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Abstract
This paper is devoted to the study of a singular porous medium equation, which was
studied extensively in recent years. We obtain the global existence and blow-up
condition at the critical initial energy E(u0) = d, while the previous papers only
considered the case E(u0) < d, where d is a positive constant which will be given in
the main part of this paper.
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1 Introduction
Suppose a compressible fluid flows in a homogeneous isotropic rigid porous medium.
Then the volumetric moisture content θ (x), the macroscopic velocity �V and the density
of the fluid ρ are governed by the following equation [, ]:

θ (x)
∂ρ

∂t
+ div(ρ �V ) – f (ρ) = , (.)

where f (u) is the source. From Darcy’s law, one has the following relation:

ρ �V = –λ∇P, (.)

where ρ �V and P denote the momentum velocity and pressure, respectively, λ >  is some
physical constant.

If the fluid considered is the polytropic gas, then the pressure and density satisfy the
following equation of the state:

P = cργ , (.)

where c > , γ >  are some constants. Thus, it follows from (.)-(.) that

θ (x)
∂ρ

∂t
= cλ�

(
ργ

)
+ f (ρ). (.)
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In this paper, we consider (.) with θ (x) = |x|–δ and f (ρ) = ρσ . Furthermore, we incorpo-
rate zero boundary condition to this problem. Then we get the following initial-boundary
problem after changing variables and notations:

⎧
⎪⎪⎨

⎪⎪⎩

|x|–s ∂u
∂t – �um = up–, (x, t) ∈ 
 × (, T),

u(x, t) = , (x, t) ∈ ∂
 × (, T),

u(x, ) = u(x), x ∈ 
,

(.)

where u ∈ H
(
) is a nonnegative and nontrivial function, T ∈ (,∞], 
 is a bounded

domain in R
N (N ≥ ) with smooth boundary ∂
, m ≥ ,  ≤ s ≤  + /m ≤ , m < p –  ≤

(N+)m
N– .
Problem (.) and the related models were studied in [–], in order to introduce the

main results of [], we need the following functionals and sets, which were given in [].
• A function u is called a solution of (.) if

um ∈ L∞(
, T ; H

(
)
)
,

∫ T



∥∥|x|– s

(
u

m+


)
t

∥∥
 dt < +∞,

and u satisfies (.) in the distribution sense.
• The energy functional related to the stationary equation

E(u) =


m

∫




∣
∣∇um∣

∣ dx –


m + p – 

∫




|u|m+p– dx, um ∈ H
(
). (.)

• The Nehari functional

H(u) =
∫




∣∣∇um∣∣ dx –
∫




|u|m+p– dx, um ∈ H
(
). (.)

• The Nehari manifold

K =
{

u : um ∈ H
(
), H(u) = , u �= 

}
. (.)

• The potential depth

d = inf
{

sup
λ≥

E(λu) : um ∈ H
(
), u �= 

}

= inf
u∈K

E(u) =
p –  – m

m(m + p – )
C

–(m+p–)
p––m , (.)

where C is the optimal constant of the Sobolev embedding H
(
) ⊂ L

m+p–
m (
).

Particularly we have

∥
∥um∥

∥ m+p–
m

≤ C
∥
∥∇um∥

∥
 (.)

for um ∈ H
(
) since m < p –  ≤ (N+)m

N– , where ‖ · ‖r denotes the norm of Lr(
).
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• The sets related to global existence and blow-up

� =
{

u : um ∈ H
(
), E(u) < d, H(u) > 

} ∪ {},
� =

{
u : um ∈ H

(
), E(u) < d, H(u) < 
}

.
(.)

The solution u(x, t) of problem (.) is called blow-up at finite time T if ‖u‖L∞(
) → +∞ as
t → T–. Otherwise, we say u(x, t) exists globally. The following are the main results of [].

Theorem . If u ∈ �, then the solution u to the problem (.) exists globally; if u ∈ �,
then u blows up at finite time.

In view of the above results, we may ask if the solution of u of the problem (.) blows
up or exists globally when E(u) ≥ d. The main task of this paper is to answer the question
for E(u) = d. In order to give the main results of the present paper, we introduce two sets
as follows:

S =
{

u : um ∈ H
(
),

∥
∥∇um∥

∥
 <

(
m(m + p – )

p –  – m
d
) 


}

,

B =
{

u : um ∈ H
(
),

∥∥∇um∥∥
 >

(
m(m + p – )

p –  – m
d
) 


}

.

(.)

Then

∂S = ∂B =
{

u : um ∈ H
(
),

∥
∥∇um∥

∥
 =

(
m(m + p – )

p –  – m
d
) 


}

. (.)

The main results of this paper are the following theorem.

Theorem . Assume E(u) = d, then we have
. if u ∈ S , then the problem (.) admits a global solution u such that

um(t) ∈ L∞(, +∞; H
(
)) and u(t) ∈ S̄ = S ∪ ∂S for  ≤ t < +∞;

. if u ∈ B, then the solution of problem (.) will blow up at finite time.

2 Proof of Theorem 1.2
In this section, we will prove Theorem .. First of all, we will introduce some useful lem-
mas.

Lemma . Assume the function u �≡  satisfying um ∈ H
(
). Then there exists a unique

positive value μ∗ defined as

μ∗ = p–m–

√ ∫



|∇um| dx
∫



|u|m+p– dx
(.)

such that E(μu) is strictly increasing for  < μ < μ∗, strictly decreasing for μ∗ < μ < ∞.

Proof From

E(μu) = μm
[


m

∥
∥∇um∥

∥
 –

μp–m–

m + p – 
‖u‖m+p–

m+p–

]
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and p > m +  we get limμ→ E(μu) = , limμ→+∞ E(μu) = –∞. Furthermore, since μ = μ∗
is the unique positive root of the equation dE(μu)

dμ
= , the conclusion follows. �

Lemma . Let S , B, ∂S , and ∂B be the sets defined as (.) and (.).

(i) If u ∈ S and ‖∇um‖ �= , then ‖∇um‖
 > ‖um‖

m+p–
m

m+p–
m

.

(ii) If u ∈ ∂S , then ‖∇um‖
 ≥ ‖um‖

m+p–
m

m+p–
m

.

(iii) If ‖∇um‖
 < ‖um‖

m+p–
m

m+p–
m

, then u ∈ B.

(iv) If ‖∇um‖
 ≤ ‖um‖

m+p–
m

m+p–
m

and ‖∇um‖ �= , then u ∈ B ∪ ∂B.

Proof (i) Since u ∈ S , we get from (.) and (.)

∥
∥∇um∥

∥
 <

(
m(m + p – )

p –  – m
d
) 


= C

–(m+p–)
p––m ≤

(‖um‖ m+p–
m

‖∇um‖

) –(m+p–)
p––m

,

which implies ‖∇um‖ > ‖um‖
m+p–

m
m+p–

m
.

(ii) From u ∈ ∂S we get

∥
∥∇um∥

∥
 =

(
m(m + p – )

p –  – m
d
) 

 �= .

Then in the same way as the proof of (i), ‖∇um‖
 ≥ ‖um‖

m+p–
m

m+p–
m

holds.

(iii) By (.) and ‖∇um‖
 < ‖um‖

m+p–
m

m+p–
m

, we have

∥∥∇um∥∥
 <

∥∥um∥∥
m+p–

m
m+p–

m
≤ C

m+p–
m

∥∥∇um∥∥
m+p–

m
 ,

which is equivalent to ‖∇um‖ > C
–(m+p–)

p––m . So u ∈ B.
(iv) In the same way as the proof of (iii), we have

∥∥∇um∥∥
 ≥ C

–(m+p–)
p––m ,

which implies u ∈ B ∪ ∂B. �

Lemma . Let u be a solution of (.). Then the functional E(u(t)) defined as (.) is
non-increasing in t. Moreover,


(m + )

∫ t



∥∥|x|– s

(
u

m+
 (x, τ )

)
τ

∥∥
 dτ + E

(
u(t)

)
= E(u). (.)

Proof Multiplying the first equation of (.) with 
m (um)t and integrating over 
 × (, t),

we get (.) and then that E(u(t)) is non-increasing in t follows. �

Lemma . Let u be the solution of (.) with initial value u such that um
 ∈ H

(
) and
E(u) ≤ d. Then



Luo and Zhou Boundary Value Problems  (2016) 2016:80 Page 5 of 8

(i) ‖∇um‖
 > ‖um‖

m+p–
m

m+p–
m

if and only if  < ‖∇um‖ < ( m(m+p–)
p––m d) 

 ;

(ii) ‖∇um‖
 < ‖um‖

m+p–
m

m+p–
m

if and only if ‖∇um‖ > ( m(m+p–)
p––m d) 

 .

Proof By (.), (.) and E(u) ≤ d we have

E
(
u(t)

)
=

p –  – m
m(m + p – )

∥∥∇um∥∥
 +


m + p – 

(∥∥∇um∥∥
 –

∥∥um∥∥
m+p–

m
m+p–

m

)

≤ E(u) ≤ d. (.)

Then we can easily get (i) and (ii) from Lemma . and (.). �

Lemma . Let u be the solution of (.) with initial value u such that um
 ∈ H

(
) and
E(u) ≤ d. Then:

(i) u(t) ∈ S for t ∈ [, T) if u ∈ S ;
(ii) u(t) ∈ B for t ∈ [, T) if u ∈ B;

where S and B are the sets defined in (.).

Proof (i) If the conclusion (i) is false, there must exist a time t ∈ (, T) such that u(t) ∈ ∂S
and u(t) ∈ S for  ≤ t < t. Hence

∥
∥∇um(t)

∥
∥

 =
(

m(m + p – )
p –  – m

d
) 


(.)

and

∥∥∇um(t)
∥∥

 <
(

m(m + p – )
p –  – m

d
) 


, t ∈ [, t). (.)

From (.), the second conclusion of Lemma . and (.), we obtain

E
(
u(t)

)
=

p –  – m
m(m + p – )

∥∥∇um(t)
∥∥

 +


m + p – 
(∥∥∇um(t)

∥∥
 –

∥∥um(t)
∥∥

m+p–
m

m+p–
m

)

≥ p –  – m
m(m + p – )

∥∥∇um(t)
∥∥

 = d. (.)

By (.) and (.) we know that
∫ t

 ‖|x|– s
 (u m+

 )t‖
 dt > . Then it follows from (.) and

(.) that E(u) > E(u(t)) ≥ d, which contradicts E(u) ≤ d.
(ii) The conclusion can be proved in the same way as (i). �

Based on above preparations, we are ready to prove Theorem ..

Proof of Theorem . (global existence part) We see from E(u) = d and (.) that ‖∇um
 ‖ >

, which combines with u ∈ S and the first conclusion of Lemma . implies

∥∥∇um

∥∥

 >
∥∥um


∥∥

m+p–
m

m+p–
m

. (.)
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Let λn =  – 
n and un = λnu for n = , , . . . . Then it follows from (.), λn < , and

m – p +  <  that

∥
∥∇um

n
∥
∥

 = λm
n

∥
∥∇um


∥
∥

 > λm
n

∥
∥um


∥
∥

m+p–
m

m+p–
m

= λm–p+
n

∥
∥um

n
∥
∥

m+p–
m

m+p–
m

>
∥
∥um

n
∥
∥

m+p–
m

m+p–
m

, n = , , . . . , (.)

E(un) =
p –  – m

m(m + p – )
∥∥∇um

n
∥∥

 +


m + p – 
(∥∥∇um

n
∥∥

 –
∥∥um

n
∥∥

m+p–
m

m+p–
m

)

> , n = , , . . . . (.)

Furthermore, by Lemma ., there exists an integer n∗ such that E(λnu) is strictly increas-
ing for n ≤ n∗, which means

E(un) = E(λnu) < lim
n→+∞ E(λnu) = E(u) = d, n = n∗, n∗ + , . . . . (.)

Equations (.)-(.) imply un ∈ �, where � is defined as (.). Let un be the solution
of (.) with initial value un, then Theorem . implies un exists globally such that

um
n (t) ∈ L∞(

, +∞; H
(
)

)
, n = n∗, n∗ + , . . . . (.)

Similar to (.), for  ≤ t < +∞, n = n∗, n∗ + , . . . , we get

d > E(un) =


(m + )

∫ t



∥∥|x|– s

(
u

m+


n (x, τ )
)
τ

∥∥
 dτ + E

(
un(t)

)

=


(m + )

∫ t



∥
∥|x|– s


(
u

m+


n (x, τ )
)
τ

∥
∥

 dτ

+
p –  – m

m(m + p – )
∥∥∇um

n
∥∥

 +


m + p – 
(∥∥∇um

n
∥∥

 –
∥∥um

n
∥∥

m+p–
m

m+p–
m

)
. (.)

Next, we will prove ‖∇um
n (t)‖

 > ‖um
n (t)‖

m+p–
m

m+p–
m

for  ≤ t < +∞. If not, it follows from (.)

that there exists t∗ >  such that ‖∇um
n (t∗)‖

 = ‖um
n (t∗)‖

m+p–
m

m+p–
m

. Then it follows from (.)

that E(un(t∗)) ≥ d, which contradicts E(un(t∗)) < d by (.). Then from (.), we obtain

∫ t



∥
∥|x|– s


(
u

m+


n (x, τ )
)
τ

∥
∥

 dτ <
d(m + )


,

 ≤ t < +∞, n = n∗, n∗ + , . . . , (.)

∥∥um
n (t)

∥∥
m+p–

m
m+p–

m
≤ ∥∥∇um

n (t)
∥∥

 ≤ m(m + p – )
p –  – m

d,

 ≤ t < +∞, n = n∗, n∗ + , . . . . (.)

From (.), (.), and the compactness method in [], it follows that there exist u and
a subsequence {uk} of {un} such that for all T > 

. u ∈ L∞(, T ; H
(
)) and

∫ T
 ‖|x|– s

 (u m+
 (x, t))t‖

 dt ≤ d(m+)

 ,
. uk → u a.e. on 
 × (, T),
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. um
k → um weakly star in L∞(, T ; H

(
)),
. uk → u weakly star in L∞(, T ; Lm+p–(
)),
. |x|– s

 (u
+m


k )t → |x|– s

 (u +m
 )t weakly in L(, T ; L(
)).

Then it follows from the construction of un that u is a global solution of (.) and u(t) ∈ S̄
for  ≤ t < ∞. �

Proof of Theorem . (blow-up part) Let u(t) be the solution of problem (.) with initial
value u satisfying E(u) = d and u ∈ B. We need to show that the maximal existence time
T of u is finite. We assume T = +∞ and prove the conclusion by contradiction. Let

f (t) =


m + 

∫ t



∫




|x|–s∣∣u(x, τ )
∣∣m+ dx dτ .

Then

f ′′(t) =
∫




|x|–sumut dx = –
∥
∥∇um∥

∥
+

∥
∥um∥

∥
m+p–

m
m+p–

m
. (.)

From (.), (.), and

E
(
u(t)

)
=

p –  – m
m(m + p – )

∥∥∇um(t)
∥∥

 +


m + p – 
(∥∥∇um(t)

∥∥
 –

∥∥um(t)
∥∥

m+p–
m

m+p–
m

)
(.)

we get

f ′′(t) =
p –  – m

m
∥
∥∇um∥

∥
 – (m + p – )E(u)

+
(m + p – )

(m + )

∫ t



∥∥|x|– s

(
u

m+
 (x, τ )

)
τ

∥∥
 dτ . (.)

By u ∈ B and Lemma (.), we obtain u(t) ∈ B for  ≤ t < +∞, i.e.,

∥
∥∇um(t)

∥
∥

 >
(

m(m + p – )
p –  – m

d
) 


,  ≤ t < +∞. (.)

From (.), (.) and E(u) = d we obtain f ′′(t) > (m+p–)
(m+)

∫ t
 ‖|x|– s

 (u m+
 (x, τ ))τ‖

 dτ . The
remaining part of the proof is the same as that in []. �

3 Conclusion
In this paper, we study a singular porous medium equation considered in [], where the
global existence and blow-up conditions were got for the case of subcritical initial energy
E(u) < d. We complete the results by studying the global existence and blow-up condi-
tions for the case of critical initial energy E(u) = d.
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