtained shows that (G + H)(B5) C B;.
It is easy to prove that H is a contraction mapping with zero Lipschitz constant. On the
other hand, by the continuity of f we know the operator G is continuous. At the same time,

we have

4 ollm| ) <7.

1
155 = T par -0 7"

So the operator G is uniformly bounded on B;. Next, we prove that G is a compact
operator.

Define fimax = sup{|f(¢,%)| : t € I,x € B;}. For any t;,%, € I such that < f£;, by using
Lemma 3.4(ii) we get

|(Gx)(82) - (Gx) (1)

- / (b = 1P A (=il = 1) (2,5(0))
0

- / (6= D" g (-t - ) (1 (D) e
0

7 Mtl ) Aa,l (_Mtg)] + [Mtian,aH (_Mtix) - MtgAa,aH (_Mtg)]

k
( i i = )P Ay s (—(t; = 0%)f (7, %(0)) dt)
i=1
< '/ (ta =0 Avasp (—M(tz 1)) = (b - P Agaip (—M(fl -1)%)
0
xf(r,x(r)) dr + / 2(t2 - t)“*ﬁ_lAa,Mﬂ (—po(tz - r)"‘)f(r,x(r))dr
1
+ m | (Aa,l (_//Ltix) - Aa,l (_Mtg)) + (Mt?Aa,a-*—l (_Mtix) - MtgAa,aH (_Mtg)) |
Zalf D) P Ay g (—1(ti = 0)°)f (v, x(1)) dt
< ‘ [ (=0 = = 0 Al - ) (o)
0

. /0 (= o) (Awasrp(—1t(ts = T)%) = Agrp (-1t — 7)%))f (7,2(x)) dT

+ [ = 0 (a0 (2 ()

1
+ m | (Aa,l (_/'Ltix) - Aa,l (_Mtg)) + (Mt?Aa,a-*—l (_Mtft) - MtgAa,aH (_Mtg)) |

) P Ay g (—1(ti = 0)%)f (v, %(1)) dt

ﬂz
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fmax 2 _ a+f-1
+ 4”0[ ) /;1 (ty — 1) dr

+ fonax /0 = 0 (A (4l = ) = A (e = 7)) [ e

fmax
|kIT (e + B)

+ |(Aan(-utf) = Aan(-185))

+ (1t Agan (1)) = 185 Aot (-1185))|

m ti
Z&Zl’/ (t; - ‘L')Olﬂg_1 dr
i=1 0

= Jﬁ(m )P (57 -4 + fTﬂ )

Amfmax M , i}
"o+ PIKIT G+ ) <‘1 06 -4l + 5 (4 —rl)),

which tends to zero as ¢, tends to £;.

This result shows that G is equicontinuous, and thus G is relatively compact. Therefore,
G is compact. Consequently, we get that G + H is a condensing map on B;. By using the
Krasnoselskii fixed point theorem, problem (2) has at least one solution. The proof of this

part is complete. g

Next, we will apply the Krasnoselskii-Zabreiko fixed point theorem to derive an exis-

tence result. We introduce two new assumptions:

(As) The function f(¢,0) # 0 for some ¢ € I, and

f(t’x) _

¥lloo—>00 X

o).

(Ag) Guup = S, 9 (¢)] < L),

Theorem 4.3 Assume that (A1), (As), and (Ag) are satisfied. Then equation (2) has at least

one solution on I.

Proof Let By = {x € C(I,R) : ||x|lcc <7}, where 7 > N + o fpaw. We set f(£,x(£)) = ¢p(£)x(t);
thus, problem (2) can be regarded as a linear problem. Define the bounded linear operator
L:B; — B; by

(Lx)(t) = btAa,Z (_,u/ta) + CtaAa,oHl (_,uta) + (bﬂ + d)ta+1Aa,a+2 (_:u/ta)

m ti
(Aot,l (_//Lta) + NtaAa,oﬁl (_/'Lta)) (P + Z aif (ti - r)a-f—ﬁ—l
i=1 0

x| =

+

X Agarp(—(ti — 7)) p(T)x(T) dr)

[ (= e (ale - )00 dr.
0
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Now, we claim that

b bu+d 1
sup|Lx(t| |I9|<1+ M >+ || N ] +|p,+ |+

tel |k| IN'a +1) re) 'le+1l) TNa+2) T(a+p)
mA( (o +1) + ) ! atp-1
Xd’sup(m +1>/0 (1-17) dr[|x|l o
¢supa
=N+ m”x”w
< N+ ||%]|oo- (15)

If not, we can derive that

0 Psup
N+ gt 1#lloo

lim
%]l oo =00 ”x”oo

¢supa =

which contradicts with (Ag). Consequently, we deduce that 1 is not an eigenvalue of the
operator L due to (15).
It is obvious that F is well defined due to (A;). Next we will show that %

as ||x]lco — 00, where F is defined in equation (14). For x € B;, we have

vanishes

|(Fx)(2) - (L2)(2)|

1

L
= m [Aa,l (_Mto’) + I'LtaAa,a+1(—,lLta)] a; t— T)a+ﬁ71Aa,a+,3 (—/,L(ti _ T)a)
0

x (f(t,%(1)) = ¢()x(r)) dt

. /0 (= D P A g (-t = %) (f (£ 5(0)) = p(0)x(x)) e

(Mo +1) + 1) wrpo1 o o)
= |: kIT(@+1) Z| l|/ -1) Aa,cx+ﬂ(_/'L(tt -1) ) x(7) ¢(T)‘ dr
‘ wrfie o [ (T, %(7))
+ /0 O S WY (T () )f’x% —¢(r>‘dr} e
Thus, we get
| Fx — Lx oo
Il 00
oz+1)+,u) oyl ‘ o |f(T,x(1)) B
= |k|F 0l+]. Z' zlf Aaa+ﬁ(_ﬂ(tl_t) ) x(T) ¢(T)‘dt
/(t ) P Ay (1t - T)"’)W—tb(f) dr,
which implies that
|Fx— Ll
Iwloo—oo %l

due to (As).
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The proof is completed. O

4.2 Existence results for £ <0
In this section, we give three existence results for problem (2) with p < 0 similarly as in
Section 3. Here, we need a new assumption:

(A7) Let0<LSpo <1and B >, where

-~ (=) ¢ ———(exp( (-0t cos( Z) ) -1
0= Plenere <ﬁ—a+E)+a(—u)008(§)<e)(p(_“ COS<5)>_)

1 1
+ —(—u)_g (e(_")" -1)>0,
o
Am(Aa,l(_M) + |/L|Aa,rx+1(_,u))
§= +1.

Ik

For convenience of the following presentation, let

N = |b|Aga(~11) + |clAg e (=) + 1d + bl Ag g ia(—12) +

% ‘ (Aa,l(_ﬂ) + |M |A0l,Dl+1 (_M))

Theorem 4.4 Assume that (A1), (Ay), and (A7) hold. Then equation (2) has a unique so-
lution on I.

Proof Now we define B, = {x € C(I,R) : ||x||oc < r’}, where

N + MS$
p> e (16)
1-Léo

Like in Theorem 4.1, we consider F : B, — C(,R) again. Then, we go on to prove that
F(B,) C By for u < 0. For all x € B/, applying (A,) via Lemma 3.3(i) and Lemma 3.4(i), we
have

(Aa,l (_:u/) + |M|A0t,ol+l(_l’l'))

xZ[)iP(a,a+ﬂ,—u)< 1 1 )

+
P (=) Pt (G -1) P

+ #1 exp((t,' - r)(—u)é cos(£>) ‘
a(-p)-a o

e expl( - )| de Lt + )
t 1 1
+/(; P(a,a+ﬁ,—ﬂ)((t_7:)a_ﬂ+l + (t—t)l‘f’)

+ #1 exp((t - 7:)(—;L)é cos(z>> ‘
a(-p)e @

+ é(—u)# exp((—p)e (¢ - T))’dT(L”x”oo +M)
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IA

N+ (Am(Aa,l(_/'L) + |M|Aa,a+1(_ﬂ))

T +1> (Lr' + M)o

<N +3(Lr + M)o

IA

r,

which implies that F(B,») C By. For x,y € B and ¢ € I, according to Lemma 3.3(i) and

Lemma 3.4(i), we obtain

|(Ex)() - (By)(t)]|

5 L(AWI(AQ,I(_M) ’||'k||//L|Aa,a+1(_/’L)) + 1) |:P(Ol,(¥ + ﬁ; _M)<ﬁ i - + %)
+ #Gx ((—M)é cos(z)) - 1) + l(— )’g (e(”‘)é —1):| flx =yl
a(—p)cos(%) P o o ’ Voo

< L(Am(Aa’l(_M) '|"k||lfv|Aoz,a+l(_M))

+1)Q||x—y||oo

< Léollx = ylloos
which shows that
|1Fx = Fylloo < Léol1% = ¥l co-

By (A7) and the contraction mapping principle we complete the proof of this theorem.
O

Next, we are ready to give another existence result.

Theorem 4.5 Assume that (A,) and (A4) are satisfied. Then equation (2) has at least one

solution on I.
Proof Let By = {x € C(I,R) : ||x||cc <7}, where

;/ Z N + (1 - q)Aoz,oz+ﬁ (—,LL) 3
a+pf-q
We consider the operators G and H in Theorem 4.2 again. Applying the same method as
in Step 1 of Theorem 4.2, we deduce that (G + H)(By) C By for some positive number 7.
At the same time, we get that H is a contraction mapping due to (A4).
To prove the compactness of the operator G, we only need to verify that operator G is

equicontinuous. For any £, £, € I such that ¢; < £, we have

|(Gx)(82) - (Gx) (1)

maan,a+ (_M) a+ a+ a+ max
5%[2@2 —t) P+ (5 - 607)] + O{Tﬁo(m ~4)

A maanoz+ -
MfmaxAuss 1) (101t = 1]) + 1l A () (& - £)),

Ikl (e + B)
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which tends to zero as £, — £, where we used Lemmas 3.3(i) and 3.4(i). So the operator
G is equicontinuous.
The remaining proof is the same as that of Theorem 4.2. O

Now we give the last assumption:

(Ag) Gsup = sup,; [9(E)] < "‘}%’f, where ¢ is defined in (As).

Theorem 4.6 Assumethat (A1), (As), and (Ag) are satisfied. Then equation (2) has at least
one solution on I.

Proof Choose r > N+ 8fmax0- Then, similarly as in Theorem 4.3, we get the existence
result for equation (2). |

5 Examples
In this section, we give two examples to illustrate our main results.

Example 5.1 Let« = %, B = %, u=l,m=1,a,=4,x(t)= % We consider

3 4 .
DD} +1)x(t) = St 20 pe1:=[0,1,x€R 1<, B <2,

(£+4)2 1+x(2)’ (17)
%(0) = arx(t1) =2, x'(0) = b, [“Dfx(t)]i=0 = ¢, [Dx(t)];o = d,
where b, ¢, d are some constants.
Case 1. Define f(¢,x(¢)) = ;i‘it A ()) t € [0,1]. For x,y € [0,00), we have
sint x—y 1
t,x(£)) —fLy(E))| < < —l.
F(620) =1 (0)| = | Trniry| 16"
Thus, we take L = 1 . Then, |k| =2.9999 and P(é 1) 0.3802. Further, w = P(% %
3
4 1 1 3(3005 (1"(3 +1)+1)
PG+ 3)+—2m(3ﬂ j =3.9689, 0 = “L S +1=3.4533.

Now La)a 2— = % 3.9689 x 3.4533 = 0.8566 < 1. Then (A;)-(As3) hold. By Theorem 4.1,
equation (17) has a unique solution.

Case 2. Let m(t) = ;”A‘fz and 0 < g < 1. It is obvious that |[f(¢,x(¢))| < m(t) € Lq (I,R).
Thus, (A;) and (A4) are satisfied. By Theorem 4.2, equation (17) has at least one solution.

Example 5.2 Leto = g, B = %, nw=-1m=1,a;=4,x(t) = % We consider

<p} (CDs—l)x()—Z'tle)')z, tel:=[0,1,xeR1<a,B<2, 18)
%(0) =ax(t) =2,  %'(0)=b, [“Dfx(8)]t=0 = ¢, [Dfx(8)];-o = d,

where b, ¢, d are some constants.

Case 1. Define f(t, x(t)) (2t+(10)2’ t€[0,1]. Forx,y € R, obv10usly, If (&, x(t)) = f (&, y()| <
mlx —y|.So take L = 100 Then, we obtain |k| 2.9998 and P(— 2 %, 1) = 1.0117.

" 4(Ag 1(1)+Ag,g+1(1))
Further, o = P(— —+ 1)(4 5+4) W 5(e 1) = 3.5587,8 = —2 |k|55 +
6

1=5.8830. Now L§p = 100 x 5. 8830 x 3.5587 = 0.2094 < 1. Then (A;)-(A3) hold. By The-
orem 4.4, equation (18) has a unique solution.
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Case 2. Define f(t,x(t)) = 20 for ¢ € I. Then, (A,) is satisfied, and 1im ), o 242 =

(2t+10)2 P
6,4
m = ¢(t). Set ¢gup = ﬁ. Further, we have § = 5.8830, 50 ¢)p = 0.01 < W =
0.4227.

Now (As) and (Ag) hold. By Theorem 4.6, equation (18) has a unique solution.
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