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Abstract
In this paper, after establishing a fixed point operator for a strongly coupled vector
p-Laplacian with a singular and sign-changing weight function, which may not be
integrable, we investigate the existence for the Dirichlet boundary value problems of
strongly coupled vector p-Laplacian systems with a nonlinear term consisting of
Hadamard product. The proofs are mainly based on topological degree arguments
and the global continuation theorem.
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1 Introduction
We are concerned with the existence of nontrivial solutions for strongly coupled nonlinear
differential systems of the form

(Pλ)

⎧
⎨

⎩

–�p(u′)′ = λh(t) · f (u), t ∈ (, ),

u() =  = u(),

where p > , �p : RN → R
N is defined by �p(x) = |x|p–x, λ >  is a parameter, h(t) =

(h(t), . . . , hN (t)) with hi : (, ) →R, and f (u) = (f(u), . . . , fN (u)) with continuous fi : RN →
R. Here we denote x · y = (xy, xy, . . . , xN yN ) the Hadamard product of x and y in R

N .
Thus, problem (Pλ) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

–(|u′(t)|p–u′
(t))′ = λh(t)f(u),

...

–(|u′(t)|p–u′
N (t))′ = λhN (t)fN (u), t ∈ (, ),

ui() =  = ui(), i = , . . . , N .

Throughout the paper, we denote by | · | the absolute value on R or the Euclidean norm
on R

N and by 〈·, ·〉 the inner product on R
N and define ϕp : R →R by ϕp(s) = |s|p–s. For a

weight function h, we assume that hi ∈H, where

H =
{

g ∈ L
loc

(
(, ),R

) ∣
∣
∣

∫ 



ϕ–

p

(∫ 


s

∣
∣g(τ )

∣
∣dτ

)

ds +
∫ 




ϕ–
p

(∫ s




∣
∣g(τ )

∣
∣dτ

)

ds < ∞
}

.
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It is well known that L(, ) �H. Thus, a function in H may have stronger singularity
at the boundary than a function in L(, ) (see examples in Section ). If hi ∈ H for all
i = , , . . . , N , then |h| ∈ H. In this sense, we shall denote h ∈ H whenever hi ∈ H for all
i = , , . . . , N .

Scalar equations or systems of p-Laplacian-like problem (Pλ) appear in various appli-
cations, which describe reaction-diffusion systems, nonlinear elasticity, glaciology, pop-
ulation biology, combustion theory, and non-Newtonian fluids (see [–]). The study on
the existence of solutions for p-Laplacian scalar equations or systems or more generalized
Laplacian systems has attracted much attention recently (see [–] and the references
therein).

Among their general setup, a solution operator for nonlinear p-Laplacian systems was
introduced in the pioneering works of Manásevich and Mawhin [, ]. They applied the
solution operator to study the existence of solutions for systems of strongly coupled vector
p-Laplacian-like operators with L-Carathéodory nonlinear perturbations.

We see that the L-Carathéodory condition in problem (Pλ) corresponds to the condi-
tion h ∈ L((, ),RN ). As a generalization of the L-Carathéodory condition, it is interest-
ing to consider the case h ∈ H. Since our problem involves systems of strongly coupled
differential operators and the weight function h may change sign, related studies are not
known yet, as far as the authors know. Recently, for a scalar equation of (Pλ), Sim and
Lee [] established a new solution operator and proved an existence result by the global
continuation theorem.

Thus, the goal of this paper is to get an existence result for (Pλ) where the differential
operator is related to strongly coupled vector p-Laplacian and the weight function has
stronger singularity at the boundary than L and sign-changing. The novelty of the paper
is providing a new solution operator, which is the most generalized so far.

This paper is organized as follows. In Section , we derive a solution operator for prob-
lem (W )+(D) with g ∈H. In Section , we prove the compactness of the solution operator
for (Pλ) with λ = . In Section , we show the existence of solutions and give some illus-
trative examples, which satisfy all assumptions in the paper and are not given in other
studies.

2 A fixed point operator
In this section, we construct a solution operator for a strongly coupled vector p-Laplacian.
Let us consider a problem of the form

(W ) –�p
(
w′)′ = g(t), t ∈ (, ),

(D) w() =  = w(),

where g ∈ H. Since g may not be in L((, ),RN ), the solution of (W )+(D) may not be
in C([, ],RN ). For an example of a simple scalar case, take g(t) = (p – )t–| + ln t|p–,
p > ; then g /∈ L(, ), but g ∈H, and the solution u is given by u(t) = –t ln t, which is not
in C[, ].

So by a solution to this problem we mean a function w ∈ C([, ],RN ) ∩ C((, ),RN )
with �p(w′) absolutely continuous that satisfies equations (W )+(D).

We first give some remarks for calculations later on.
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Remark . From the definition of �p and ϕp we get, for any x, y ∈R
N ,

∣
∣�–

p (x + y)
∣
∣ ≤ ϕ–

p
(|x| + |y|) ≤ Cp

(
ϕ–

p
(|x|) + ϕ–

p
(|y|)),

where

Cp =

⎧
⎨

⎩

, p > ,


–p
p– ,  < p ≤ .

Remark . By the homogeneity of ϕ–
p we can deduce that if h ∈H, then α · h ∈H for all

α ∈ C([, ],RN ).

Let w be a solution of (W )+(D). Then integrating both sides of (W ) on the intervals [s, 
 ]

and [ 
 , s] for s ∈ (, 

 ] and s ∈ [ 
 , ), respectively, we find that (W )+(D) is equivalent to

⎧
⎨

⎩

w′(s) = �–
p (a +

∫ 


s g(τ ) dτ ), w() = , s ∈ (, 
 ],

w′(s) = �–
p (a –

∫ s



g(τ ) dτ ), w() = , s ∈ [ 
 , ),

(.)

where a = �p(w′( 
 )). Applying Remark . with x = a and y =

∫ 


s g(τ ) dτ , we get

∣
∣
∣
∣�

–
p

(

a +
∫ 



s
g(τ ) dτ

)∣
∣
∣
∣ ≤ ϕ–

p

(

|a| +
∫ 



s

∣
∣g(τ )

∣
∣dτ

)

≤ Cpϕ
–
p

(|a|) + Cpϕ
–
p

(∫ 


s

∣
∣g(τ )

∣
∣dτ

)

.

Since g ∈H, we know that

�–
p

(

a +
∫ 



s
g(τ ) dτ

)

∈ L
((

,



])

, �–
p

(

a –
∫ s




g(τ ) dτ

)

∈ L
([




, 
))

.

Thus, we may integrate both sides of (.) on the interval [, t] for t ∈ [, 
 ] and on the

interval [t, ] for t ∈ [ 
 , ], and we get

w(t) =

⎧
⎨

⎩

∫ t
 �–

p (a +
∫ 


s g(τ ) dτ ) ds, t ∈ [, 

 ],
∫ 

t �–
p (–a +

∫ s



g(τ ) dτ ) ds, t ∈ [ 
 , ].

We need to check that w( 


–) = w( 


+). For a ∈R
N , define

Gg(a) =
∫ 




�–

p

(

a +
∫ 



s
g(τ ) dτ

)

ds –
∫ 




�–
p

(

–a +
∫ s




g(τ ) dτ

)

ds. (.)

Then the function Gg : RN → R
N is well defined. If Gg has a unique zero, then w( 


–) =

w( 


+). For this, we give the following lemma.

Lemma . For given g ∈ H, the function Gg defined in (.) has a unique zero a = a(g)
in R

N .
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Proof I. Existence. We claim that there exists r >  such that 〈Gg(a), a〉 >  for all a ∈
∂Br() ⊂R

N . If the claim is valid, then we consider the homotopy

h(λ, a) = λa + ( – λ)Gg(a) for λ ∈ [, ].

By the claim,

〈
h(λ, a), a

〉
= λ〈a, a〉 + ( – λ)

〈
Gg(a), a

〉
> 

for any a ∈ ∂Br(), λ ∈ [, ]. Taking � = Br(), we see that the Brouwer degree dB(h(λ, a),
�, ) is well defined, and by the homotopy invariance property we get

dB
(
Gg(·),�, 

)
= dB

(
h(, a),�, 

)
= dB

(
h(, a),�, 

)
= dB(id,�, ) = 

since  ∈ �. This completes the proof of the existence of a zero of Gg . We now prove the
claim. For convenience, we denote

Hg(a) �
∫ 




�–

p

(

a +
∫ 



s
g(τ ) dτ

)

ds, Wg(a) �
∫ 




�–
p

(

–a +
∫ s




g(τ ) dτ

)

ds.

Then it suffices to show that there exists r >  such that 〈Hg(a), a〉 >  and 〈Wg(a), a〉 < 
for all a ∈ ∂Br() ⊂R

N . Indeed, we have

〈
Hg(a), a

〉
=

∫ 




〈

�–
p

(

a +
∫ 



s
g(τ ) dτ

)

, a
〉

ds

=
∫ δ



〈

�–
p

(

a +
∫ 



s
g(τ ) dτ

)

, a
〉

ds +
∫ 



δ

〈

�–
p

(

a +
∫ 



s
g(τ ) dτ

)

, a
〉

ds,

where δ ∈ (, 
 ) will be determined later. Since g ∈ H, both integrations are well defined,

and we denote

H,δ �
∫ δ



〈

�–
p

(

a +
∫ 



s
g(τ ) dτ

)

, a
〉

ds,

H,δ �
∫ 



δ

〈

�–
p

(

a +
∫ 



s
g(τ ) dτ

)

, a
〉

ds.

We first consider H,δ . Since

∣
∣
∣
∣

∫ 


s
g(τ ) dτ

∣
∣
∣
∣ ≤

∫ 


s

∣
∣g(τ )

∣
∣dτ ,

applying Remark ., we obtain

|H,δ| ≤
∫ δ



∣
∣
∣
∣

〈

�–
p

(

a +
∫ 



s
g(τ ) dτ

)

, a
〉∣
∣
∣
∣ds ≤

∫ δ



∣
∣
∣
∣�

–
p

(

a +
∫ 



s
g(τ ) dτ

)∣
∣
∣
∣|a|ds

≤
∫ δ


ϕ–

p

(

|a| +
∣
∣
∣
∣

∫ 


s
g(τ ) dτ

∣
∣
∣
∣

)

|a|ds ≤
∫ δ


ϕ–

p

(

|a| +
∫ 



s

∣
∣g(τ )

∣
∣dτ

)

|a|ds
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≤
∫ δ


Cp

(

ϕ–
p

(|a|) + ϕ–
p

(∫ 


s

∣
∣g(τ )

∣
∣dτ

))

|a|ds

= Cpδ|a|p∗
+ Cp

[∫ δ


ϕ–

p

(∫ 


s

∣
∣g(τ )

∣
∣dτ

)

ds
]

|a|,

where p∗ = p
p– . Thus, we get

H,δ ≥ –Cpδ|a|p∗
– Cp

[∫ δ


ϕ–

p

(∫ 


s

∣
∣g(τ )

∣
∣dτ

)

ds
]

|a|

= |a|p∗
[

–Cpδ – Cp

[∫ δ


ϕ–

p

(∫ 


s

∣
∣g(τ )

∣
∣dτ

)

ds
]


|a|p∗–

]

. (.)

Now we consider H,δ . Since 〈�p(x), x〉 = |x|p, x ∈R
N , we see that

〈
�–

p (x), x
〉
=

∣
∣�–

p (x)
∣
∣p = |x|(p∗–)p = |x|p∗ .

Moreover, for s ∈ [δ, 
 ], | ∫ 


s g(τ ) dτ | ≤ ∫ 


δ |g(τ )|dτ < ∞; thus, denoting

∫ 


δ |g(τ )|dτ �
Mδ , we obtain

H,δ =
∫ 



δ

〈

�–
p

(

a +
∫ 



s
g(τ ) dτ

)

, a +
∫ 



s
g(τ ) dτ

〉

ds

–
∫ 



δ

〈

�–
p

(

a +
∫ 



s
g(τ ) dτ

)

,
∫ 



s
g(τ ) dτ

〉

ds

≥
∫ 



δ

∣
∣
∣
∣a +

∫ 


s
g(τ ) dτ

∣
∣
∣
∣

p∗

ds – Mδ

∫ 


δ

∣
∣
∣
∣�

–
p

(

a +
∫ 



s
g(τ ) dτ

)∣
∣
∣
∣ds.

Since p∗ >  and

∣
∣
∣
∣a +

∫ 


s
g(τ ) dτ

∣
∣
∣
∣ ≥ |a| –

∣
∣
∣
∣

∫ 


s
g(τ ) dτ

∣
∣
∣
∣ ≥ |a| – Mδ

for s ∈ [δ, 
 ], taking |a| large enough to satisfy |a| – Mδ > , we get

H,δ ≥
∫ 



δ

(|a| – Mδ

)p∗
ds – Mδ

∫ 


δ

(|a| + Mδ

)p∗– ds

=
(




– δ

)
(|a| – Mδ

)p∗
–

Mδ


(|a| + Mδ

)p∗–

= |a|p∗
[(




– δ

)(

 –
Mδ

|a|
)p∗

–
Mδ



(

 +
Mδ

|a|
)p∗– 

|a|
]

. (.)

Combining (.) and (.), we get that

〈
Hg(a), a

〉 ≥ |a|p∗
[(




– δ

)(

 –
Mδ

|a|
)p∗

–
Mδ


·
(

 +
Mδ

|a|
)p∗–

· 
|a|

– Cpδ – Cp

∫ δ


ϕ–

p

(∫ 


s

∣
∣g(τ )

∣
∣dτ

)

ds · 
|a|p∗–

]

. (.)
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Since g ∈H, we have that ϕ–
p (

∫ 


s |g(τ )|dτ ) ∈ L(, δ]. Choosing δ >  sufficiently small and
|a| = r sufficiently large, we can make the right-hand side of (.) strictly greater than .
This implies that there exists r >  such that 〈Hg(a), a〉 >  for all a ∈ ∂Br(). Applying
a similar argument, we can show that 〈Wg(a), –a〉 >  for all a ∈ ∂Br(). Therefore, we
conclude that there exists r >  such that 〈Gg(a), a〉 >  for all a ∈ ∂Br(), and the claim is
proved.

II. Uniqueness. Suppose that a and a are two distinct zeros of Gg . Then

〈
Gg(a) – Gg(a), a – a

〉
= .

On the contrary,

〈
Gg(a) – Gg(a), a – a

〉

=
〈
Hg(a) – Hg(a), a – a

〉
+

〈
W (a) – W (a), a – a

〉

=
∫ 





〈

�–
p

(

a +
∫ 



s
g(τ ) dτ

)

– �–
p

(

a +
∫ 



s
g(τ ) dτ

)

, a – a

〉

ds

+
∫ 




〈

�–
p

(

–a +
∫ s




g(τ ) dτ

)

– �–
p

(

–a +
∫ s




g(τ ) dτ

)

, a – a

〉

ds.

Therefore, we get

〈
Gg(a) – Gg(a), a – a

〉

=
∫ 





〈

�–
p

(

a +
∫ 



s
g(τ ) dτ

)

– �–
p

(

a +
∫ 



s
g(τ ) dτ

)

,

(

a +
∫ 



s
g(τ ) dτ

)

–
(

a +
∫ 



s
g(τ ) dτ

)〉

ds

+
∫ 




〈

�–
p

(

–a +
∫ s




g(τ ) dτ

)

– �–
p

(

–a +
∫ s




g(τ ) dτ

)

,

(

–a +
∫ s




g(τ ) dτ

)

–
(

–a +
∫ s




g(τ ) dτ

)〉

ds > 

since 〈�–
p (x) – �–

p (y), x – y〉 >  for all x, y ∈ R
N , x = y. This contradiction completes the

proof of uniqueness. �

Lemma . implies that if g ∈H, then the solution w of (W )+(D) can be represented by

w(t) =

⎧
⎨

⎩

∫ t
 �–

p (a(g) +
∫ 


s g(τ ) dτ ) ds, t ∈ [, 

 ],
∫ 

t �–
p (–a(g) +

∫ s



g(τ ) dτ ) ds, t ∈ [ 
 , ],

(.)

where a(g) ∈ R
N satisfies

∫ 



�–

p

(

a(g) +
∫ 



s
g(τ ) dτ

)

ds =
∫ 




�–
p

(

–a(g) +
∫ s




g(τ ) dτ

)

ds. (.)
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We note that a(g) is determined uniquely up to g , and from this uniqueness property
the following corollary is obvious.

Corollary . Let g ∈H, Then, as a function of g , a is homogeneous, that is,

a(λg) = λa(g) for all λ ∈R.

On the other hand, it is not hard to see that the function w defined in (.) satisfies
w ∈ C([, ],RN ) ∩ C((, ),RN ), �p(w′) is absolutely continuous on (, ), and w satisfies
(W )+(D). Therefore, we conclude that if g ∈H, then w is a solution of (W )+(D) if and only
if w satisfies (.).

3 Compactness of the fixed point operator
Consider a nonlinear problem of the form

(P)

⎧
⎨

⎩

–�p(u′)′ = h(t) · f (u), t ∈ (, ),

u() =  = u(),

where h ∈ H and f ∈ C(RN ,RN ). We note that, by Remark ., h · f (u) ∈ H. Let us apply
the solution representation for (W )+(D) given in (.) replacing g with h · f (u). Then we
may rewrite problem (P) equivalently as

u = T(u),

where T : C([, ],RN ) → C([, ],RN ) is defined by

T(u)(t) =

⎧
⎨

⎩

∫ t
 �–

p (a(h · f (u)) +
∫ 


s h(τ ) · f (u(τ )) dτ ) ds, t ∈ [, 

 ],
∫ 

t �–
p (–a(h · f (u)) +

∫ s



h(τ ) · f (u(τ )) dτ ) ds, t ∈ [ 
 , ].

In this section, we prove that the solution operator T is completely continuous. For this,
we need two lemmas about the properties of a(h · f (u)). Since h and f are fixed, we regard
a(h · f (u)) as a function of u ∈ C([, ],RN ).

Lemma . The function a sends bounded sets in C([, ],RN ) into bounded sets in R
N .

Proof Assume that a sequence {un} is bounded in C([, ],RN ). Let us denote an � a(h ·
f (un)) and Gn � Gh·f (un). Suppose that {an} is unbounded in R

N . Then there exists a sub-
sequence {ank } such that |ank | → ∞ as k → ∞. Since each ank is a zero of Gnk , we see that
〈Gnk (ank ), ank 〉 =  for all k. On the other hand, by the same calculation as in the proof of
Lemma . we obtain

〈
Hnk (ank ), ank

〉 ≥ |ank |p
∗
[(




– δ

)(

 –
MHδ

|ank |
)p∗

–
MHδ


·
(

 +
MHδ

|ank |
)p∗–

· 
|ank |

– Cpδ – Cpϕ
–
p (M)

∫ δ


ϕ–

p

(∫ 


s

∣
∣h(τ )

∣
∣dτ

)

ds · 
|ank |p∗–

]

,

where M = supk∈N ‖f (unk )‖∞ and Hδ =
∫ 


δ |h(τ )|dτ . Since |ank | → ∞ as k → ∞, we may

choose sufficiently large k and then δ >  small enough to satisfy 〈Hnk (ank ), ank 〉 > . Apply-
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ing a similar argument for Wnk , we conclude that 〈Gnk (ank ), ank 〉 >  for sufficiently large k,
and this contradiction completes the proof. �

Remark . If B is a bounded set in C([, ],RN ), then {a(h · v)|v ∈ B} is also bounded
in R

N . The proof is similar to that of Lemma . by replacing M with supv∈B ‖v‖∞.

Lemma . The function a : C([, ],RN ) →R
N is continuous.

Proof Assume that un → u in C([, ],RN ). Then for the continuity of a, we need to show
that a(h · f (un)) → a(h · f (u)) in R

N as n → ∞. Denote again an � a(h · f (un)). We know
that {an} is bounded in R

N by Lemma .; thus, it has a convergent subsequence {ank },
which converges to, say, â ∈ R

N . We first claim that

∫ 



�–

p

(

â +
∫ 



s
h(τ ) · f

(
u(τ )

)
dτ

)

ds

=
∫ 




�–
p

(

–â +
∫ s




h(τ ) · f
(
u(τ )

)
dτ

)

ds. (.)

Indeed, let us take K = supn∈N |an|, M = supn∈N ‖f (un)‖∞ and fix s ∈ (, 
 ]. Then we get

∣
∣h(τ ) · f

(
unk (τ )

)∣
∣ ≤ M

∣
∣h(τ )

∣
∣

for all τ ∈ [s, 
 ]. Moreover, hi ∈ L

loc(, ) implies |h| ∈ L[s, 
 ]. Thus, by the continuity of

�–
p and applying the Lebesgue dominated convergence theorem componentwise, we get

lim
k→∞

�–
p

(

ank +
∫ 



s
h(τ ) · f

(
unk (τ )

)
dτ

)

= �–
p

(

â +
∫ 



s
h(τ ) · f

(
u(τ )

)
dτ

)

.

Similarly, for k ∈N,

∣
∣
∣
∣�

–
p

(

ank +
∫ 



s
h(τ ) · f

(
unk (τ )

)
dτ

)∣
∣
∣
∣ ≤ A + Bϕ–

p

(∫ 


s

∣
∣h(τ )

∣
∣dτ

)

,

where A = Cpϕ
–
p (K) and B = Cpϕ

–
p (M). Since h ∈ H, the right-hand side of the last in-

equality is in L(, 
 ]. Thus, applying the Lebesgue dominated convergence theorem com-

ponentwise again, we have

lim
k→∞

∫ 



�–

p

(

ank +
∫ 



s
h(τ ) · f

(
unk (τ )

)
dτ

)

ds

=
∫ 




�–

p

(

â +
∫ 



s
h(τ ) · f

(
u(τ )

)
dτ

)

ds. (.)

By the same argument, for fixed s ∈ [ 
 , ), we also get

lim
k→∞

∫ 




�–
p

(

–ank +
∫ s




h(τ ) · f
(
unk (τ )

)
dτ

)

ds

=
∫ 




�–
p

(

–â +
∫ s




h(τ ) · f
(
u(τ )

)
dτ

)

ds. (.)
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Moreover, by the definition of ank given in (.), we know that

∫ 



�–

p

(

ank +
∫ 



s
h(τ ) · f

(
unk (τ )

)
dτ

)

ds

=
∫ 




�–
p

(

–ank +
∫ s




h(τ ) · f
(
unk (τ )

)
dτ

)

ds.

This implies that both limits in (.) and (.) are the same, and thus (.) is valid. Equation
(.) implies that â = a(h · f (u)) by the uniqueness of â. So we conclude that limk→∞ ank (=
a(h · f (unk ))) = a(h · f (u)) in R

N . It is not hard to see by the standard subsequence argument
that limn→∞ an(= a(h · f (un))) = a(h · f (u)), and the proof is done. �

Remark . If vn ∈ C([, ],RN ) with vn → v as n → ∞, then a(h · vn) → a(h · v) as n →
∞. In particular, if v = , then a(h · vn) →  as n → ∞. The proof is similar to that of
Lemma . by replacing M with supv∈B ‖v‖∞.

Lemma . The operator T : C([, ],RN ) → C([, ],RN ) is completely continuous.

Proof The continuity of T is easily verified mainly by Lemma . and the Lebesgue dom-
inated convergence theorem. Let B be a bounded subset of C([, ],RN ). Then by the
Arzelà-Ascoli theorem, it suffices to show that T(B) is uniformly bounded and equicon-
tinuous. Take MB = supu∈B ‖f (u)‖∞, KB = supu∈B |a(h · f (u))|, and denote au � a(h · f (u)).
Then, for t ∈ (, 

 ],

∣
∣T(u)(t)

∣
∣ ≤

∫ t



∣
∣
∣
∣�

–
p

(

au +
∫ 



s
h(τ ) · f

(
u(τ )

)
dτ

)∣
∣
∣
∣ds

≤
∫ t


ϕ–

p

(

KB + MB

∫ 


s

∣
∣h(τ )

∣
∣dτ

)

ds

≤ 


Cpϕ
–
p (KB) + Cpϕ

–
p (MB)

∫ 



ϕ–

p

(∫ 


s

∣
∣h(τ )

∣
∣dτ

)

ds.

Since h ∈H, we see that the last bound is independent of u ∈ B and t ∈ (, 
 ]. The bound

on the interval [ 
 , ) can be obtained similarly, and thus T(B) is uniformly bounded.

To show the equicontinuity of T(B), let t, t ∈ [, ] with t < t.
Case . t, t ∈ [, 

 ] or t, t ∈ [ 
 , ]. We have

∣
∣T(u)(t) – T(u)(t)

∣
∣

≤
∫ t

t

∣
∣
∣
∣�

–
p

(

au +
∫ 



s
h(τ ) · f

(
u(τ )

)
dτ

)∣
∣
∣
∣ds

≤ Cpϕ
–
p (KB)(t – t) + Cpϕ

–
p (MB)

∫ t

t

ϕ–
p

(∫ 


s

∣
∣h(τ )

∣
∣dτ

)

ds.

The bound is independent of u ∈ B and ϕ–
p (

∫ 


s |h(τ )|dτ ) ∈ L(, 
 ] since h ∈ H; thus, we

see that the bound converges to  as |t – t| → . The case of t, t ∈ [ 
 , ] can be similarly

proved.
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Case .  < t ≤ 
 < t < . Since t and t can be considered sufficiently close, without

loss of generality, we assume that 
 ≤ t ≤ 

 < t ≤ 
 . Then, by the definition of T ,

T(u)(t) =
∫ t


�–

p

(

au +
∫ 



s
h(τ ) · f

(
u(τ )

)
dτ

)

ds

=
∫ 




�–

p

(

au +
∫ 



s
h(τ ) · f

(
u(τ )

)
dτ

)

ds

–
∫ 



t

�–
p

(

au +
∫ 



s
h(τ ) · f

(
u(τ )

)
dτ

)

ds

and

T(u)(t) =
∫ 

t

�–
p

(

–au +
∫ s




h(τ ) · f
(
u(τ )

)
dτ

)

ds

=
∫ 




�–
p

(

–au +
∫ s




h(τ ) · f
(
u(τ )

)
dτ

)

ds

–
∫ t




�–
p

(

–au +
∫ s




h(τ ) · f
(
u(τ )

)
dτ

)

ds.

Since, by the definition of au,

∫ 



�–

p

(

au +
∫ 



s
h(τ ) · f

(
u(τ )

)
dτ

)

ds

=
∫ 




�–
p

(

–au +
∫ s




h(τ ) · f
(
u(τ )

)
dτ

)

ds,

we get

∣
∣T(u)(t) – T(u)(t)

∣
∣

=
∣
∣
∣
∣

∫ t




�–
p

(

–au +
∫ s




h(τ ) · f
(
u(τ )

)
dτ

)

ds

–
∫ 



t

�–
p

(

au +
∫ 



s
h(τ ) · f

(
u(τ )

)
dτ

)

ds
∣
∣
∣
∣

≤
∫ t




ϕ–
p

(

KB + MB

∫ s




∣
∣h(τ )

∣
∣dτ

)

ds +
∫ 



t

ϕ–
p

(

KB + MB

∫ 


s

∣
∣h(τ )

∣
∣dτ

)

ds

≤
∫ t




ϕ–
p

(

KB + MB

∫ 





∣
∣h(τ )

∣
∣dτ

)

ds +
∫ 



t

ϕ–
p

(

KB + MB

∫ 





∣
∣h(τ )

∣
∣dτ

)

ds.

Thus, using Remark ., we obtain

∣
∣T(u)(t) – T(u)(t)

∣
∣

≤ Cp

∫ t




ϕ–
p (KB) ds + Cp

∫ t




ϕ–
p (MB)ϕ–

p

(∫ 





∣
∣h(τ )

∣
∣dτ

)

ds
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+ Cp

∫ 


t

ϕ–
p (KB) ds + Cp

∫ 


t

ϕ–
p (MB)ϕ–

p

(∫ 





∣
∣h(τ )

∣
∣dτ

)

ds

≤
[

Cpϕ
–
p (KB) + Cpϕ

–
p (MB)ϕ–

p

(∫ 





∣
∣h(τ )

∣
∣dτ

)]

(t – t).

Since the coefficient at t – t is a constant independent on u ∈ B, the proof of the equicon-
tinuity of T(B) is complete. �

4 Applications
In this section, we apply the solution operator obtained in Section  and use the com-
pactness of the operator in Section  to show the existence of nontrivial solutions for the
problem

(Pλ)

⎧
⎨

⎩

–�p(u′)′ = λh(t) · f (u), t ∈ (, ),

u() =  = u().

For this, we first give one assumption on f .
(F) fi(, . . . , ) >  and lim|s|→∞ fi(s)/|s|p– =  for s ∈R

N , i = , . . . , N .
Let X be a Banach space, and G : R× X → X be completely continuous with G(, u) = .

Consider

u = G(λ, u). (.)

Denote by S the set of solutions of (.), R+ = [,∞), and R– = (–∞, ]. As the basic tool
for the proof of our main theorem, we introduce the following theorem known as the
global continuation theorem.

Theorem . ([]) Let X be a Banach space, and G : R × X → X be continuous and
compact with G(, u) = . Then S contains a pair of unbounded components C+ and C– in
R+ × X and R– × X, respectively, and C+ ∩ C– = {(, )}.

For our fitting, let us take X = C([, ],RN ). Then the usual norm for X to be a Banach
space is defined by ‖u‖∞ =

∑N
i= ‖ui‖∞. In this paper, for the convenience of computation,

we establish an equivalent norm, which is defined by

‖u‖X = max
≤t≤

∣
∣
(
u(t), . . . , uN (t)

)∣
∣ = max

≤t≤

(
u

 (t) + · · · + u
N (t)

)/.

Indeed, it is easy to see that

‖u‖X ≤ ‖u‖∞ ≤ N‖u‖X .

We are ready to state our main existence theorem.

Theorem . Assume that h ∈H and that (F) holds. Then (Pλ) has at least one nontrivial
solution for all λ > .
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We know that to solve (Pλ) is equivalent to solve

u = G(λ, u),

where G : (,∞) × X → X is defined by

G(λ, u)(t) =

⎧
⎨

⎩

∫ t
 �–

p (a(λh · f (u)) +
∫ 


s λh(τ ) · f (u(τ )) dτ ) ds, t ∈ [, 

 ],
∫ 

t �–
p (–a(λh · f (u)) +

∫ s


λh(τ ) · f (u(τ )) dτ ) ds, t ∈ [ 

 , ].

By Remark . and Lemma . we can easily show that G is continuous and compact with
G(, u) = . Since Theorem . guarantees an unbounded continuum C+, if we provide
the a priori boundedness of solutions for (Pλ), then the unbounded continuum allows the
existence of solutions for all λ > .

Lemma . Assume that h ∈H and that f satisfies (F). Let any 
 >  be given, and let (λ, u)
be a solution for (Pλ) with λ ∈ (,
]. Then there exists a constant C(
) > , depending only
on 
, such that ‖u‖X ≤ C(
).

Proof Assume that there exists a sequence (λn, un) ∈ (,
] × X such that, for any n ∈N,

un = G(λn, un)

with ‖un‖X → ∞ as n → ∞.
By using Remark . with x = a(λnh · f (un)), y =

∫ 


s λnh(τ ) · f (un(τ )) dτ and the homo-
geneity of ϕ–

p and a we can estimate the solution un as follows:

∣
∣un(t)

∣
∣ =

∣
∣
∣
∣

∫ t


�–

p

(

a
(
λnh · f (un)

)
+

∫ 


s
λnh(τ ) · f

(
un(τ )

)
dτ

)

ds
∣
∣
∣
∣

≤
∫ t



∣
∣
∣
∣�

–
p

(

a
(
λnh · f (un)

)
+

∫ 


s
λnh(τ ) · f

(
un(τ )

)
dτ

)∣
∣
∣
∣ds

≤
∫ t


ϕ–

p

(
∣
∣a

(
λnh · f (un)

)∣
∣ +

∣
∣
∣
∣

∫ 


s
λnh(τ ) · f

(
un(τ )

)
dτ

∣
∣
∣
∣

)

ds

≤ ϕ–
p (λn)

∫ 



ϕ–

p

(
∣
∣a

(
h · f (un)

)∣
∣ +

∣
∣
∣
∣

∫ 


s
h(τ ) · f

(
un(τ )

)
dτ

∣
∣
∣
∣

)

ds

≤ ϕ–
p (
)

∫ 



ϕ–

p

( |a(h · f (un))|
‖un‖p–

X
+

| ∫ 


s h(τ ) · f (un(τ )) dτ |
‖un‖p–

X

)

ds‖un‖X

for all t ∈ [, 
 ]. By the homogeneity of a again, we get

∣
∣un(t)

∣
∣ ≤ ϕ–

p (
)
∫ 




ϕ–

p

(∣
∣
∣
∣a

(

h · f (un)
‖un‖p–

X

)∣
∣
∣
∣ +

∫ 


s

∣
∣h(τ )

∣
∣ |f (un(τ ))|

‖un‖p–
X

dτ

)

ds‖un‖X .

By (F), for any ε > , there exists lε >  such that for all s ∈R
N with |s| ≥ lε ,

∣
∣fi(s)

∣
∣ ≤ ε|s|p– for i = , . . . , N .
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Since fi is continuous on {s ∈R
N | |s| ≤ lε}, there exists a constant Mε >  such that

∣
∣fi(s)

∣
∣ ≤ Mε

on {s ∈R
N | |s| ≤ lε} for i = , . . . , N . Thus, we have

∣
∣fi(s)

∣
∣ ≤ ε|s|p– + Mε for all s ∈R

N , i = , . . . , N . (.)

Since ‖un‖X → ∞ as n → ∞, there exists nε ∈N such that for any n ≥ nε , we have

‖un‖X ≥
(

Mε

ε

) 
p–

,

that is,


‖un‖p–

X
≤ ε

Mε

.

Using (.), we get that, for any n ≥ nε and t ∈ [, /],

|fi(un(t))|
‖un‖p–

X
≤ ε · |un(t)|p–

‖un‖p–
X

+
Mε

‖un‖p–
X

≤ ε + Mε · ε

Mε

= ε

and

‖f (un)‖X

‖un‖p–
X

≤ ‖f (un)‖∞
‖un‖p–

X
=

∑N
i= ‖fi(un)‖∞
‖un‖p–

X
≤ N · ε = εN . (.)

Take

B =
{

f (un)
‖un‖p–

X

}

n≥nε

.

Then B is a bounded subset in X. Thus, by Remark . we see that the set {a(h · v) | v ∈ B}
is bounded in R

N . Moreover, by (.) and Remark . we may choose a constant Cε =
Cε(εN) >  satisfying Cε →  as ε →  such that

∣
∣
∣
∣a

(

h · f (un)
‖un‖p–

X

)∣
∣
∣
∣ ≤ Cε for any n ≥ nε .

Therefore, for t ∈ [, 
 ], we obtain

∣
∣un(t)

∣
∣ ≤

[

ϕ–
p (
)

∫ 



ϕ–

p

(

Cε + ε

∫ 


s

∣
∣h(τ )

∣
∣dτ

)

ds
]

‖un‖X

≤
[



ϕ–

p (
)Cpϕ
–
p (Cε)

+ ϕ–
p (
)Cpϕ

–
p (ε)

∫ 



ϕ–

p

(∫ 


s

∣
∣h(τ )

∣
∣dτ

)

ds
]

‖un‖X . (.)
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By similar arguments, for t ∈ [ 
 , ], we obtain

∣
∣un(t)

∣
∣ ≤

[

ϕ–
p (
)

∫ 




ϕ–
p

(

Cε + ε

∫ s




∣
∣h(τ )

∣
∣dτ

)

ds
]

‖un‖X

≤
[



ϕ–

p (
)Cpϕ
–
p (Cε)

+ ϕ–
p (
)Cpϕ

–
p (ε)

∫ 




ϕ–
p

(∫ s




∣
∣h(τ )

∣
∣dτ

)

ds
]

‖un‖X . (.)

Denoting Ch � max{∫ 


 ϕ–
p (

∫ 


s |h(τ )|dτ ) ds,
∫ 



ϕ–

p (
∫ s



|h(τ )|dτ ) ds}, we can choose ε > 

small enough such that



ϕ–

p (
)Cpϕ
–
p (Cε) + ϕ–

p (
)Cpϕ
–
p (ε)Ch ≤ 


.

Consequently, combining (.) and (.), we obtain, for t ∈ [, ],

∣
∣un(t)

∣
∣ ≤ 


‖un‖X .

This implies that

‖un‖X ≤  for n ≥ nε ,

which contradicts

‖un‖X ≥
(

Mε

ε

) 
p–

>  for n ≥ nε

and this completes the proof. �

Example  Consider the following p-Laplacian system:

(E)

⎧
⎪⎪⎨

⎪⎪⎩

–(|u|p–u′)′ = λh(t)[(u + v)
p–

 + ],

–(|u|p–v′)′ = λh(t)e–v [ + (u)
p–

 ], t ∈ (, ),

u() = v() =  = u() = v(),

where u = (u, v), λ >  is a parameter, and h(t) = (h(t), h(t)) is given by

h(t) =

⎧
⎨

⎩

t–α , t ∈ (, 
 ],

–, t ∈ ( 
 , ),  < α < p,

h(t) = –, t ∈ (, ).

We note that h ∈ L
loc but h /∈ L. We now show that h ∈H. Indeed,

∫ 


s
τ–α dτ = –


α – 

τ–(α–)
∣
∣
∣
∣




s
= –


α – 

[(



)–(α–)

– s–(α–)
]

=


α – 
[
s–(α–) – α–] ≤ 

α – 
s–(α–).
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Since  < α < p, we have 
α– s–(α–) >  for s ∈ (, ) and

∫ 



ϕ–

p

(∫ 


s
τ–α dτ

)

ds ≤
∫ 




ϕ–

p

(


α – 
s–(α–)

)

ds =
∫ 





(
s–(α–)

α – 

) 
p–

ds

=
p – 

(α – )


p– (p – α)
s

p–α
p–

∣
∣
∣
∣





< ∞.

In addition, since h and h are constants on ( 
 , ) and (, ), respectively, by Remark .

we get h ∈H.
Next, we need to check that both f(u, v) = (u + v)

p–
 +  and f(u, v) = e–v [ + (u)

p–
 ]

satisfy assumption (F). In fact, f(, ) = f(, ) =  > , and

lim
|(u,v)|→∞

f(u, v)
|(u, v)|p– = lim

|(u,v)|→∞
(u + v)

p–
 + 

(u + v)
p–



= lim
|(u,v)|→∞

(


(u + v)
p–


+



(u + v)
p–



)

= ,

 ≤ lim
|(u,v)|→∞

f(u, v)
|(u, v)|p– = lim

|(u,v)|→∞
e–v [ + (u)

p–
 ]

(u + v)
p–



≤ lim
|(u,v)|→∞

(


ev (u + v)
p–


+



ev (u + v)
p–



)

= .

that is, lim|(u,v)|→∞ f(u,v)
|(u,v)|p– = . Consequently, by Theorem . we see that problem (E)

has at least one nontrivial solution for all λ > .

Example  Consider the following p-Laplacian system with p = :

(E)

⎧
⎪⎪⎨

⎪⎪⎩

–(|u|u′)′ = λh(t)[ – (u + v) 
 ],

–(|u|v′)′ = λh(t)[ – e–(u+v)], t ∈ (, ),

u() = v() =  = u() = v(),

where u = (u, v), λ >  is a parameter, and h(t) = (h(t), h(t)) is given by

h(t) =

⎧
⎨

⎩

t–, t ∈ (, 
 ],

–, t ∈ ( 
 , ),

and

h(t) =

⎧
⎨

⎩

t–, t ∈ (, 
 ],

, t ∈ ( 
 , ).

By similar arguments as in Example , we can easily check that h ∈ H and f, f satisfy
assumption (F). Consequently, by Theorem . we see that problem (E) has at least one
nontrivial solution for all λ > .
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Example  Consider the following p-Laplacian system:

(E)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

–(|u|p–u′
)′ = λh(t) ln((u

 + · · · + u
N ) 

 + ),
...

–(|u|p–u′
N )′ = λhN (t) ln((u

 + · · · + u
N ) 

 + N + ), t ∈ (, ),

ui() =  = ui(), i = , . . . , N ,

where u = (u, . . . , uN ), λ >  is a parameter, h(t) = (h(t), . . . , hN (t)) is defined by

hi(t) =


tα( – t)α
– p, t ∈ (, ),  < α < p, i = , . . . , N ,

and

fi(u, . . . , uN ) = ln
((

u
 + · · · + u

N
) 

 + i + 
)
, i = , . . . , N .

We note that each hi is not in L(, ), hi( 
 ) = α – p <  for  < α < p, and h : (, ) → R

N

is locally integrable. By similar arguments as in Example , we can easily check that h ∈H.
Next, let us check (F) for fi(u, . . . , uN ) = ln((u

 + · · · + u
N ) 

 + i + ). In fact, fi(, . . . , ) =
ln(i + ) > , and setting x := (u

 + · · · + u
N ) 

 , we have

 ≤ lim
|(u,...,uN )|→∞

fi(u, . . . , uN )
|(u, . . . , uN )|p– = lim

|(u,...,uN )|→∞
ln((u

 + · · · + u
N ) 

 + i + )

(u
 + · · · + u

N )
p–



= lim
x→+∞

ln(x + i + )
xp–

= lim
x→+∞


x + i + 

· 
(p – )xp–

≤ lim
x→+∞


(p – )xp– = ,

that is, lim|(u,...,uN )|→∞ fi(u,...,uN )
|(u,...,uN )|p– =  for i = , . . . , N . Consequently, by Theorem . we

see that problem (E) has at least one nontrivial solution for all λ > .
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