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Abstract

In this paper, we investigate residual-based a posteriori error estimates for the hp finite
element approximation of semilinear Neumann boundary elliptic optimal control
problems. By using the hp finite element approximation for both the state and the
co-state and the hp discontinuous Galerkin finite element approximation for the
control, we derive a posteriori error bounds in L2-H' norms for the Neumann
boundary optimal control problems governed by semilinear elliptic equations. We
also give L%-L? a posteriori error estimates for the optimal control problems. Such
estimates, which are apparently not available in the literature, can be used to
construct reliable adaptive finite element approximations for the semilinear
Neumann boundary optimal control problems.
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1 Introduction

In this paper, we study residual-based a posteriori error estimates for the /ip finite element
approximation of semilinear Neumann boundary optimal control problems. We consider
the following semilinear elliptic optimal control problems:

Jmin {g() +j@)}, (L1)
—div(AVy) + ¢(y) =f, inQ, (1.2)
(AVy) - nlaq = u + 2o, (1.3)

where the bounded open set  C R? is a convex polygon with the boundary 92, K = {u €
U=L1*0Q): [,qudx >0}, f € L*(Q), zy € L*(9Q), n is the outward normal on 9. For
1 < p < 00 and m any nonnegative integer let W"?(Q2) = {v € LP(Q2); D*v € L*(Q) if || <
m} denote the Sobolev spaces endowed with the norm ||v||fn,p =y ||D“v||‘ZP(Q), and the

lee| <m
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semi-norm |v|h,, = > ||D"‘V||IZP(Q). We set Wy *(Q) = {ve W"™P(Q):v|3q = 0}. For p =
|oe|=m

2, we denote H"(Q) = W™(Q), Hy'(22) = Wg*(Q2), and [| - [l = Il * 2o 1+ 1| = I - lloz-

2x2

Furthermore, we assume that the coefficient matrix A(x) = (a;j(%))2x2 € (W' (Q))*** is a
symmetric positive definite matrix and there is a constant ¢ > 0 satisfying for any vector
X € R?, X*AX > ¢[X|12,. The function ¢(-) € W"*(-R, R) for any R > 0, ¢'(y) € L*(R2) for
any y € H'(R2), and ¢’ > 0. Let g and j be strictly convex functions which are continuously
differentiable on the space L2(3<2), and K be a closed convex set in the control space LI. We
further assume that j(x#) — +00 as |lu||y — oo and g’(-) is a locally Lipschitz continuous
function.

Optimal control problems have attracted substantial interest in recent years due to their
applications in aero-hydrodynamics, atmospheric, hydraulic pollution problems, combus-
tion, exploration and extraction of oil and gas resources, and engineering. They must be
solved successfully with efficient numerical methods. Among these numerical methods,
finite element methods are a successful choice for solving the optimal control problems.
There have been extensive studies of the convergence of the finite element approxima-
tion for optimal control problems. Let us mention two early papers devoted to linear
optimal control problems by Falk [1] and Geveci [2]. A systematic introduction of the
finite element method for optimal control problems can be found in [3-12], but there
are very less published results for optimal control problems by using /p finite element
methods. Recently, the adaptive finite element methods have been investigated exten-
sively and became one of the most popular methods in scientific computation. In [13],
the authors studied a posteriori error estimates for adaptive finite element discretizations
of boundary control problems. A posteriori error estimates and adaptive finite element
approximations for parameter estimation problems have been obtained in [14, 15]. There
are three main versions in adaptive finite element approximation, i.e., the p-version, the
h-version, and the sip-version. The p-version of finite element methods uses a fixed mesh
and improves the approximation of the solution by increasing degrees of piecewise poly-
nomials. The /-version is based on mesh refinement and piecewise polynomials of low
and fixed degrees. In the /sp-version adaptation, one has the option to split an element
(h-refinement) or to increase its approximation order (p-refinement). Generally, a local
p-refinement is the more efficient method on regions where the solution is smooth, while
alocal i-refinement is the strategy suitable on elements where the solution is not smooth.
There have been many theoretical studies as regards the /p finite element method in
[16,17]. An adaptive finite element approximation ensures a higher density of nodes in
a certain area of the given domain, where the solution is more difficult to approximate,
indicated by a posteriori error estimators. Hence it is an important approach to boost the
accuracy and efficiency of finite element discretizations.

Actually, there are many /-versions of adaptive finite element methods for optimal con-
trol problems in [18—20]. But for a high order element such as a /p-version of the finite
element method for optimal control problems they are very few. More recently, in [21], for
the constrained optimal control problem governed by linear elliptic equations, the authors
have derived a posteriori error estimates for the /p finite element solutions. Inspired by
the work of [21], we consider a posteriori error estimates in L2-H' norms and L?-L? norms
for hp finite element solutions of general semilinear Neumann boundary optimal control
problems. To the best of our knowledge for optimal control problems, these a posteriori
error estimates for the general semilinear boundary optimal control problems are new.
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The paper is organized as follows. In Section 2, we discuss the /p finite element approxi-
mation for the semilinear Neumann boundary optimal control problems. In Section 3, we
derive both L2-H' a posteriori upper error bounds for the error estimates of the control,
the state, and the co-state. Then we also obtain sharper a posteriori error estimates for the
control approximation and error estimates in the L? norm for the state and co-state on the
boundary. Finally, we give a conclusion and some possible future work in Section 4.

2 Finite element methods of boundary optimal control

In this section, we study the /p finite element approximation of semilinear convex optimal
control problems where the control appears in the Neumann boundary conditions. To
consider the /p finite element approximation of the semilinear boundary optimal control
problems, we have to give a weak formula for the state equation. Let the state space be
V = HYQ) and H = L*(Q). Let

a(y,w) = / (AVy)-Vwdx, Vy,weV,
Q

(hofs) = /Q ffsdx, V(fif) € H x H,

(u,v)u :/ uvdx, VY(u,v)el x U.
a0

It follows from the assumptions on A that there are constants ¢ and C > 0 such that
a(v,v) = clvlly, |la(v,w)| < Cllvliviwlly, VYv,weV. 2.1)

Then the standard weak formula for the state equation reads as follows: find y(x) € V such
that

a(y(w),w) + (¢ (y(w)), w) = (f,w) + (u + z0, W)y, YweV. (2.2)

Therefore, the above semilinear Neumann boundary optimal control problems can be re-
stated as follows:

Jmin {g0) +j@)}, (2:3)
a(y,w) + (o), w) = (L, w) + (u + zo, W)y, VYweV. (2.4)

It is well known (see [20]) that the boundary optimal control problems (2.3)-(2.4) has a
solution (y, ) and that if a pair (y, u) is the solution of (2.3)-(2.4), then there is a co-state
p € V such that the triplet (y, p, ) satisfies the following optimality conditions:

a(y, w) + (d)(y), w) =(f,w)+(u+z0,wy, Ywev, (2.5)
alg,p) + (¢’ O)p.q) = (0)q), VgeV, (2.6)
(') +pv-u), =0, VYveKcU. (2.7)

Now, we consider the /p finite element approximation for the boundary optimal con-
trol problem. We consider the triangulation 7~ of the set  C R? which is a collection of
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elements 7 € T (7 is a triangle); associated with each element 7 is an affine element map
F, : T — 7, where the reference element is the reference triangle T = {(x,y) € R?: 0 <x <
1,0 <y <min(x,1 — x)}. We consider the triangulation 7 which satisfies the standard con-
ditions defined in [22]. We write /1, = diam 7. Assume that the triangulation 7 is y -shape
regular, i.e.,

-1 7\—1
| F, ||L°°(f) +he| (F7) ”Lw(f) =v (2.8)
This implies (see [22]) that there exists a constant C > 0 that depends solely on y such that
Clh, <hy <Ch,, 1,7 €T withtnt #0, (2.9)

and there exists a constant M € N that depends solely on y such that no more than M
elements share a common vertex. We further assume the triangulation 7 satisfies the re-
lation between the patch and the reference patch. Let 7;; be a partition of <2 into disjoint

regular 1-simplices s, so that 92 = | J 5. Associated with everysisanaffinemap F; : 5§ — s,
seTy
where § = [-1,1]. Assume that s and §’ have either only one common vertex or are disjoint

ifsand s’ € Ty;.

For each element t € T, we denote £(t) the set of edges of t and by A/(r) the set of
vertices of 7, and choose a polynomial degree p, € N and collect these numbers in the
polynomial degree vector p; = (p;);<7. Similarly, for each s € 7;;, we choose a polynomial
degree vector py = (ps)se7;, (s € N). N(T) denotes the set of all vertices of T, E(T) de-
notes the set of all edges. Additionally, we introduce the following notation (V € N (T),

ec E(T):
N@={VeN(T):Vee, wy=[xeQ:xetand7n{V}+0}’,

W, = U wy, wh = U wy, pe=max{p; :e€ E(v)},
VeN(e) VeN(r)

where x° denotes the interior of the set x. We denote by 4, (k) the length of the edge
e (s). Additionally, c or C denotes a general positive constant independent of /., p;, 4., pe,
hg, and p;.

Next, we define the #p-FEM space SP (7)) C H'(R2) and the hp-DGFEM space UP?(T;) C
L2(0Q) by

SPUT) ={veC(Q):v|; o F; € P, (7))},
UP(Ty) = {v e L*(3Q) : v|; o Fs € Py (9)},

where P, () := span{x'y’ : 0 < i+j < p.}, Py, (5) := span{x’ : 0 < i < p;}. We assume that the
polynomial degree vector p; satisfies

Y pe <po <yp.,, tT,7€eTwithtni #0. (2.10)

Let Ky, = K N UP2(Ty) and V), = SPI(T), then for the finite element approximation of
(2.3)-(2.4):

min {g(yi,) + ()}, (2.11)

Upp €Ky
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aWips Wip) + (BOmp)s w) = (f, W) + (Ui + 20, Wip)u,  YWip € Vi, (2.12)

It is well known that the boundary optimal control problem (2.11)-(2.12) has a solution
(Yhp» unp) and that if a pair (yup, upy) € Vi x Ky is the solution of (2.11)-(2.12), then there
is a co-state py, € Vj, such that the triplet (yy,, py, usy) satisfies the following optimality

conditions:
aWips Whp) + (SOnp)s Wip) = (F Wip) + (s + 20, Wip)us  YWip € Vigp C V, (2.13)
a(thrphp) + (¢/()/hp)Php; th) = (g,(yhp): th); thp € Vhp cV, (214')
(j/(uhp) + Phps Vip — uhp)u >0, Vv, eKy CU. (2.15)

The following lemmas are important in deriving hp a posteriori error estimates of residual
type.

Lemma 2.1 There exist a constant C > 0 independent of v, hs, and ps and a mapping JT;’SS :
H(s) — P, (s) such that Vv € H'(s), s € Ty the following inequality is valid:

h
[v=mpv] 12 < C— Winge
Ps

where P, (s) := span{x'y : 0 < i +j < p}.
Proof 1t follows easily from Proposition A.2 in [22] and the scaling argument. g

Lemma 2.2 [22] Let p; be an arbitrary polynomial degree distribution satisfies (2.10).
Then there exists a linear operator E; : H'(Q2) — SP\(T), and there exists a constant C > 0
depending solely on y such that for every v e HY(Q) and all elements © € T and all edges

e &(T),
by hy
Iv=Ewvlpze + —| V(- Ew) HLz(T) < C—IVVli2041) (2.16)
P Pr
ho\?2
lv—Evlzeg <C . IVVIlL2601)- (2.17)
e

Lemma 2.3 Let p; be an arbitrary polynomial degree distribution satisfying (2.10) and
pr > 2, V1 € T. Then there exists a bounded linear operator E, : H*(Q2) — SP'(T), and
there exists a constant C > 0 that depends solely on y such that for every v € H*(Q2) and all
elements v € T and all edges e € E(T),

h, he\?
lv—Exvli 2 + P V(v - Epv) HLZ(Z) < c(p-) V2t (2.18)

3

h 2
Iv=Eavllizg sc<p—3> Y120ty (2.19)

e

For ¢ € W), we shall write

d(p) - d(p) == (9)(p — ) = =¢'(p) (0 — 9) + §" (@) (0 — ¥)*, (2.20)
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where
_ 1
¢'(p) = / ¢ (¢ +s(p — @) ds,
0
~ 1
¥ = [ (4-99"(p +5(0 - ) ds
0
are bounded functions in  [23].
3 Residual-based a posteriori error estimators
In this section, we discuss residual-based a posteriori error estimates for the semilinear
Neumann boundary optimal control problems. First of all, we use the L? norm for esti-

mating the control approximation error on the boundary, and the H' norm for the state
and co-state approximation error on the domain. For simplicity of presentation, let

Jw) =g(yw) +jw),  Tnp(unp) = g(¥(unp)) + j(tany).

Then the optimal control problems of (2.3) and (2.11) read

min {Jw)} (3.1)
and
min {Jy,, () }. (3.2)
upp €Ky

It can be shown that

T @,v), =@ +p,v),
i @ip)sv) = (' i) + Dipy v) o

(]/(uhp)r V)U = (j/(uhp) +l7(uhp)¢ V)U’

where p(u;,) is the solution of the auxiliary equations:

a(y(unp), w) + (@ (i), w) = (f, w) + (upp + 20, W)y, Ywe'V, (3.3)

ﬂ(q’p(uhp)) + (W()’(Wp))ﬁ(”hp): Q) = (g/(y(uhp))i 61): Vq ev. (34')

In order to estimate the control u, we introduce the L?(92)-projection of u into UP2(Ty;),
i.e., let Py,u € UP2(T;) be the function defined by

(M - Phpu, Whp)u =0, thp e UrP? (721) (3.5)

Theorem 3.1 Let (y, u) and (yp,, un,) be the solutions of (2.3)-(2.4) and (2.11)-(2.12). Let p
and pyy, be the solutions of the co-state equations (2.6) and (2.14), respectively. Assume that

V'@ =T W,u=v), zclu=vig , Yuvel. (3.6)
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Moreover, we assume j' (tpp) + pip € HY(2). Then we have

2
”M - uhp”%Z(aQ) = Cr/lz + C”php _p(uhp) HLZ(BQ)’ (37)

where

h2
n% = Zp_; |j/(uhp) +php‘i11(s)1

and p(uy,y) is the solution of the system (3.3)-(3.4).

Proof 1t follows from (2.7), (2.15), and (3.6) that

cllu = unpl 70,
= O R e AR
< (' (unp), e = )
< =" )y vt = ) + (' Unp) + Prps Vip = i)
= (i), wnp — 1) + Uy tip) =T (i), e = ),
+ (' Wnp) + Drps Vip = i),
= (7' (unp) + pupy tnp — 1)y + (Pip — P(tnp), = ),
+ (7' Wnp) + Prps Vip = i),
= (7' np) + Prps vip — 1) + (Prp — Plunp), 1 = upp)
< (' @np) + Py vip = 1)y + C|| prp = ) ||iz<am
(3.8)

¢ 2
+ Z ||L£ - uhp”LZ(BQ)'

Setting wy, = 1in (3.5), we have [, Pyu = [, u > 0. Thus, we have Pj,u € Kj,. Let vy, =
Pypu € K. It follows from (3.5) and Lemma 2.1 that

(j/(uhp) + Phps Vip — M)U
= (j/(uhp) + Php> Phpu - ”)u

= (7 ) + prp — 72 (7 (i) + Pip) Prps — ),
S
hs .,
< Czp— ' @trp) + i | g1 | Pript = w25
s s
< CZ ’] Mhp +php|H1(s ||Phpu - u||i2(am

hs " 2 C
<Cy’ » ' W) + P + 5 11 = i 2 oy (3.9)
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By using (3.8) and (3.9), we have
llot = w1325 < CZ }; (i) + il ) + Clpip = P1ti) | 25 (310)

Then (3.7) follows from (3.10). O

In the following theorem we estimate || py, — p(us,) IIf{1 @ and then obtain the desired /p
a posteriori error estimates.

Theorem 3.2 Let (y, p, u) and (yyp, Py, ny) be the solutions of (2.5)-(2.7) and (2.13)-(2.15),
respectively. Assume that all the conditions in Theorem 3.1 hold. Then we have

7

= w325y + 197 = Yol gy + 12 = Pl < € D (3.11)
i=1

where n? is defined in Theorem 3.1 and
2 h , 2
Ny = Z I; (div(AVpy,) — ¢ ()’hp)Php) ,

’73 = Z/ Avphp n-— g(yhp))

eCo

7= Z/ [(AVps, - )7,

eNIQ=y

h2
= Z/p—;(f +div(AVyy,) - ¢(3’hp))2’

g Zf Avyhp n-— Mhp—Zo),

eCoQ2

7— Z / (Avyhp }’l)]

eNaQ=y

Proof Let e, = py, — p(uy,) and E; be the linear operator defined in Lemma 2.2, we have

clleplif ) =< alep ep) + (&' (¥unp))ep €p)
= aley — Erep,€y) + a(Erey, ey) + (8" Onp)pnp — &' (¥ (i) )0 (), €)
= (&' Omp) = &' () ) 2pr €)
aley — Erep, ep) + (&' ()P = &' (y(tp) ) putny), € ~ Erey)
+ a(Erey, €p) + (&' Onp)Pip — &' (v(unp) ) p(thip), Eneyp)
= (' Omp) = &' (¥(2anp)) ) Pipr )

Z/AV(I% —p(up)) - Vie, — Erey)

+ (¢/(yhp)php - ¢/(y(uhp))p(uhp)’ €p — Elep)
+ (g/(yhp) _g/ (y(uhp))¢Elep) - ((¢/()/hp) - ¢/(y(uhp)))php¢ ep)~ (3.12)
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It follows from (2.1), (2.14), (2.16)-(2.17), and (3.12) that
C”ep”i[l(m = Z /(_ diV(AVPhp) + ¢,(yhp)php)(ep _Elep) - (g/(y(uhp)); €p —Elep)

+ Z /8‘[ (AVpyy) - nle, — Erep)
+ (g/(yhp) _g/(y(”hp))’Elep) - ((¢/(yhp) - ¢/(y(”hp)))php’ep)
= Z /(_ diV(AVphp) + ¢,(th)Php)(€p _Elep) + (g/(yhp) _g,(y(uhp)): ep)

+ 3 [ A e Ei) = ((601) = () i)

+ Z [(AVphp . n)](ep —Eiep)
ena=n"* €

+ Z (AVphp n _g/(yhp))(ep —Eiey)

ecoQ ¢

h? . )
<O [ (@vAYP) - ¢ )+ €

> 2 [[avpy,

eNoR=y

he ,
+C Z o /(AVphp ‘n-g (yhp))2

ecaQ €
+ C”‘fj/(yhp) - ¢/(y(”‘hp)) Hi%asz)

+ Clg Gnp) =& () 120y + gnepnf,lm). (3.13)

Therefore, noting that g’ is locally Lipschitz continuous, we have
4
2 2
||php _p(uhp) ||H1(Q) <C Z r’l2 + C”yhp _y(uhp) ||L2(BQ)' (3'14)
i=2
Similarly, it can be proved that
7
2
”yhp = y(np) HHl(Q) =C Z ’7i2~ (3.15)
i=5
It follows from (3.14), (3.15), and the trace theorem that
4

”Php _P(”hp)”irl(sz) = CZ n; + C”yhp _J’(“hp)”iz(asz)
i=2

4
< CZ i+ Cllym —J’(Mhp)”f{l(sz)

i=2

<CY . (3.16)
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Note that
Ip =Pyl < |2 = P@ip) || 11 gy + 200 = PC1p) | 11y (3.17)
Ily _yhp”Hl(Q) = ”y _y(uhp) ”Hl(Q) + ”yhp _y(”hp)”Hl(Q): (3.18)
and
ly = 7)1y < Clltt = iyl 20, (3.19)
||p _p(uhp) ”Hl(ﬂ) S C”)’ _y(uhp) ”Hl(Q) S C”u - uhp “LZ(BQ)' (320)

Combining (3.7), (3.14)-(3.16), and (3.17)-(3.20), we derive

”M - ”hp||]%2(39) + ”y_yhp”i[l(g) + ||l9 _php”ill(g)
<llu- uhp”]z}(ag) + Hy_y(uhp)”i[l(g)
+ ”yhp = ¥(tnp) ”i[l(sz) + ”P _p(“hp)”iﬂ(sz) + ”Php —P(uhp)”irl(sz)

= ”M - uhp”iZ(gQ) + ||y_y(uhp)||i11(9) + ||p _p(”hp)”]zp(g)

7
<CY k. (3.21)
i=1

Then we have proved (3.11). O

Next, we shall derive sharper a posteriori error estimates for the control approximation
and error estimates in the L? norm for the state and co-state on the boundary. We intro-
duce asubset of Q: Qu={r €T :TN Q; # 0}, where Q7 = {x € Q: dist(x,9dLQ2) < d} and
d is a constant independent of /., p;, k., and p.. Then we have the following improved
residual-based a posteriori error estimates.

Theorem 3.3 Let (y, p, u) and (Y, Py, tny) be the solutions of (2.5)-(2.7) and (2.13)-(2.15),
respectively. Assume that j' () + ppy € H(Q2) and (J'(u) = J' (v),u — v)u > cllu - VH%Z(QU)’
Yu,v € U. Moreover, p, > 2,Vt € T and g'(-) is locally Lipschitz continuous. Then

13

e = w2250y + 19 = Yo 1206 + 12 = o725y < C Y K7 (3.22)
i=1

where

h2
K12 = Z p_sz |j/(uhp) +php|i11(s)’

s S

h2
K3 = Z f p—;(div(Avphp)_¢/(yhp)php)2,

ey VT

G= ) / Z—:[(Amp ],

eNdQ=pecQy ¥ €
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;= Z f (AVDiy -1 —g Omp))’,
4
/ —(div(AVps,) - ¢ ()’hp)php) ,
[AVpy, -m)],
XQ: @/ 1z v
/ Avphp n-— g(yhp))

and

=y f = (f + div(AVy) - d0mp))

TCQy

K92: Z / 2. Avyhp ”1)]

eNdQ=pecy ¥ €

/{120 Z/ (AVyp, - n— uhp—zo)
e (3

eCo2

) oo 2
2 :Z / S5+ divAVI) =4 0)"

Kk = Z / [(AVyyp - n)]

eNa2=y

K123 Z e(Avyhp n-— uhp_ZO)

eCoQ e P

Proof For the proof of this theorem, we estimate (3.22) in the following five parts, respec-
tively.

Part 1. First, we estimate [|py, — p(uip)ll 255 - Let e, = prp — plupy) and ey, = yi, — y(uip),
then there is some & € C*°(2}) satisfying £ = 0 on 9Q2;\9<2 and & =1 on 0%2. It follows
from the trace theorem that

”ep”%Z(aQ) = ”gep”iZQQ) =< C”Eep”?{l(g) (323)
By using the assumption of A, we have
/ AV(Ee,)V(Eey) = / AVe,V (%)) + / (e,)*AVEVE. (3.24)
Q Q Q

Let v =¢& 2ep, and let E; be the linear operator defined in Lemma 2.2. It follows from (2.1),
(2.14), (3.4), and (3.24) that

clEeplZe < alEente,) = a(,e,) + fg (e, 2AVEVE

= a(v" —Elvp,ep) + a(Elv”,ep) + /;Z(ep)zAvgvg
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- ¥ [V (- pl) -V - Ei?)

T

+ / (&' Omp) — & () ) Ev*
I

- (¢/(yh17)php - (»b/(y(uhp))p(uhp):Ele) + f (ep)zAV%'VE

Q

) Z /(_ div(AVp,) + ¢/(yhp)Ph19) (Vp _EIVP) - (‘i’/()’hp)Phprv” - Elvp)
_ /BQg ( (uhp)) (Vp E1Vp) (¢’(y(uhp))p(uhp),vp _Elvp)
+ /a (g’()/hp (J’(uhp))) (¢ ()/hp)Php ( (uhp))[)(uhp) El,,p)

+ Y f (AVpy, - W] (v - E1¥)

eNIR2=y

+ Z/(AVphp) n(v - Eiw¥) + /(ep)ZAvsvg

eCoQ

= Z /(_ diV(AVPhp) + ¢/(th)Php) (Vp —Elv”)

- [ €om - b+ 3 ([ )7 - £

endIR=0"* €

+Zf (AVpip) -1 =g (yp)) (W - E1v*)

eCoQ
— (&' Omp)omp — &' (i) ) (i), / (e,)*AVEVE. (3.25)

By using Lemma 2.2, we have

cli§epling = 2 / (= div(AVpi) + ¢ Op)piy) (W — E2V¥)

_/;Q(g/(yhp) Mhp Vp+ Z f (AVpy,-n Vp Elvp)

eNaQ=y

+ Y [ n-g o) (# - E?)

ecaQ €

~ (@' Om)e’s ) = (8" Gmp)plurp)e’, V) + /Q(ep)ZAVng

<C Z dlv(AVPhp) ¢’ (th)php)

TCQd

N / [(AVpsy-n)]

eNIR=P,ecQy

+CZ /AVphp n- g()/hp)) +C||yhp y(uhp)“Lz

eCiQ De

c
* C“yhp ‘y(”hp)HiZ(aQ) + C”eP”iz(Q) 3 “"p “?{1(9)
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where we use the property that £ = 0 on ©/Q. Noting that ||v1’||?{1(9) < ||$ep||f{1(m, we
have

||5(Php ‘P(”hp)) “]2-11(9)

4
<CY k7 +Cllynp — y(uny) ||22<sz>

i=2

+ Cllymy = y(uny) ”iZ(aQ) +C|lpnp _P(”hp)”;(sz)' (3.26)

It follows from (3.23) and (3.26) that

”php = pupp) ”22(39)

< C||&(pny — p(uny)) “?{1(9)
4
<CY k7 +Cllynp — y(uny) ||i2<sz>

i=2

+ C”yhp _y(uhp) ||i2(39) + C||ph}7 _p(uhp)”?)(ﬂ)' (3.27)

Part 11. Now, we estimate ||pj, — p(upp)ll2(q)- Let ¢, be the solution of the following

equation:
a(gp, w) = (ep,w), YweV. (3.28)
Noting that € is convex [24], it has been shown that

loplla,e < Clieyllo,- (3.29)

Let E; be the linear operator defined in Lemma 2.3. It follows from (2.1), (2.14), (3.28)-
(3.29), and Lemma 2.3 that

lep gy = a6prey) = al@ — Exgprey) + alExgprey)
-3 [ @5y pl) - 900, - Eay)
+ (&' Onp) =& (¥(unp)), E20p) = (&' Omp)pip — &' (v(np)) 0y, E20p)
=> /T (= div(AVpwy) + ¢ Oip)Pip) (9p — Exp) = (&' Gip)Pips 0 — E20)
= (& 0wnp)), 00 = Eagp) + (¢’ ()0 1), 0 = Enp)
+ (& Onp) =& Wunp))s E20p) = (&' Gnp)np — &' (v(tp) ) 0 (tt1p), E20p)

+ Y [ AP -m](gp—E20p) + Y [(AVpsy) - n(g, — Erp)
eNdQ=p "~ ¢ ecdQ¥®

= Z /(_ diV(AVPhp) + W(M)Php)((ﬂp _E2§0p) + (g,(th) _g/(y(uhp))’wp)



Lu et al. Boundary Value Problems (2016) 2016:59 Page 14 of 18

+ Y [ [AVpy - m)](g, - E2pp)
enaQ=p " €

+ Z ((AVPhp) -n _g,(yhp))((pp - Ez%)

ecaQ €

— (&' )iy — &' (Y (un)) P (thip), ).

By using Lemma 2.3, we have

leplBaiy = 3 [ (VAT + 601 p1) 00~ Exy) + & ) —¢ () )

+ Y AV - m)](gp - E2gp)
endQ=y " €

+ > [ ((AVDPw) - 11— g mp)) 9y — E2gp)

ecaQ v €

- (¢,0’hp)ep’ Vp) - (é//Uhp)p(”hp)ey' Vp)

h4
<coy [ (@ivaven,) - i)

3
) 3 2 [[ve, ol

enaapPe Je

h3
+C(8) Z _g /(Avphp ‘N _g/(th))2 +C(9) “yhp _y(uhp) ”iZ(Q)

eCBQpe €

+ CO) vy = 3t | 12950 + CONIE N2y

i=5

7
= C(S) (Z Ki2 + ”yhp _y(uhp) ||1%2(Q) + ”yhp —)’(Mhp)”iz(m)) + CS”S”?.[Z(Q)

Let § be small enough, it follows from (3.29) that

7
”php _p(uhp)HEZ(Q) S CZK? + CHyhp _y(uhp)”i}(g) + C”yhp _y(uhp)HEZ(BQ)' (330)
i=5

Part 111. Next, we estimate |y, — y(unp)ll[2(50)- Let e, = yup — y(upp) and v = Ezey, by
using (2.1), (2.13), (3.3), and Lemma 2.2, then we have

e, 2 ) < alée, &e,) = a(ve,) + /Q (e, PAVEVE

= a(e,,’ —EpV)) + / (ey)*AVEVE
Q

Z AV (yip = y(upp)) - (V' — EnV) + fQ (ey)*AVEVE

TCQy T

> | (~divAVyR) + ¢Gmy) — ) (¥ - E)

TCQy T
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+ Y [[AVy - m](¥ - E)

eNd=p"* €

+ / ((AVyhp) M= Upp — zo)(vy —Elvy)
aQ

— (¢ Omp) — d(V(up)), v — EnV) + / (e,)*AVEVE

Q

= > [ (~div(AVyy) + ¢lm) —f) (v - E1v?)

eVt

+ > [ AV - m](V - Ev)

endQ=p " ¢

. / (AVy1) - 1= gy - 20) (¥ — E1r?)
0

— (&' Omp) (ynp — ¥(uap)), V' = Erv?) + /Q (e,)*AVEVE

<C Y | BA(f + div(AVy) — ()
TCQy T
cc Y [n[avy, o]
eNIN=N,eeQy ¢

Cc
+CY / he(ANV Yy - 1=y = 20)* + Clley o g + 5 NEeslI30

endQ v €
10

= CZKE + C”yhp — y(unp) ||i2(9) + 2”563/”]2{1(9)'
i=8

Therefore, it follows from (3.31) and the trace theorem that

”yhp = y(unp) Hiz(m) = C”'g(yhp ) ”311(9)
10

< CX:Ki2 + C|lynp — y(snp) ”;(9)'
i-8

Page 15 of 18

(3.31)

(3.32)

Part TV. Furthermore, we estimate ||y, — y(u1p) | 12(q)- Let ¢, be the solution of the equa-

tion

aw, @) = (e, w), YwelV.
Then we have

loyllz,e < Clleyllo,-
Similarly, we have

C||€y||%2(9) = a(ey;wy) = ﬂ(ey) Py _E2§0y)

=2 / AV (yp = y(tany)) - V(9 — E2y)

(3.33)
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= Z /(_ diV(AvyhP) + d)()/hp) _f)(‘py _EZ(py)

+ Z | /[(AVyhp -1)](¢y - Eagy)

end=p "¢
+ / ((Avyhp) = Upp — ZO)(¢;V - E2¢y)
Q2
— (¢Omp) — ¢ (V(ap)), @y — E20y)
-y / (—div(AVy) + B0ip) )@y — Exy)

+ Z [(Avyhp . n)]((/)y _EZ(py)

endQ=p "~ ¢

) f (AVy1p) - 1= sy - 20) ¢y - Eapy)
Q
- (él@hp)(yhp —J’(”hp))’ Py = EZ%)

h4
<coY [+ avavp,) - ¢ o)’

h3
+CE) Y = f [AVpy, - n)]

enaa—pPe Je

Page 16 of 18

n? c
+CE) Y = / (AVynp 1= iy = 20)" + - lley oy + COl0y

eCoQ be Je
13 c
= CO) Y w7+ S lleslfagy + Colloylin gy

i=11
Let § be small enough, it follows from (3.33) that
) 13
”yhl’ _y(uhp) HLZ(Q) = CZ Kiz.

i=11

It follows from (3.7), (3.27), (3.30), (3.32), and (3.34) that

13
lloe - uhp”iZ(aQ) + ||y ) —J’hp“iz(ag) + [ pGuny) - pay ||i2(asz> = CZKL’Z‘
i=1

Part V. Finally, it is easy to see that

1y = ympll 2oy < ||y — ¥t ”L2(asz) + (o) _J’thLZ(ag)’
lp = Plli2ee) < |p —P(”hp)”Lz(ag) + o) = iy ”Lz(asz)’
and

”y_y(uhP)HLZ(BQ) < Cllu — unpllr250),

|2 =Py 1250y < Clly = Yip) | 29y < Cllt = il 2509

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)
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It follows from (3.35) and (3.36)-(3.39) that

”u - uhp”iZ(ag) + ”y_yhp”iZ(,gQ) + ”p _Php”iz(ag)
<lu- uhp”iZ(gQ) + “)’—)’(uhp)”iz(m)
+ [y = y(anp) ”iz(ag) +p _p(”hp)”;(asz) + [ pnp ‘P(”hp)HEZ(asz)

<llu- ”hp”;(asz) + Hy—y(uhp)Hizm) + e _P(”hp)”iz(m)

13
<Cy . (3.40)
i=1
Then (3.22) follows from (3.40). O

4 Conclusion and future work
In this paper, we use the /p finite element approximation for both the state and the co-
state variables and the /p discontinuous Galerkin finite element approximation for the
control variable. We derive residual-based a posteriori error estimates in L?-H' norms for
the semilinear Neumann boundary optimal control problems. Then we also give sharper
a posteriori error estimates for the control approximation and error estimates in the L?
norm for the state and co-state on the boundary. To the best of our knowledge in the
context of optimal control problems, these a posteriori error estimates for the semilinear
Neumann boundary optimal control problems are new.

In future, we shall consider the /p finite element method for hyperbolic optimal control
problems. Furthermore, we shall consider a posteriori error estimates and superconver-
gence of the /p finite element solutions for hyperbolic optimal control problems.
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