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Abstract
The aim of this study is to investigate various qualitative properties of eigenvalues
and corresponding eigenfunctions of one Sturm-Liouville problem with an interior
singular point. We introduce a new Hilbert space and integral operator in it such a
way that the problem under consideration can be interpreted as a spectral problem
of this operator. By using our own approaches we investigate such properties as
uniform convergence of the eigenfunction expansions, the Parseval equality, the
Rayleigh-Ritz formula, the minimax principle, and the monotonicity of eigenvalues for
the considered boundary value-transmission problem (BVTP).
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1 Introduction
Sturm-Liouville eigenvalue problems appear frequently in solving several classes of par-
tial differential equations, particularly in solving the heat equation or a wave equation
by separation of variables. Other examples of Sturm-Liouville boundary value problems
are Hermite equations, Airy equations, Legendre equations etc. Also, many physical pro-
cesses, such as the vibration of strings, the interaction of atomic particles, electrodynamics
of complex medium, aerodynamics, polymer rheology or the earth’s free oscillations, yield
Sturm-Liouville eigenvalue problems (see, for example, [–] and references therein).

In different areas of applied mathematics and physics many problems arise in the form of
boundary value problems involving transmission conditions at the interior singular points.
Such problems are called boundary value-transmission problems (BVTPs). For example,
in electrostatics and magnetostatics the model problem which describes the heat trans-
fer through an infinitely conductive layer is a transmission problem (see [] and references
therein). Another completely different field is that of ‘hydraulic fracturing’ (see []) used in
order to increase the flow of oil from a reservoir into a producing oil well. Some problems
with transmission conditions arise in thermal conduction problems for a thin laminated
plate (i.e. a plate composed by materials with different characteristics piled in the thick-
ness; see []). Some aspects of spectral problems for differential equations having singu-
larities with classical boundary conditions at the endpoints were studied among others in
[–] and references therein.
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In this paper we shall investigate some qualitative properties of the eigenvalues and
the corresponding eigenfunctions of one boundary value problem which consists of the
Sturm-Liouville equation,

τ (u) := –u′′ + q(x)u = λu(x), x ∈ (–π , ) ∪ (,π ), ()

together with end-point conditions given by

�u := cosαu(–π ) + sinαu′(–π ) = , ()

�u := cosβu(π ) + sinβu′(π ) = , ()

and with transmission conditions at the interior singular point x =  given by

tu := γu
(
–)

– δu
(
+)

= , ()

tu := γu′(–)
– δu′(+)

= , ()

where q(x) is a real-valued function; δi, γi (i = , ) are real numbers; α,β ∈ [,π ); λ is a
complex spectral parameter. Throughout we shall assume that q(x) is continuous in 
 :=
[–π , ) and 
 := (,π ] with finite one-hand limits q(±); γγ > , and δδ > .

It is the aim of this study to investigate such important spectral properties as the
eigenfunction expansion, Parseval’s equality, the Rayleigh-Ritz formula (minimization
principle), the minimax principle, and monotonicity of the eigenvalues for the Sturm-
Liouville problem ()-(). The ‘Rayleigh quotient’ is the basis of an important approxi-
mation method that is used in solid state physics as well as in quantum mechanics. In the
latter, it is used in the estimation of energy eigenvalues of nonsolvable quantum systems.

Often in physical problems, the sign of the eigenvalue λ is quite important. For exam-
ple, the equation dh

dt + λh =  occurs in certain heat flow problems. Here, positive λ corre-
sponds to exponential decay in time, while negative λ corresponds to exponential growth.
In the vibration problems dh

dt + λh =  only positive λ corresponds to the ‘usual’ expected
oscillations.

The Rayleigh quotient cannot be used to explicitly determine the eigenvalue since the
eigenfunction is unknown. However, interesting and significant results can be obtained
from the Rayleigh quotient without solving the differential equation. Particularly, it can
be quite useful in estimating the eigenvalues.

2 Preliminary results about eigenvalues and eigenfunctions
In the direct sum of the Lebesgue spaces H := L(
) ⊕ L(
) we shall define a new inner
product in terms of the coefficients of the considered transmission conditions as follows:

〈f , g〉H := γγ

∫ –

–π

f (x)g(x) dx + δδ

∫ π

+
f (x)g(x) dx. ()

Remark . It is easy to see that the space H is also a Hilbert space with respect to the
modified inner product ().
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Lemma . Let u and υ be eigenfunctions of BVTP ()-() corresponding to distinct eigen-
values λ and μ, respectively. If λ �= μ then u and υ are orthogonal in the Hilbert space H ,
i.e.

γγ

∫ –

–π

uυ dx + δδ

∫ π

+
uυ dx = .

Proof Since τ (u) = λu and τ (υ) = μυ ,

(λ – μ)〈u,υ〉H = 〈λu,υ〉H – 〈u,μυ〉H

=
〈
τ (u),υ

〉
H –

〈
u, τ (υ)

〉
H . ()

By using the Lagrange identity we have

〈
τ (u),υ

〉
H –

〈
u, τ (υ)

〉
H = γγW (u,υ; x)|–

–π + δδW (u,υ; x)|π+ , ()

where W (u,υ; x) denotes the Wronskians of u and υ . The boundary conditions () and
() implies W (u,υ; –π ) = W (u,υ;π ) = . Further the transmission conditions () and ()
imply

γγW
(
u,υ; –)

= δδ.W
(
u,υ; +)

. ()

By using these equations we get (λ – μ)〈u,υ〉H . Thus, λ �= μ implies 〈u,υ〉H = , which
completes the proof. �

Theorem . All eigenvalues of the BVTP ()-() are real.

Proof Let (λ, u(x)) be any eigen-pair of the problem ()-(). Taking the complex-
conjugate of the BVTP ()-() we see that the pair (λ, u(x)) is also an eigen-pair of this
problem. From the boundary-transmission conditions ()-() it follows easily that

W (u, u; –π ) = W (u, u;π ) =  ()

and

γγW
(
u, u; –)

– δδW
(
u, u; +)

= . ()

Putting these equalities in the equality () we have (λ – λ)‖u‖ = . This implies that
λ – λ = , i.e. λ is real. �

Remark . Let λ be an eigenvalue of ()-() with corresponding eigenfunction u(x) =
υ(x) + iω(x), where υ(x) and ω(x) are real-valued. Then both υ(x) and ω(x) are also
eigenfunctions corresponding to the same eigenvalue λ. Indeed, putting u = u = υ + iω

and λ = λ in ()-() and in view of λ being real, we have

τ (υ) + iτ (ω) = (λυ) + i(λω),

�i(υ) + i�i(ω) =  and ti(υ) + iti(ω) = , i = , ,
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from which it follows that both υ(x) and ω(x) are eigenfunctions corresponding to the
same eigenvalue λ.

Theorem . There exists only one independent eigenfunction corresponding to each
eigenvalue of the BVTP ()-(), i.e. each of eigenvalues of this problem is geometrically sim-
ple.

Proof By way of contradiction suppose that there exist two linearly independent eigen-
functions u(x) and υ(x) corresponding to the same eigenvalue λ. The boundary con-
ditions ()-() imply that W (u,υ;π ) =  and consequently W (u,υ; x) =  for all x ∈
[–π , ). Since u(x) and υ(x) satisfy equation (), u(x) and υ(x) are linearly dependent
on 
 by the well-known theorem of ordinary differential equation theory, i.e. there ex-
ists a constant c �=  such that u(x) = cυ(x) for all x ∈ 
. Similarly, from the second
boundary condition it follows that there exists a constant c �=  such that u(x) = cυ(x)
for all x ∈ 
. Hence

u(x) =

{
cυ(x) for x ∈ 
,
cυ(x) for x ∈ 
.

()

Substituting the transmission conditions ()-() we have

(c – c)γυ
(
–)

= (c – c)δυ
(
+)

= 

and

(c – c)γυ
′

(
–)

= (c – c)δυ
′

(
+)

= .

From these equalities we get c – c = . Consequently u(x) and υ(x) are linearly depen-
dent on the whole 
 = 
 ∪
. Hence we have obtained a contradiction, which completes
the proof. �

Remark . By virtue of Theorem . the eigenfunctions of a BVTP ()-() can be chosen
to be real-valued. Indeed, let λ be an eigenvalue with the eigenfunction u(x) = υ(x) +
iω(x). By Remark . both υ(x) and ω(x) are also eigenfunctions corresponding to the
same eigenvalue. By Theorem . there is a complex number C �=  such that ω(x) =
Cυ(x). Hence u(x) = υ(x) + iω(x) = ( + iC)υ(x), i.e. here is only one real-valued
eigenfunction, except for a constant factor, corresponding to each eigenvalue. In view of
this fact, from now on we can assume that all eigenfunctions of the BVTP ()-() are real-
valued.

Now from Lemma ., Theorem ., and Remark . we have the next corollary.

Corollary . Let u and u be eigenfunctions of BVTP ()-() corresponding to distinct
eigenvalues λ and λ. Then u and u are orthogonal in the sense of the following equality:

γγ

∫ –

–π

u(x)u(x) dx + δδ

∫ π

+
u(x)u(x) dx = . ()
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3 Reduction of (1)-(5) to the integral equation with the Green kernel
Let u(x,λ) be the solution of equation () on the left interval 
 (the so-called left-hand
solution) satisfying u(–π ) = sinα, u′

(–π ) = – cosα. Next we proceed from u(x,λ) to de-
fine the right-hand solution u(x,λ) of equation () on the right-hand interval 
 by the
initial conditions

u() =
δ

γ
u

(
–,λ

)
, u′() =

δ

γ
u′


(
–,λ

)
.

Now, let v(x,λ) be the solution of equation () on the right-hand interval 
 satisfying the
initial conditions v(–π ) = sinβ , v′

(–π ,λ) = – cosβ . Similarly we proceed from v(x,λ) to
define the left-hand solution v(x,λ) of equation () on the left-hand interval 
 by the
initial conditions

v() =
δ

γ
v

(
+,λ

)
, v′

() =
δ

γ
v

(
+,λ

)
.

The existence of the solutions ui and vi (i = , ) is obvious. Moreover, by using totally sim-
ilar arguments as in [] we can prove that each of these solutions is an entire function
of the parameter λ ∈ C for each fixed x. Since the Wronskian W [ui(x,λ), vi(x,λ)] is inde-
pendent of the variable x ∈ 
i (i = , ), we can denote ωi(λ) := W [υi(·,λ),νi(·,λ)] (i = , ).
Using the transmission conditions ()-() it is easy to see that γγω(λ) = δδω(λ). Both
sides of this equality we shall denote by ω(λ). Now consider the following nonhomoge-
neous BVTP:

τ (u) – λu = f , �i(u) = ti(u) = , i = , . ()

Let us define a Banach space ⊕Ck(
) as

⊕Ck(
) :=

{

f =

{
f()(x) for x ∈ 
,
f()(x) for x ∈ 


: f()(x) ∈ Ck[–π , ], f()(x) ∈ Ck[,π ]

}

(k = , , , . . .) with the norm ‖f ‖⊕Ck (
) := max{‖f()‖Ck [–π ,],‖f()‖Ck [,π ]}. Below instead of
⊕C(
) we shall write ⊕C(
).

Theorem . Let f ∈ ⊕C(
). Then for λ not an eigenvalue, the nonhomogeneous BVTP
() has a unique solution uf for which the following formula holds:

uf (x,λ) =


ω(λ)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γγ{v(x,λ)
∫ x

–π
u(ξ ,λ)f (ξ ) dξ + u(x,λ)

∫ –

x v(ξ ,λ)f (ξ ) dξ}
+ δδu(x,λ)

∫ π

+ v(ξ ,λ)f (ξ ) dξ for x ∈ [–π , ),
δδ{v(x,λ)

∫ x
+ u(ξ ,λ)f (ξ ) dξ + u(x,λ)

∫ π

x v(ξ ,λ)f (ξ ) dξ}
+ γγv(x,λ)

∫ –

–π
u(ξ ,λ)f (ξ ) dξ for x ∈ (,π ].

()

Proof By differentiating equation () twice we can easily see that τ (u) = λu + f , �i(uf ) =
ti(uf ) =  (i = , ) so the function uf given by () is the solution of the problem. We
shall prove the uniqueness by way of contradiction. Suppose that there are two different
solutions u and υ of the system () corresponding to the same λ, which is not an
eigenvalue. Denoting ω := u – υ we get τ (ω) = λω, �i(ω) = ti(ω) =  for i = , , i.e.
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λ is an eigenvalue with the corresponding eigenfunction ω. So we get a contradiction,
which completes the proof. �

Let us introduce to the consideration the function G(x, ξ ,λ) given by

G(x, ξ ;λ) =


ω(λ)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x,λ)v(ξ ,λ) for – π ≤ ξ ≤ x < ,
u(ξ ,λ)v(x,λ) for – π ≤ x ≤ ξ < ,
u(ξ ,λ)v(x,λ) for – π ≤ x <  < ξ ≤ π ,
u(x,λ)v(ξ ,λ) for – π ≤ ξ <  < x ≤ π ,
u(x,λ)v(ξ ,λ) for  < ξ ≤ x ≤ π ,
u(ξ ,λ)v(x,λ) for  < x ≤ ξ ≤ π .

()

Then equation () can be written in the following form:

uf (x,λ) = γγ

∫ –

–π

G(x, ξ ;λ)f (ξ ) dξ + δδ

∫ π

+
G(x, ξ ;λ)f (ξ ) dξ , ()

i.e. uf (x,λ) = 〈G(x, ·,λ), f (·)〉H . Consequently the function G(x, ξ ,λ) given by () is the
Green’s function for the considered BVTP. Now suppose that λ =  is not an eigenvalue
and let f ∈ ⊕C(
) be an arbitrary function. Denoting G(x, ξ ) = G(x, ξ ; ) we have

τ (u) = f , �i(u) = ti(u) = , i = , , ()

has an unique solution u = u(x) given by

u(x) = γγ

∫ –

–π

G(x, ξ )f (ξ ) dξ + δδ

∫ π

+
G(x, ξ )f (ξ ) dξ . ()

Putting f = λu in equation () we have the following integral equation with Green’s kernel:

u(x) = λ

(
γγ

∫ –

–π

G(x, ξ )u(ξ ) dξ + δδ

∫ π

+
G(x, ξ )u(ξ ) dξ

)
. ()

4 Uniform and mean-square convergence of the eigenfunction expansions
Let us define the integral operator F by

(Fu)(x) = γγ

∫ –

–π

G(x, ξ )u(ξ ) dξ + δδ

∫ π

+
G(x, ξ )u(ξ ) dξ . ()

Then the BVTP ()-() converts to the spectral problem for the integral operator F given
by

(I – λF)u = ,

where I is the identity operator. Since the kernel G(x, ξ ) of the integral operator F is sym-
metric and continuous we can apply the well-known extremal principle (see, for example,
[]). Let {λn} be a sequence of eigenvalues of the integral operator F determined by the
extremal principles and {φn(x)} be the corresponding sequence of orthonormal eigenfunc-
tions.
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Lemma . Let g ∈ ⊕C(
). Then

lim
m→∞

(

γγ

∫ –

–π

(

Fg –
m∑

i=

ci(Fg)φi

)

dx

+ δδ

∫ π

+

(

Fg –
m∑

i=

ci(Fg)φi

)

dx

)

= , ()

where ci(Fg) = 〈Fg,φi〉H denote the Fourier coefficients ofFg with respect to the orthonormal
set (φi).

Proof Denote gm(x) = g(x) –
∑m

i=〈g,φi〉Hφi. Since {φn} is the orthonormal system in H ,
〈gm,φi〉H =  for i = , . . . , m. From the fact that the eigenvalues λn are determined by the
extremal principle with the corresponding sequence of orthonormal eigenfunctions {φn}
we have ‖Fgm‖H ≤ |λm+|‖gm‖H . Since λm+ → , ‖Fgm‖H → . Then we have

Fg = Fgm +
m∑

i=

〈g,φi〉HFφi = Fgm +
m∑

i=

λi〈g,φi〉Hφi

= Fgm +
m∑

i=

〈g,Fφi〉Hφi = Fgm +
m∑

i=

〈Fg,φi〉Hφi ()

for arbitrary m = , , . . . . Letting m → ∞ we get

Fg =
∞∑

i=

〈Fg,φi〉Hφi, ()

where the convergence is in the Hilbert space H , i.e. the equality () holds. �

Corollary . If g ∈ ⊕C(
) then the Parseval equality

‖Fg‖
H =

∞∑

i=

c
i (Fg)

holds.

Corollary . The set of orthonormal eigenfunction of the integral operator F is complete
in the range of the integral operator F given by

R(F) =
{

h ∈ ⊕C(
)|there exists g ∈ ⊕C(
) such that h = Fg
}

.

Theorem . Let the hypotheses and notation of Lemma . hold. Then, for any h ∈ R(F),

h =
∞∑

i=

(
γγ

∫ –

–π

hφi dx + δδ

∫ π

+
hφi dx

)
φi(x),

where the series converges with respect to the norm ⊕C(
), i.e. uniformly on 
 = 
 ∪ 
.
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Proof Let h = Fg . Then for any n, p we have

n+p∑

i=n

λi〈g,φi〉Hφi = F

[ n+p∑

i=n

〈g,φi〉Hφi

]

. ()

In view of the fact that the integral operator F is a bounded linear operator in the Banach
space ⊕C(
) we get from ()

∣∣∣
∣∣

n+p∑

i=n

λi〈g,φi〉Hφi

∣∣∣
∣∣
≤ C

[ n+p∑

i=n

∣∣〈g,φi〉H
∣∣

]/

()

for some constant C independent of n. By Bessel’s inequality, the right-hand side of this
inequality tends to zero as n → ∞ uniformly. Thus the series

∞∑

i=

〈Fg,φi〉Hφi(x) ()

converges in the Banach space ⊕C(
). Let h̃(x) be the sum of the last series. Consequently
h̃ ∈ ⊕C(
) and

h̃(x) =
∞∑

i=

〈Fg,φi〉Hφi(x). ()

From () and () it follows that ‖Fg – h̃‖H = , i.e. h(x) = h̃(x) almost everywhere. Since
h is also continuous in 
 we have h(x) = h̃(x) for all x ∈ 
. Thus

h =
∞∑

i=

〈h,φi〉Hφi, ()

where the series converges with respect to the norm of ⊕C(
), i.e. uniformly on 
. �

Theorem . The set of all nonzero eigenvalues of the integral operator F coincide with
the set of the eigenvalues (λn) which are obtained from the extremal principle.

Proof By way of contradiction, suppose there is a nonzero eigenvalue λ∗ distinct from all
eigenvalues (λn). Let u∗ be the eigenfunction corresponding to the eigenvalue λ∗. Then
from Theorem . we get

λ∗u∗ = Fu∗ =
∞∑

i=

〈
Fu∗,φi

〉
Hφi = λ∗

∞∑

i=

〈
u∗,φi

〉
Hφi =  ()

since 〈u∗,φi〉H =  for all i = , , . . . by Theorem .. Thus we get a contradiction. �

Theorem . Let f ∈ ⊕C(
) and satisfy the boundary-transmission conditions ()-().
Then the Fourier series of f with respect to {φi} converges uniformly on 
 ∪ 
, i.e.

lim
n→∞

{

sup
x∈


∣∣
∣∣
∣
f (x) –

n∑

i=

(
γγ

∫ –

–π

f φi dx + δδ

∫ π

+
f φi dx

)

φi(x)

∣∣
∣∣
∣

}

= .
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Proof Let f ∈ ⊕C(
) satisfy the boundary-transmission conditions ()-() and denote
g = τ (f ). Then g ∈ ⊕C(
). By virtue of () and () we have f = Fg . From Lemma .,

f = Fg =
∞∑

i=

〈Fg,φi〉Hφi =
∞∑

i=

〈f ,φi〉Hφi, ()

where the series is convergent in the Banach space ⊕C(
). �

Theorem . The set of eigenfunctions {φi(x)} is a complete orthonormal set in the Hilbert
space H .

Proof Denote by ⊕Ck
(
) the set of all functions f ∈ Ck(
) which vanishes at some neigh-

borhoods of the points x = –π , x = , and x = π . Let f ∈ H and ε >  be given. Then there
exists a function g ∈ ⊕C

(
) such that ‖f – g‖H < ε
 since the set ⊕C

(
) is dense in the
Hilbert space H , i.e. ⊕C

(
) = H (see, for example, []). It is clear that

∥∥
∥∥∥

f –
m∑

i=

〈f ,φi〉Hφi

∥∥
∥∥∥

H

≤ ‖f – g‖H +

∥∥
∥∥∥

g –
m∑

i=

〈g,φi〉Hφi

∥∥
∥∥∥

H

+

∥
∥∥
∥∥

m∑

i=

〈
(g – f ),φi

〉
Hφi

∥
∥∥
∥∥

H

()

for arbitrary m. By Bessel’s inequality we have

∥
∥∥∥
∥

m∑

i=

〈
(g – f ),φi

〉
Hφi

∥
∥∥∥
∥



H

=
m∑

i=

∣
∣〈(g – f ),φi

〉
H

∣
∣ ≤ ‖f – g‖

H <
(

ε



)

and, by Theorem ., there exists an integer n = n(ε) such that, for m > n,

∥
∥∥
∥∥

g –
m∑

i=

〈g,φi〉Hφi

∥
∥∥
∥∥

H

<
ε


. ()

Finally, from () and () we get

∥∥∥
∥∥

f –
m∑

i=

〈f ,φi〉Hφi

∥∥∥
∥∥

H

< ε

for m > n. The proof is complete. �

Now we are ready to prove the next important result.

Theorem . The set of eigenfunctions (φi(x)) of the problem ()-() form an orthonormal
basis in the Hilbert space H and for any f ∈ H the Parseval equality

‖f ‖
H =

∞∑

i=

(
γγ

∫ –

–π

f φi dx + δδ

∫ π

+
f φi dx

)

holds.



Aydemir and Mukhtarov Boundary Value Problems  (2016) 2016:82 Page 10 of 16

Proof Without loss of generality we shall assume that λ =  is not an eigenvalue. Other-
wise, we can select a real λ �=  such that the problem τu = λu, �i(u) = ti(u) = , i = , 
has no nontrivial solutions. Then denoting λ̃ = λ – λ and q̃(x) = q(x) – λ we see that the
problem

–u′′ + q̃(x)u = λ̃u, �i(u) = ti(u) = , i = , , ()

has the same properties for the eigenfunctions and eigenvalues as the considered problem
()-(). Namely, the pair (λ̃, u(x)) is the eigen-pair of the problem () if and only if the
pair (λ, u(x)) is an eigen-pair of ()-(). Clearly, λ̃ =  is not an eigenvalue of the problem
(). Hence, without loss of generality we can assume that λ =  is not an eigenvalue of
the considered BVTP ()-(). Moreover, if λ �= , then the pair (λ, u(x)) is the eigen-pair
of the BVTP ()-() if and only if the pair ( 

λ
, u(x)) is the eigen-pair of the integral oper-

ator F. Consequently the set φi form an orthonormal set of eigenfunctions either for F

and ()-(). Moreover, this set is complete by Theorem .. It is well known that any com-
plete orthonormal set in a Hilbert space forms an orthonormal basis. Consequently, every
function f ∈ H may be expanded in a Fourier series with respect to the orthonormal set
of eigenfunctions (φi), i.e. the equality

f =
∞∑

i=

〈f ,φi〉Hφi

holds, where the series converges with respect to the norm of the Hilbert space H . Further,
the Parseval equality follows immediately from the last equality. �

5 The Rayleigh-Ritz principle for the BVTP (1)-(5)
In the last sections of this study we will investigate some extremal properties of the eigen-
values and corresponding eigenfunctions of the considered BVTP ()-() by using some
variational methods.

Lemma . Let q(x) ≥  for all x ∈ 
. Then all eigenvalues of the problem ()-() are non-
negative.

Proof Let (λ, u(x)) be any eigen-pair of the problem ()-(). Multiplying () by u(x) and
integrating by parts from x = –π to x = , and from x =  to x = π , we have

γγ

∫ –

–π

u
[
u′′ – qu + λu

]
dx + δδ

∫ π

+
u
[
u′′ – qu + λu

]
dx

= γγ

∫ –

–π

[
–u′ – qu + λu]dx + δδ

∫ π

+

[
–u′ – qu + λu]dx

+ γγuu′|–
–π + δδuu′|π+ = . ()

By using the equalities ()-(), we get γγuu′|–
–π + δδuu′|π+ = . Hence

γγ

∫ –

–π

[
–u′ – qu + λu]dx + δδσ

∫ π

+

[
–u′ – qu + λu]dx = . ()
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Consequently

λ =
γγ

∫ –

–π
[u′ + qu] dx + δδ

∫ π

+ [u′ + qu] dx
γγ

∫ –

–π
u dx + δδ

∫ π

+ u dx
≥  ()

since q ≥  on 
 ∪ 
 by assumption. �

Theorem . Let q(x) ≥  for all x ∈ 
. Then, all the eigenvalues of the problem ()-()
are positive if any one of the following conditions holds:

() q �≡ , i.e. there exists at least one x ∈ 
 such that q(x) > ;
() cos α + cos β �= .

Proof Let λ be the first eigenvalue with the corresponding eigenfunction u(x). Show that
λ > .

() Since q(x) is continuous in 
 there are δ >  and q >  such that q(x) ≥ q for all
x ∈ [x – δ, x + δ] ⊂ 
. Then from () it follows immediately that λ > .

() Suppose that it possible that λ = . Then from (), u′
(x) =  for all x ∈ 
, i.e. u(x)

is a constant function in each of 
 and 
. Putting in () and () we have cosαu(–π ) =
cosβu(π ) = . Consequently at least one of u(–π ) and u(π ) is equal to zero and therefore
u is identically zero 
 or 
. Then by applying the transmission conditions () and ()
we see that u is identically zero on the whole 
 = 
 ∪
. We have a contradiction, which
completes the proof. �

Theorem . Suppose that any one of the following conditions holds:
() q �≡  and q(x) ≥ ;
() q(x) ≥  and cos α + cos β �= .

Let λ < λ < · · · be the sequence of eigenvalues with the corresponding normalized eigen-
functions φ(x),φ(x), . . . and let

Sn =
{

u(x)|u ∈ ⊕C(
); u �≡ ;�i(u) = ti(u) =  for i = , ;

〈u,φk〉H =  for k = , , . . . , n – 
}

, n = , , . . .

(naturally by S we mean S = {u(x)|u ∈ ⊕C(
); u �≡ ;�i(u) = ti(u) =  for i = , }). Then
for all n = , , . . . we have

λn = min
{

I(u)|u ∈ Sn
}

,

where the functional I(u) is given by

I(u) =


‖u‖
H

{
γγ

∫ –

–π

[
u′ + qu]dx + δδ

∫ π

+

[
u′ + qu]dx

}
. ()

Moreover, the minimizing function is φn, i.e. λn = I(φn).

Proof Let ϕ(·) ∈ ⊕C(
) with �iϕ = tiϕ = , i = , . Then by Theorem . we have

ϕ(x) =
∞∑

n=

〈
ϕ(·),φn(·)〉Hφn(x),
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where the convergence is uniform on 
. Then, by integration by parts, we get

〈
τ (ϕ),φn

〉
H =

〈
ϕ, τ (φn)

〉
H = λn

〈
φn(·),ϕ(·)〉H . ()

Since {φn(x)} is a complete orthonormal set, by Parseval’s equation

〈ϕ,ϕ〉H =
∞∑

n=

c
n(ϕ), ()

where cn(ϕ) = 〈φn(·),ϕ(·)〉H . By using () we get

γγ

∫ 

–π

[
ϕ′ + qϕ]dx + δδ

∫ π



[
ϕ′ + qϕ]dx

=
〈
ϕ, τ (ϕ)

〉
H = –

〈( ∞∑

n=

cnφn

)

, τ (ϕ)

〉

H

= –
∞∑

n=

cn
〈
φn, τ (ϕ)

〉
H

=
∞∑

n=

cnλn〈ϕ,φn〉H =
∞∑

n=

λnc
n ≥ λ‖ϕ‖

H . ()

Consequently

λ ≤ 
‖ϕ‖

H

{
γγ

∫ 

–π

[
ϕ′ + qϕ]dx + δδ

∫ π



[
ϕ′ + qϕ]dx

}
. ()

Putting ϕ = φ in equation () we have cn(ϕ) = 〈φ,φn〉 =  for n = , , . . . and

λ =


‖φ‖
H

{
γγ

∫ –

–π

[
φ′

 + qφ

]

dx + δδ

∫ π

+

[
φ′

 + qφ

]

dx
}

. ()

From ()-() it follows immediately that

λ = min
{

I(ϕ)|ϕ ∈ S
}

and the minimizing function is ϕ = φ(x), i.e. λ = I(φ). Next, let ϕ(x) ∈ ⊕C(
) with
�iϕ = tiϕ = , i = , , and 〈ϕ,φn〉 =  for n = , . . . , k. Then

γγ

∫ –

–π

[
ϕ′ + qϕ]dx + δδ

∫ π

+

[
ϕ′ + qϕ]dx

=
∞∑

n=k+

λncn(ϕ) ≥ λk+

∞∑

n=k+

cn(ϕ) = λk+‖ϕ‖
H . ()

Hence, by the same arguments as before, we have

λk+ = min
{

I(ϕ)|ϕ ∈ Sk+
}

for k = , , . . . and the minimizing function is φk+, i.e. λk+ = I(φk+). �
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Remark . By applying the minimization principle directly, it is not possible to deter-
mine explicitly the eigenvalues and corresponding eigenfunctions, since we do not know
how to minimize over all ‘admissible’ functions. Nevertheless, using the Rayleigh func-
tional () with appropriate test functions one can obtain useful approximations for the
eigenvalues.

6 The minimax property of eigenvalues
According to the minimization principle which is given by the preceding Theorem . we
can find the nth eigen-pair (λn,φn) only after the previous eigenfunctions φ(x),φ(x), . . . ,
φn–(x) are known. But in many applications it is important to have a characterization of
any eigen-pair (λk ,φk) that makes no reference to other eigen-pairs. By applying the fol-
lowing theorem we can determine the nth eigen-pair (λn,φn) without using the preceding
eigenfunctions φ(x),φ(x), . . . ,φn–(x).

Theorem . Let u(x), u(x), . . . , un–(x) ∈ ⊕C(
) be arbitrary functions. Denote

Dn–(u, u, . . . , un–) =
{

u ∈ ⊕C(
)|�j(u) = tj(u) = , j = , ;

〈u, ui〉 =  for i = , , . . . , n – ;
}

, n = , , . . .

(naturally by D(u, u, . . . , un–) we mean the linear manifold

{
u ∈ ⊕C(
)|�j(u) = tj(u) = , j = , 

})
.

Then the nth eigenvalue of the BVTP ()-() is

λn = max
{
min

{
I(u)|u ∈ Dn–(u, u, . . . , un–)

}|φi ∈ ⊕C(
)

for i = , , . . . , n – 
}

. ()

Proof Let  < λ < λ < · · · be the sequence of eigenvalues determined by the extremal
principles and φ(x),φ(x), . . . be the corresponding sequence of orthonormal eigenfunc-
tions and let u, u, . . . , un– ∈ ⊕C(
) be arbitrary functions. Define

Fn(u, u, . . . , un–) = inf
{

I(u)|u ∈ Dn–(u, u, . . . , un–)
}

, n = , , . . . .

Now let ψ(x),ψ(x), . . . ,ψn–(x) ∈ ⊕C(
) be any given functions, such that �i(ψj) =
ti(ψj) =  (i = , ; j = , , . . . , n – ). Denoting aij = 〈φi,ψi〉H for i, j = , , . . . , n – , con-
sider a system of n –  homogeneous linear equations in n unknowns z, z, . . . , zn given
by

n∑

i=

aijzi = , j = , , . . . , n – . ()

Obviously this system of n– homogeneous linear equations in n unknowns has a nontriv-
ial solution. Let α,α, . . . ,αn– be any nontrivial solution of system (). Define a function
υn(x) by

υn(x) = αφ(x) + · · · + αnφn(x). ()
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It is easy to see that

〈υn,ψj〉H =  for j = , , . . . , n – . ()

Consequently υn ∈ Dn–(ψ,ψ, . . . ,ψn–) and ‖υ‖
H = α

 + α
 + · · · + α

n . Then we have

γγ

∫ 

–π

[
υ ′

n + qυ
n
]

dx + δδ

∫ π



[
υ ′

n + qυ
n
]

dx

=
n∑

i,j=

αiαj

(
γγ

∫ 

–π

[
φ′

iφ
′
j + qφiφj

]
dx + δδ

∫ π



[
φ′

iφ
′
j + qφiφj

]
dx

)
.

Integrating by parts we get

γγ

∫ 

–π

[
φ′

iφ
′
j + qφiφj

]
dx + δδ

∫ π



[
φ′

iφ
′
j + qφiφj

]
dx

= φ′
iφj|–

–π + φ′
iφj|π+ +

〈
φj, τ (φi)

〉
H = λi〈φj, uφi〉H = λiδij,

where δij is the Kronecker delta. Then we have

I(υn) =


‖υn‖
H

n∑

i=

λiα

i ≤ λn.

Consequently Fn(u, u, . . . , un–) ≤ I(υn) ≤ λn for all u, u, . . . , un– ∈ ⊕C(
). Further-
more, by virtue of the preceding theorem

Fn(φ,φ, . . . ,φn–) = λn.

Hence

λn = max
{

F(u, u, . . . , un–)|φj ∈ ⊕C(
), j = , , . . . , n – 
}

,

which completes the proof. �

Remark . In many problems of mathematical physics, the smallest eigenvalue (the so-
called principal eigenvalue) plays an important role. For example, the principal eigenvalue
of the simple boundary value problem

–u′′ = λρ(x)u, x ∈ [–π ,π ], u(–π ) = u(π ) = ,

where ρ(x) >  is the given function, can be interpreted as the square of the lowest fre-
quency of vibration of a rod of nonuniform cross section given by ρ(x). Therefore it is
significant to determine explicitly the principal eigenvalue, or at least a ‘good’ estimation
of it. Note that useful approximation values for the principal eigenvalue can be drawn from
the minimax property () by using certain principles of the theory of the calculus of vari-
ations. In particular we can find an upper bound for the lowest eigenvalue λ. In fact let
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⊕C(
) be any nontrivial function satisfying the boundary-transmission conditions ()-()
called the trial function. Then by virtue of the minimax principle we have the inequality

λ ≤ 
‖υ‖

H

{
γγ

∫ 

–π

[
υ ′ + qυ]dx + δδ

∫ π



[
υ ′ + qυ]dx

}
,

which gives us an upper bound for the principal eigenvalue. By taking the trial function
υ(x) as close as possible to the corresponding eigenfunction we can expect to get the ‘good’
estimation for principal eigenvalue λ. In many special cases the useful trial function can
be found by applying some principles of variational analysis.

7 Dependence of eigenvalues on the potential
The minimax principle of the eigenvalues, i.e. equation () for the eigenvalues makes it
possible to study the dependence of the eigenvalues on the coefficients of the differen-
tial equation. In this section we shall establish the monotonicity of the eigenvalues with
respect to the potential q(x) for fixed boundary-transmission conditions.

Theorem . Let λn(q) be the nth eigenvalue of the BVTP ()-(). Then λn(q) is a mono-
tonically increasing function with respect to the variable q = q(x), i.e. if q(x) ≤ q(x) for all
x ∈ 
 then λn(q) ≤ λn(q).

Proof Define

Ii(u) =


‖u‖
H

{
γγ

∫ –

–π

[
u′ + qiu]dx + δδ

∫ π

+

[
u′ + qiu]dx

}
, i = , .

Let the notation of the preceding theorem hold and let u(x), u(x), . . . , un–(x) ∈ ⊕C(
)
be any arbitrary functions.

Since  ≤ q(x) ≤ q(x) for all x ∈ 
 it is obvious that I(u) ≤ I(u) for all u ∈
Dn–(u, u, . . . , un–). Then by virtue of Theorem ., we find the required inequality
λn(q) ≤ λn(q). The proof is complete. �
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14. Bairamov, E, Sertbaş, M, Ismailov, ZI: Self-adjoint extensions of singular third-order differential operator and

applications. AIP Conf. Proc. 1611(1), 177-182 (2014)
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