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1 Introduction
In this paper, we are concerned with the following Sturm-Liouville-type four-point bound-
ary value problem with one-dimensional p-Laplacian:

⎧
⎨

⎩

(φp(x′(t)))′ + h(t)f (t, x(t), x′(t)) = ,  < t < ,

x′() – αx(ξ ) = , x′() + βx(η) = ,
(.)

where φp(s) = |s|p–s, p > ,  < α ≤ 
ξ

,  < β ≤ 
–η

,  < ξ < η < . By applying the monotone
iterative technique, we not only prove the existence of positive solutions for the problem,
but also establish iterative schemes for approximating the solutions.

We will assume throughout:

(C) h(t) ∈ L(, ) is nonnegative on (, ) and is not identically zero on any subset of (, ).
(C) f ∈ C([, ] × [, +∞) × R, [, +∞)), f (t, , ) �≡  for  ≤ t ≤ .

Boundary value problems (BVPs) have been studied for a long period. At the begin-
ning, most researchers focused on two-point BVPs with four classical boundary con-
ditions (BCs) of Dirichlet type u() = u() = , Neumann type u′() = u′() = , Robin
type u() = u′() =  or u′() = u() = , and Sturm-Liouville type αu() – βu′() = ,
γ u() + δu′() = . Later, in order to meet the requirements of various applications, some
researchers began to pay their attentions on multipoint BVPs, such as three-point BC
u() = αu(η), u() =  or u′() = , u() = αu(η), and so on. Although the points involved
are larger than that involved in two-point BC, the difficulties remain similar. However,
when we study this kind of four-point BVPs, difficulties have a qualitative leap.
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Recently, some research articles on the theory of positive solutions to multipoint BVPs
have appeared [–]. More recently, in [–], BVPs subject to the boundary conditions

αx() – βx′(ξ ) = , γ x() + δx′(η) =  (.)

(Sturm-Liouville-type BC) were studied. Notice that BC in equation (.) can also be seen
as a Sturm-Liouville-type BC. However, to the best knowledge of the authors, such a kind
of BVPs has been rarely considered up to now. The reason is that it is not easy to convert
BVP (.) to its equivalent integral equation. In this paper, we overcome this difficulty and
also get its iterative solutions. The main tool is the monotone iterative technique. For more
references, we refer the readers to [–].

2 Background material
In the following, there are some lemmas.

Definition . A map α is said to be a nonnegative concave continuous function if α:
P → [,∞) is continuous and

α
(
λx + ( – λ)y

) ≥ λα(x) + ( – λ)α(y)

for all x, y ∈ P and  ≤ λ ≤ .

By φq we denote the inverse to φp, where 
p + 

q = . Consider the following BVP:

⎧
⎨

⎩

(φp(x′(t)))′ + v(t) = ,  < t < ,

x′() – αx(ξ ) = , x′() + βx(η) = .
(.)

Let

B(t) =

α

φq

(∫ t


v(s) ds

)

+
∫ t

ξ

φq

(∫ t

s
v(τ ) dτ

)

ds,

B(t) =

β

φq

(∫ 

t
v(s) ds

)

+
∫ η

t
φq

(∫ s

t
v(τ ) dτ

)

ds.

Lemma . Suppose that v ∈ L[, ], v(t) ≥ , and v(t) �≡  on any subinterval of [, ].
Then BVP (.) has the unique solution

x(t) =

⎧
⎨

⎩


α
φq(

∫ σx
 v(s) ds) +

∫ t
ξ
φq(

∫ σx
s v(τ ) dτ ) ds, t ∈ [,σx], (.)


β
φq(

∫ 
σx

v(s) ds) +
∫ η

t φq(
∫ s
σx

v(τ ) dτ ) ds, t ∈ [σx, ], (.)
(.)

where σx is a solution of the equation

B(t) – B(t) = , t ∈ [, ]. (.)

Proof We first prove that the solution of (.) can be expressed as (.). Let x be a solution
of BVP (.). Then (φp(x′(t)))′ = –v(t) ≤  means that x′(t) is nonincreasing. We show that
x′() >  > x′(), which implies that there exists a point σ ∈ (, ) such that x′(σ ) = .
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If not, then, for example, x′() ≤ . Then x′(t) ≤  on [, ] and x′() <  at the same time.
Considering ξ < η, we have x(η) ≤ . Then from the boundary condition in (.) we have
x′() ≥ , a contradiction.

Integrating both sides of

–
(
φp

(
x′(t)

))′ = v(t) (.)

from σ to t, we get

φp
(
x′(t)

)
= –

∫ t

σ

v(s) ds.

Then

x′(t) = –φq

(∫ t

σ

v(s) ds
)

, (.)

where q is given by 
p + 

q = .
Integrating both sides of (.) from t to , we have

x(t) = x() +
∫ 

t
φq

(∫ s

σ

v(τ ) dτ

)

ds. (.)

By (.) and (.) we have

x′() = –φq

(∫ 

σ

v(s) ds
)

,

x(η) = x() +
∫ 

η

φq

(∫ s

σ

v(τ ) dτ

)

ds.

Considering the BC in (.), we have

x() =

β

(

φq

(∫ 

σ

v(s) ds
))

–
∫ 

η

φq

(∫ s

σ

v(τ ) dτ

)

ds. (.)

Substituting (.) into (.), we obtain

x(t) =

β

(

φq

(∫ 

σ

v(s) ds
))

–
∫ 

η

φq

(∫ s

σ

v(τ ) dτ

)

ds +
∫ 

t
φq

(∫ s

σ

v(τ ) dτ

)

ds

=

β

(

φq

(∫ 

σ

v(s) ds
))

+
∫ η

t
φq

(∫ s

σ

v(τ ) dτ

)

ds, t ∈ [, ]. (.)

By a similar argument we have

x(t) =

α

(

φq

(∫ σ


v(s) ds

))

+
∫ t

ξ

φq

(∫ σ

s
v(τ ) dτ

)

ds, t ∈ [, ]. (.)

Let t = σ in (.) and (.). Then B(σ ) = B(σ ), that is, σ can be determined by B(t) –
B(t) = . Next, we show that such a σ is unique.
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Clearly, B(t) – B(t) is increasing on t ∈ [, ]. It can be easily seen that B() – B() < 
and B() – B() > . Indeed,

B() =
∫ 

ξ

φq

(∫ 

s
v(τ ) dτ

)

ds =
∫ ξ


φq

(∫ s


v(τ ) dτ

)

ds

<
∫ η


φq

(∫ s


v(τ ) dτ

)

ds ≤ B().

Thus, B() – B() < . Similarly, B() – B() > . Therefore, B(t) and B(t) must in-
tersect at one point in (, ), which solves (.), that is, σ exists and is unique. This also
implies that x(t) defined by (.) is continuous at σ .

Since σ has something to do with x, we denote σ by σx.
Hence, for t ∈ [, ], the solution of (.) can be expressed as (.), which completes the

proof. �

Remark . In fact, for any t ∈ [, ], the solution of (.) can be expressed both by (.)
and (.), but just for convenience, we write it in two parts.

Lemma . Let v(t) satisfy all the conditions in Lemma .. Then the solution x(t) of BVP
(.) is concave on t ∈ [, ]. Moreover, x(t) ≥ .

Proof Since (φp(x′(t)))′ = –v(t) ≤ , we have x′′(t) ≤ , so x(t) is concave on t ∈ [, ].
Next, we prove that x(t) ≥ . By Lemma . we know that x(t) can be expressed as (.).

When t ∈ [σx, ], since  < β ≤ 
–η

, that is, 
β

≥  – η, we have

(.) =

β

φq

(∫ 

σx

v(s) ds
)

+
∫ η

t
φq

(∫ s

σx

v(τ ) dτ

)

ds

=

β

φq

(∫ 

σx

v(s) ds
)

–
∫ 

η

φq

(∫ s

σx

v(τ ) dτ

)

ds +
∫ 

t
φq

(∫ s

σx

v(τ ) dτ

)

ds

≥
∫ 

η

φq

(∫ 

σx

v(τ ) dτ

)

ds –
∫ 

η

φq

(∫ 

σx

v(τ ) dτ

)

ds +
∫ 

t
φq

(∫ s

σx

v(τ ) dτ

)

ds

≥
∫ 

t
φq

(∫ s

σx

v(τ ) dτ

)

ds ≥ .

Similarly, when t ∈ [,σx] and  < α ≤ 
ξ

, we get (.) ≥ . Thus, x(t) ≥  for all t ∈ [, ].
The proof is complete. �

Let X = C[, ] be endowed with the maximum norm, ‖x‖ = max{‖x‖,‖x′‖}, where
‖x‖ = max≤t≤ |x(t)|. Define the cone P ⊂ X as

P =
{

x ∈ X : x is concave on t ∈ [, ],

and there exists one point σx ∈ (, ) such that x′(σx) = 
}

.

For x, y ∈ P, by x ≤ y we mean that x(t) ≤ y(t) and |x′(t)| ≤ |y′(t)| for t ∈ [, ].
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Define T : P → X as follows:

(Tx)(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩


α
φq(

∫ σx
 h(s)f (s, x(s), x′(s)) ds)

+
∫ t
ξ
φq(

∫ σx
s h(τ )f (τ , x(τ ), x′(τ )) dτ ) ds, t ∈ [,σx],


β
φq(

∫ 
σx

h(s)f (s, x(s), x′(s)) ds)

+
∫ η

t φq(
∫ s
σx

h(τ )f (τ , x(τ ), x′(τ )) dτ ) ds, t ∈ [σx, ].

(.)

Lemma . For x ∈ P, x(t) ≥ min{t,  – t}max≤t≤ |x(t)|.

Lemma . Suppose that (C) and (C) hold. Then T : P → P is completely continuous.

Proof We divide the proof into three steps.
Step . We first show that T : P → P is well defined. Let x ∈ P. Then Tx is concave on

t ∈ [, ]. Indeed, by (.),

(Tx)′(t) =

⎧
⎨

⎩

φq(
∫ σx

t h(s)f (s, x(s), x′(s)) ds), t ∈ [,σx],

–φq(
∫ t
σx

h(s)f (s, x(s), x′(s)) ds), t ∈ [σx, ].
(.)

Obviously, (Tx)′′(t) ≤ , that is, Tx is concave on t ∈ [, ]. Further, (Tx)′(t) ≥  on t ∈
[,σx], (Tx)′(t) ≤  on t ∈ [σx, ], and (Tx)′(σx) = . Thus, T : P → P is well defined.

Step . T is continuous. Let xn → x in P. Similarly to Lemma ., there exists a unique
σxn such that W,n(σxn ) = W,n(σxn ), where

W,n(t) =

α

φq

(∫ σxn


v(s) ds

)

+
∫ t

ξ

φq

(∫ σxn

s
v(τ ) dτ

)

ds,

W,n(t) =

β

φq

(∫ 

σxn

v(s) ds
)

+
∫ η

σxn

φq

(∫ s

t
v(τ ) dτ

)

ds.

Meanwhile, we can obtain that σxn → σx (n → +∞), Wi,n → Wi, (n → +∞), i = , . Let
σ n = min{σxn ,σx} and σ n = max{σxn ,σx}, n = , , . . . . Obviously, when t ∈ �n = [σ n,σ n],
t – σx →  as n → +∞. Noticing that

max
t∈�n

∣
∣Wi,n(t) – Wj,(t)

∣
∣ ≤ max

t∈�n

∣
∣Wi,n(t) – Wi,n(σxn )

∣
∣ +

∣
∣Wj,n(σxn ) – Wi,n(σxn )

∣
∣

+ max
t∈�n

∣
∣Wj,(σx ) – Wj,(t)

∣
∣ as n → +∞, i, j = , , i �= j,

we have

max
t∈[,]

|Txn – Tx|

= max
{|W,n – W,|[,σn], |W,n – W,|�n , |W,n – W,|�n , |W,n – W,|[σn ,]

}

→  as n → +∞.

Similarly, by (.) and the continuity of φq we can prove that

max
t∈[,]

∣
∣(Txn)′ – (Tx)′

∣
∣ →  as n → +∞.

Thus, T is continuous.
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It is easy to prove that T(D) is bounded and equicontinuous, where D ⊂ P is a bounded
set. By the Arzelà-Ascoli theorem, T(D) is relatively compact. So T : P → P is completely
continuous. �

Lemma . Suppose that (C) and (C) hold. Then T is increasing with respect to x ∈ P.

Proof Suppose x, x ∈ P, x ≤ x. Then x(t) ≤ x(t) and |x′
(t)| ≤ |x′

(t)|. Let us prove that
Tx ≤ Tx. According to the definition of P, we know that there exists σx ∈ (, ) such
that x′

(σx ) = , and considering |x′
(t)| ≤ |x′

(t)|, we have x′
(σx ) = , which means that

σx = σx . In what follows, we try to prove that Tx ≤ Tx.
For convenience, we give the notation

Fi(t) = h(t)f
(
t, xi(t), x′

i(t)
)
, i = , .

If t ∈ [,σx (σx )], then, in view of (C), we have

(Tx)(t) – (Tx)(t) =

α

(

φq

(∫ σx


F(s) ds

)

– φq

(∫ σx


F(s) ds

))

+
∫ t

ξ

(

φq

(∫ σx

s
F(τ ) dτ

)

ds – φq

(∫ σx

s
F(τ ) dτ

))

ds

=

α

(

φq

(∫ σx


F(s) ds

)

– φq

(∫ σx


F(s) ds

))

+
∫ t

ξ

(

φq

(∫ σx

s
F(τ ) dτ

)

ds – φq

(∫ σx

s
F(τ ) dτ

))

ds

=

α

(

φq

(∫ σx


F(s) ds

)

– φq

(∫ σx


F(s) ds

))

–
∫ ξ



(

φq

(∫ σx

s
F(τ ) dτ

)

ds – φq

(∫ σx

s
F(τ ) dτ

))

ds

+
∫ t



(

φq

(∫ σx

s
F(τ ) dτ

)

ds – φq

(∫ σx

s
F(τ ) dτ

))

ds

≥
∫ ξ



(

φq

(∫ σx


F(τ ) dτ

)

– φq

(∫ σx


F(τ ) dτ

))

ds

–
∫ ξ



(

φq

(∫ σx


F(τ ) dτ

)

ds – φq

(∫ σx


F(τ ) dτ

))

ds

+
∫ t



(

φq

(∫ σx

s
F(τ ) dτ

)

ds – φq

(∫ σx

s
F(τ ) dτ

))

ds

=
∫ t



(

φq

(∫ σx

s
F(τ ) dτ

)

ds – φq

(∫ σx

s
F(τ ) dτ

))

ds ≥ ,

(Tx)′(t) – (Tx)′(t) = φq

(∫ σx

t
F(s) ds

)

– φq

(∫ σx

t
F(s) ds

)

= φq

(∫ σx

t
F(s) ds

)

– φq

(∫ σx

t
F(s) ds

)

≥ .

If t ∈ [σx (σx ), ], then we can similarly prove that (Tx)(t) – (Tx)(t) ≥  and (Tx)′(t) –
(Tx)′(t) ≤ .
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To sum up, we have Tx ≤ Tx, which is the desired result. The proof is complete. �

Remark . We can easily verify that φq(
∫ σx

s F(τ ) dτ ) ds – φq(
∫ σx

s F(τ ) dτ ) is nonin-
creasing with respect to s ∈ [,σx ] by calculating its derivative.

3 The existence of positive solutions
Let

λ = max

{

α

φq

(∫ 



h(s) ds

)

+
∫ 



ξ

φq

(∫ 


s
h(τ ) dτ

)

ds,

β

φq

(∫ 




h(s) ds
)

+
∫ η




φq

(∫ s




h(τ ) dτ

)

ds,φq

(∫ 


h(s) ds

)}

·
(

max

{

α

,

β

}

+ η +



)

.

Theorem . Assume that (C) and (C) hold. Further, suppose that there exists r >  such
that:

(C) f (t, u, v) ≤ f (t, u, v) for any  ≤ t ≤ ,  ≤ u ≤ u ≤ r,  ≤ |v| ≤ |v| ≤ r;
(C) maxt∈[,] f (t, r, r) ≤ φp( r

λ
).

Then the boundary value problem (.) has at least two positive solutions w∗ and v∗ in P
such that

 < w∗ ≤ r,  <
∣
∣
(
w∗)′∣∣ ≤ r,

and

lim
n→∞ wn = lim

n→∞ Tnw = w∗, lim
n→∞(wn)′ = lim

n→∞
(
Tnw

)′ =
(
w∗)′,

where

w(t) =
r
λ

(

max

{

α

,

β

}

+ η + t +  – t
)

· φq

(∫ 


h(s) ds

)

and

 < v∗ ≤ r,  <
∣
∣
(
v∗)′∣∣ ≤ r,

and

lim
n→∞ vn = lim

n→∞ Tnv = v∗, lim
n→∞(vn)′ = lim

n→∞
(
Tnv

)′ =
(
v∗)′,

where v(t) = ,  ≤ t ≤ .

Proof Let Pr = {u ∈ P | ‖u‖ ≤ r}. First, we prove that T : Pr → Pr . For any u ∈ Pr , ‖u‖ ≤ r,
we have

 ≤ u(t) ≤ max
≤t≤

∣
∣u(t)

∣
∣ ≤ ‖u‖ ≤ r,

∣
∣u′(t)

∣
∣ ≤ max

≤t≤

∣
∣u′(t)

∣
∣ ≤ ‖u‖ ≤ r.
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Then considering (C)-(C), we get

 ≤ f
(
t, u(t), u′(t)

) ≤ f (t, r, r) ≤ max
≤t≤

f (t, r, r) ≤ φp

(
r
λ

)

.

By (.) and (.) we obtain

(Tu)(σx) =

α

φq

(∫ σx


h(s)f

(
s, x(s), x′(s)

)
ds

)

+
∫ σx

ξ

φq

(∫ σx

s
h(τ )f

(
τ , x(τ ), x′(τ )

)
dτ

)

ds

≤ max

{

α

φq

(∫ 



h(s)f

(
s, x(s), x′(s)

)
ds

)

+
∫ 



ξ

φq

(∫ 


s
h(τ )f

(
τ , x(τ ), x′(τ )

)
dτ

)

ds,

β

φq

(∫ 




h(s)f
(
s, x(s), x′(s)

)
ds

)

+
∫ η




φq

(∫ s




h(τ )f
(
τ , x(τ ), x′(τ )

)
dτ

)

ds
}

≤ r
λ

· λ = r,

and

(Tu)′() = φq

(∫ σx


h(s)f

(
s, x(s), x′(s)

)
ds

)

≤ φq

(∫ 


h(s)f

(
s, x(s), x′(s)

)
ds

)

≤ r
λ

· λ = r,

–(Tu)′() = φq

(∫ 

σx

h(s)f
(
s, x(s), x′(s)

)
ds

)

≤ φq

(∫ 


h(s)f

(
s, x(s), x′(s)

)
ds

)

≤ r
λ

· λ = r.

Thus, we obtain that ‖Tu‖ ≤ r. So, we have shown that T : Pr → Pr .
Second, we will establish iterative schemes for approximating the solutions. Let

w(t) =
r
λ

(
–t + t + c

) · φq

(∫ 


h(s) ds

)

,

where c = 
α

+ 
α

+  + 
β

. Obviously, w(t) ∈ P and w′
( 

 ) = . Let w(t) = Tw(t). Then we
have w ∈ Pr . We denote wn+ = Twn = Tnw, n = , , . . . . Then we have wn ∈ Pr . Since T
is completely continuous, {wn}∞n= is a sequentially compact set. We have

w(t) = Tw(t)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩


α
φq(

∫ σx
 h(s)f (s, w(s), w′

(s)) ds)

+
∫ t
ξ
φq(

∫ σx
s h(τ )f (τ , w(τ ), w′

(τ )) dτ ) ds, t ∈ [,σx],

β
φq(

∫ 
σx

h(s)f (s, w(s), w′
(s)) ds)

+
∫ η

t φq(
∫ s
σx

h(τ )f (τ , w(τ ), w′
(τ )) dτ ) ds, t ∈ [σx, ],
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≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r
λ

( 
α

+ ξ – t) · φq(
∫ 

 h(s) ds),  ≤ t ≤ min{ξ ,σx} ≤ ,
r
λ

( 
α

+ t – ξ ) · φq(
∫ 

 h(s) ds),  ≤ ξ ≤ t ≤ σx ≤ ,
r
λ

( 
β

+ η – t) · φq(
∫ 

 h(s) ds),  ≤ σx ≤ t ≤ η ≤ ,
r
λ

( 
β

+ t – η) · φq(
∫ 

 h(s) ds),  ≤ max{η,σx} ≤ t ≤ 

≤ r
λ

(
–t + t + c

) · φq

(∫ 


h(s) ds

)

= w(t),  ≤ t ≤ ,

and

∣
∣w′

(t)
∣
∣ =

∣
∣(Tw)′(t)

∣
∣

=

⎧
⎨

⎩

|φq(
∫ σw

t h(s)f (s, w(s), w′
(s)) ds)|, t ∈ [,σw ],

| – φq(
∫ t
σw

h(s)f (s, w(s), w′
(s)) ds)|, t ∈ [σw , ],

≤
⎧
⎨

⎩

r
λ
|φq(

∫ 


t h(s) ds)|, t ∈ [, 
 ],

r
λ
| – φq(

∫ t



h(s) ds)|, t ∈ [ 
 , ],

≤ r
λ

|b – at|φq

(∫ 


h(s) ds

)

, t ∈ [, ],

=
∣
∣w′

(t)
∣
∣,  ≤ t ≤ .

Then we obtain that

w(t) ≤ w(t),
∣
∣w′

(t)
∣
∣ ≤ ∣

∣w′
(t)

∣
∣,  ≤ t ≤ .

Hence, by Lemma . we have

w(t) = (Tw)(t) ≤ (Tw)(t) = w(t),  ≤ t ≤ ,
∣
∣w′

(t)
∣
∣ =

∣
∣(Tw)′(t)

∣
∣ ≤ ∣

∣(Tw)′(t)
∣
∣ =

∣
∣w′

(t)
∣
∣,  ≤ t ≤ .

Thus, by induction we get

wn+(t) ≤ wn(t),
∣
∣w′

n+(t)
∣
∣ ≤ ∣

∣w′
n(t)

∣
∣,  ≤ t ≤ , n = , , . . . .

So, there exists w∗ ∈ Pr such that wn → w∗. Considering that T is completely continuous
and wn+ = Twn, we have Tw∗ = w∗.

Let v(t) = ,  ≤ t ≤ . Then v(t) ∈ Pr . Let v = Tv; then v ∈ Pr . We denote vn+ =
Tvn = Tnv, n = , , . . . . Since T : Pr → Pr , we get vn ∈ TPr ⊆ Pr , n = , , . . . . Since T is
completely continuous, {vn}∞n= is a sequentially compact set. We have

v(t) = (Tv)(t) = (T)(t) ≥ ,  ≤ t ≤ ,
∣
∣v′

(t)
∣
∣ =

∣
∣(Tv)′(t)

∣
∣ =

∣
∣(T)′(t)

∣
∣ ≥ ,  ≤ t ≤ .
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Thus,

v(t) = (Tv)(t) ≥ (Tv)(t) = v(t),  ≤ t ≤ ,
∣
∣v′

(t)
∣
∣ =

∣
∣(Tv)′(t)

∣
∣ ≥ ∣

∣(T)′(t)
∣
∣ =

∣
∣v′

(t)
∣
∣,  ≤ t ≤ .

Similarly, by induction we obtain

vn+(t) ≥ vn(t),
∣
∣v′

n+(t)
∣
∣ ≥ ∣

∣v′
n(t)

∣
∣,  ≤ t ≤ , n = , , . . . .

So, there exists v∗ ∈ Pr such that vn → v∗. Considering that T is completely continuous
and vn+ = Tvn, we have Tv∗ = v∗.

Since f (t, , ) �≡  for  ≤ t ≤ , the zero function is not the solution of (.). Hence,
since max |v∗(t)| > , we have v∗(t) ≥ min{t,  – t}max≤t≤ |v∗(t)|,  ≤ t ≤ .

As we all know, the fixed point of T is a solution of BVP (.). Hence, we have shown
that w∗, v∗ are two positive solutions of problem (.).

The proof is complete. �

Remark . We can see that w∗ and v∗ may be the same solution of BVP (.), but for
convenience, we say that there exist at least two solutions.

Corollary . Assume that (C) and (C) hold. Further, suppose that there exists r > 
such that:

(C) liml→+∞ max≤t≤
f (t,l,r)
lp– ≤ φp( 

λ
) (particularly, liml→+∞ max≤t≤

f (t,l,r)
lp– = ).

Then problem (.) has two positive solutions in P.

At the end of this paper, we give an example to illustrate our main result.
Consider the following four-point boundary value problem.

Example 

⎧
⎨

⎩

(φp(x′))′ + tf (t, x(t), x′(t)) = ,  < t < ,

x′() – x(/) = , x′() + x(/) = ,
(.)

where

f (t, u, v) = t +
u


+
v


.

We can see that h(t) = t, ξ = 
 , η = 

 , α = , β = . Let p = 
 , r = . By direct calculation

we obtain q = , λ = 
 . Then the conditions of Theorem . are all satisfied. So BVP (.)

has at least two positive solutions w∗, v∗, and there exists σx ∈ (, ) such that (w∗)′(σx) = ,
(v∗)′(σx) = . Further,

 ≤ w∗ ≤ ,  ≤ ∣
∣
(
w∗)′∣∣ ≤ ,
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and

lim
n→∞ wn = lim

n→∞ Tnw = w∗, lim
n→∞(wn)′ = lim

n→∞
(
Tnw

)′ =
(
w∗)′,

where

w(t) =

⎧
⎨

⎩

( 
 – t),  ≤ t ≤ 

 ,

(t + 
 ), 

 ≤ t ≤ .

At the same time, we have

 < v∗ ≤ ,  <
∣
∣
(
v∗)′∣∣ ≤ ,

and

lim
n→∞ vn = lim

n→∞ Tnv = v∗, lim
n→∞(vn)′ = lim

n→∞
(
Tnv

)′ =
(
v∗)′,

where v(t) = ,  ≤ t ≤ , and T is as defined in (.).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JZ and BS conceived of the study and participated in its coordination. JZ drafted the manuscript, and YW proofread the
manuscript. All authors read and approved the final manuscript.

Author details
1School of Science, China University of Geosciences, Beijing, 100083, China. 2School of Statistics and Mathematics,
Central University of Finance And Economics, Beijing, 100081, China.

Acknowledgements
The authors were very grateful to the anonymous referee whose careful reading of the manuscript and valuable
comments enhanced presentation of the manuscript. The study was supported by the Fundamental Research Funds for
the Central Universities (No. 2652015194) and Beijing Higher Education Young Elite Teacher Project.

Received: 23 November 2015 Accepted: 11 April 2016

References
1. Agarwal, RP, O’Regan, D, Wong, PJY: Positive Solutions of Differential, Difference, and Integral Equations. Kluwer

Academic, Boston (1999)
2. Webb, JRL: Positive solutions of some three point boundary value problems via fixed point index theory. Nonlinear

Anal. 47, 4319-4332 (2001)
3. Ge, W, Ren, J: New existence theorem of positive solutions for Sturm-Liouville boundary value problems. Appl. Math.

Comput. 148, 631-644 (2004)
4. Il’in, VA, Moiseev, EI: Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential

and finite difference aspects. Differ. Equ. 23, 803-810 (1987)
5. Gupta, CP: A generalized multi-point boundary value problem for second order ordinary differential equations. Appl.

Math. Comput. 89, 133-146 (1998)
6. Pang, H, Ge, W: Multiple positive solutions for second-order four-point boundary value problem. Comput. Math.

Appl. 54, 1267-1275 (2007)
7. Lian, H, Ge, W: Positive solutions for a four-point boundary value problem with the p-Laplacian. Nonlinear Anal. 68,

3493-3503 (2008)
8. Liu, B: Positive solutions of a nonlinear four-point boundary value problems. Appl. Math. Comput. 155, 179-203

(2004)
9. Wang, P, Tian, S, Wu, Y: Monotone iterative method for first-order functional difference equations with nonlinear

boundary value conditions. Appl. Math. Comput. 203, 266-272 (2008)
10. Lian, H, Wang, P, Ge, W: Unbounded upper and lower solutions method for Sturm-Liouville boundary value problem

on infinite intervals. Nonlinear Anal. 70(7), 2627-2633 (2009)
11. Wang, P, Wu, H, Wu, Y: Higher even-order convergence and coupled solutions for second-order boundary value

problems on time scales. Comput. Math. Appl. 55, 1693-1705 (2008)


	Existence and iterative solutions of a new kind of Sturm-Liouville-type boundary value problem with one-dimensional p-Laplacian
	Abstract
	MSC
	Keywords

	Introduction
	Background material
	The existence of positive solutions
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


