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Abstract
We investigate the scattering of Gaussian pulse by an absorbing half-plane satisfying
Myers’ impedance conditions. The model problem is considered for a subsonic flow
in a moving fluid. The Wiener-Hopf technique followed by the spatial and temporal
Fourier transforms and method of Steepest descent enables us to develop the far
field solution analytically. It is observed that the Myers’ impedance condition found
higher-order accuracy of Mach number as compared with the results obtained while
using Ingard’s condition. The solution to the underlying problem leads itself to the
variety of problems thereby including the effects of Gaussian pulses.
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1 Introduction
The impedance boundary condition (IBC) was first introduced by Leontovich in attempt
to solve the problems of radio wave propagation over the earth. The IBCs are the approxi-
mate boundary conditions that relate the field outside the scatterer only, and thus analysis
of the related problem is much more simplified []. These IBCs have been utilized by many
researchers in the field of electromagnetics and acoustics; refer, for instance, to Wang [],
Nawaz et al. [, ], Rawlins [], Ahmad [], Buyukaksoy et al. [], Ayub et al. [], etc. Rawl-
ins [] used Ingard’s condition [] to model the impedance conditions that arise in the
noise reduction problems by barriers. Ahmad [] reconsidered Rawlins problem [] and
showed that Myers’ condition [] gives better results than Ingard’s conditions when the
diffraction problems of acoustic waves related to noise reduction by barriers are consid-
ered in a moving fluid regime. Myers’ condition [] contains a correction term and thus
allows a straightforward manipulation of the condition into a form that is more conve-
nient to apply than Ingard’s condition. In this paper, we focus ourselves on the diffraction
of cylindrical Gaussian pulse by an absorbing half-plane in a moving fluid satisfying Myers’
impedance condition.

Gaussian functions and integrals frequently occur in many problems of mathematics,
physics, statistics, and also in other branches of science and technology. To name a few,
Gaussian integrals occur in normal distributions (also known as Gaussian distributions),
which occupy a central position in statistical inference, sampling distributions and are ex-
cellent approximations to several other distributions. In quantum field theory, the Gaus-
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sian integrals involve ordinary real or complex variables or the Grassmann variables. Be-
cause Gaussian beams have favorable propagation characteristics and represent physically
observable entities, these have played a vital role in many modeling schemes; see, for in-
stance, []. In particular, Gaussian and comb functions are the best known examples of
self-Fourier functions []. Keeping in view the importance of Gaussian functions, the
diffraction of cylindrical Gaussian pulse near an absorbing half-plane in a moving fluid
regime is examined mathematically.

While investigating the diffraction problems of acoustic/electromagnetic/elastic waves,
harmonic time variation is assumed and suppressed throughout the analysis. Although
time harmonic waves are of great importance, yet there are significant fields whose time
variation is nonharmonic. The time-dependant wave phenomenon is also an important
aspect in the wave motion theory and gives a more transparent picture of wave motion
phenomenon. A good account of transient problems can be found in the books of Fried-
lander [] and Jones []. The transient wave phenomenon is also important due to its
ability to produce short electromagnetic pulses, which are used as a diagnostic tool for
identification/location of cracks or other defects, implosion and seismological prospects
like bore hole sounding and nondestructive testing []. Keeping in view the importance
of transient wave motion, many scientists have contributed transient wave problems in
diffraction theory, to name a few, for example, Haris [, ], Rienstra [], Kriegsmann
et al. [], Ahmad [], Ishii and Tanaka [], Alford et al. [], and Ayub et al. [, ].
Moreover, Marin et al. [] and Marin [] have also focused themselves on related studies
by considering nonsimple material problems.

The solution to the underlying problem is presented while using spatial and temporal
Fourier transforms, the Wiener-Hopf technique [], and the method of steepest descent
[]. Firstly, temporal Fourier transform is applied to obtain the transfer function in fre-
quency domain, and then following the approach of Sun et al. [], finally, the inverse
transform is used to get the results in time domain. The results for the rigid barrier and
still air can be computed as a special case from the given diffracted field.

2 Statement of the problem
We consider the scattering of acoustic waves radiated by a cylindrical Gaussian pulse by
an absorbing half-plane located at x ≥ , y = . The cylindrical Gaussian pulse is located
at (x, y), whereas the half-plane is of negligible thickness that satisfies Myers’ impedance
condition []

un =
[

∂

∂t
+ U

∂

∂x

]
g

|∇α| ()

with

∂g
∂t

= –
p
za

|∇α|, ()

where un is the normal derivative of the perturbation velocity, p is the surface pressure, za

is the acoustic impedance, and n is the normal vector pointing from the surface into the
fluid. The whole system is assumed to be in moving fluid with subsonic velocity U parallel
to x-axis. The equations of motion are linearized, and the effects of viscosity, thermal
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conductivity, and gravity are neglected. The perturbation velocity u of the irrotational
sound wave can be written in terms of the velocity potential φ as u = ∇φ, and the resulting
pressure p of the sound field is given by

p = –ρ

(
∂

∂t
+ U

∂

∂x

)
φ, ()

where ρ is the density of the undisturbed stream. The Gaussian pulse of strength s√
π

is
considered parallel to the edge at the point (x, y). The governing convective wave equa-
tion is given by

[
∂φ

∂x +
∂φ

∂y –
(


c

∂

∂t
+ M

∂

∂x

)]
φ(x, y, t) =

s√
π

δ(x – x)δ(y – y)e–st
. ()

3 Problem in frequency domain
Let us define the temporal Fourier transform pair as

ψ(x, y,ω) =
∫ ∞

–∞
φ(x, y, t)eiωt dt,

φ(x, y, t) =


π

∫ ∞

–∞
ψ(x, y,ω)e–iωt dω. ()

Now transforming equation () by using equation (), we obtain

[(
 – M) ∂

∂x + ikM
∂

∂x
+

∂

∂y + k
]
ψ(x, y,ω) = δ(x – x)δ(y – y)e–ωt

. ()

The Fourier temporal transform of the boundary condition () yields

[
∂

∂y
∓ βM

∂

∂x
± ikβ ∓ iβM

k
∂

∂x

]
ψ

(
x, ±,ω

)
= , x > . ()

The continuity conditions for pressure and normal component of velocity are given by

⎧⎨
⎩

ψ(x, +,ω) = ψ(x, –,ω),
∂ψ

∂y (x, +,ω) = ∂ψ

∂y (x, –,ω),
x < , ()

where k = ω
c is the wave number, c is the speed of sound, β = ρc

Za
is the specific complex

admittance of the material of which half-plane is made up of, M = U
c is the Mach number,

and Za is the acoustic impedance. We assume that the flow is subsonic, that is, |M| <  and
Reβ > , which is a necessary condition for an absorbing surface [].

4 Nondimensional form
Through equations ()-(), we observe that the boundary value problem in the trans-
formed plane ω is quite analogous to the boundary value problem in [], with an addi-

tional factor e– ω
s and where k (= ω

c ) is a function of ω rather than a constant. This fact
results in much greater complexity while working the diffracted field. Thus, in order to
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avoid repetition, we refer to [] for details of calculations and restrict ourselves to im-
portant calculation steps only. To ease the solution procedure, in first attempt, we shall
undimensionalize the problem defined through equations ()-() with the following real
substitutions []:

x =
√

 – MX, x =
√

 – MX, y = Y , y = Y,

β =
√

 – MB, k =
√

 – MK ,

and

ψ(x, y,ω) = �(X, Y ,ω)e–ifKMX ,

which results in

(
∂

∂X +
∂

∂Y  + K
)

�(X, Y ,ω) =
δ(X – X)δ(Y – Y)√

 – M
e– ω

s +iKMX , ()

subject to the boundary conditions

[
∂

∂Y
∓ BM

∂

∂X
± iKB

(
 + M) ± iBM

( – M)K
∂

∂X

]
�

(
X, ±,ω

)
= , X > , ()

and continuity conditions

⎧⎨
⎩

∂�
∂Y (X, +,ω) = ∂�

∂Y (X, –,ω),

�(X, +,ω) = �(X, –,ω),
X < . ()

5 Analytic solution
It is pertinent to mention that the total field carries two effects, one in terms of incident
and the other in terms of diffracted field. Therefore, the total field �(X, Y ,ω) is split as

�(X, Y ,ω) = �(X, Y ,ω) + �d(X, Y ,ω), ()

where �(X, Y ,ω) satisfies the inhomogeneous equation

(
∂

∂X +
∂

∂Y  + K
)

�(X, Y ,ω) =
δ(X – X)δ(Y – Y)√

 – M
e– ω

s +iKMX , ()

and �d(X, Y ,ω) satisfies the homogeneous equation

(
∂

∂X +
∂

∂Y  + K
)

�d(X, Y ,ω) = . ()

Now with the help of Green’s function method [] solution of equation () results in

�(X, Y ,ω) =
a
i

H
(KR) =

a
π i

∫ ∞

–∞

κ

ei[ν(X–X)+κ|Y –Y|] dν, ()
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where a = eiKMX√
–M , R =

√
(X – X) + (Y – Y), κ =

√
K – ν is the wave number, and ν is

the Fourier transform variable introduced by the following relations:

⎧⎨
⎩

�̄(ν, Y ,ω) =
∫ ∞

–∞ �(X, Y ,ω)eiνX dX,

�(X, Y ,ω) =
∫ ∞

–∞ �̄(ν, Y ,ω)e–iνX dν.

Using this relation, the solution to equations () and () can easily be computed. Us-
ing the standard WH procedure [], we shall yield the solution of equation () subject
to boundary conditions () and continuity conditions () after using equation () as
follows:

�(X, Y ,ω)

=
exp[–iKM(X – X) – ω

s ]

π i
√

( – M)

∫ ∞

–∞

κ

ei[ν(X–X)+κ|Y –Y|] dν

+
e–iKM(X–X)– ω

s

π
√

 – M

∫ ∞

–∞

∫ ∞

–∞
G(ν, ξ ,ω)e–iξX+i

√
K–ξ|Y|eiκ|Y |+iνX dξ dν, ()

where

G(ν, ξ ,ω) =
B[K( + M) + ξM + ξM

(–M)K ] –
√

K – ν
√

K + ξ sgn |Y | sgn |Y|
L+(ν)L–(ξ )(ξ – ν)

√
K – ν

√
K – ξ 

. ()

Here L±(ν) are the factors of the kernel function L(ν) arising due to application of WH pro-
cedure (explicit expressions of L±(ν) can found in []), κ(ν) =

√
K – ν =

√
K – ν

√
K + ν

are such that κ–(ν) =
√

K – ν and κ+(ν) =
√

K + ν ; L+(ν) and κ+(ν) are regular in the upper
half-plane Imν > Im(–K), L–(ν) and κ–(ν) are regular in the lower half-plane Imν < Im(K),
and L(ν) and κ(ν) are regular in the common strip of analyticity Im(–K) < Imν < Im(K).
Letting

�(X, Y ,ω) = Ĩ + Ĩ, ()

where

Ĩ(X, Y ,ω) =
exp[–iKM(X – X) – ω

s ]

π i
√

( – M)

∫ ∞

–∞

κ

ei[ν(X–X)+κ|Y –Y|] dν, ()

Ĩ(X, Y ,ω)

= +
e–iKM(X–X)– ω

s

π
√

 – M

∫ ∞

–∞

∫ ∞

–∞
G(ν, ξ ,ω)e–iξX+i

√
K–ξ|Y|eiκ|Y |+iνX dξ dν, ()

In order to calculate the total field φ(x, y, t), we need to find out the inverse temporal
Fourier transform of (). For that, let us rearrange equation () in terms of expressions
()-() for the sake of convenience. Introducing the substitutions X – X = R′ cos�′,
|Y – Y| = R′ sin�′, ν = K cos(�′ + iς ) for equation () and keeping in mind the fact that
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K is a function of ω, we arrive at

I(X, Y , t) = –


π
√

 – M

∫ ∞

–∞

∫ ∞

–∞
e

iω
C (R′ coshς–MR′ cos�′)– ω

s –iωt dω dς , ()

where C = c
√

 – M. The integral appearing in equation () can be solved completely by
following the procedure outlined in [], and we arrive at

I(X, Y , t) = –
√

πc

πC
√

(t + MR′ cos�′
C ) – (R′)

C

. ()

Now, before finding the inverse temporal Fourier transform of Ĩ, we shall calculate the
double integral appearing in equation (). To do so, we introduce the polar coordinates

X = R cos�, |Y | = R sin�,

X = R cos�, |Y| = R sin�,

and thereby using the transformation ξ = –K cos(� + ip), which changes the contour
of integration over ξ into a hyperbola through the point ξ = –K cos�. Similarly, by the
change of variable ν = K cos(� + iq) the contour of integration can be converted from ν

into a hyperbola through the point ν = K cos�. Thus, omitting the details of calculations,
we obtain

Ĩ =
–ic
π

[B{( + M) – M cos� + M cos �
(–M) } –  sin �

 sin �


L+(K cos�)L–(–K cos�)(cos� + cos�)ω
√

RR

]

×eiK (R+R–M(X–X))– ω
s , ()

which, after taking the inverse Fourier transform, by using the method detailed in [, ]
yields

I(X, Y , t) =
–icÃ
π

∫ ∞

–∞

ω

e
iω(R+R–MR′ cos�′)

C – ω
s –iωt dω, ()

where

Ã =
[B{( + M) – M cos� + M cos �

(–M) } –  sin �
 sin �



L+(K cos�)L–(–K cos�)(cos� + cos�)
√

RR

]
. ()

Thus, equation () can be simplified to

I(X, Y , t) =
–icÃ
π

∫ ∞

–∞

ω

eiωζ– ω
s dω, ()

where ζ = (R+R–MR′ cos�′)
C – t. Using the results of [, ], we have

∫ ∞

–∞
e–ax+ibx dx =

√
π

a
e– b

a (a)
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and
∫ ∞

ζ

eiωt dt = πδ(ω) +
i
ω

eiζω. (b)

Similarly, equation () can be simplified to the form


∫ ∞

ζ

s
√

πe–sζ
dt = π + i

∫ ∞

–∞
eiωζ– ω

s

ω
dω. ()

Now the integral appearing on the left-hand side of equation () can be expressed in
terms of complementary error function as follows:

∫ ∞

–∞
eiωζ– ω

s

ω
dω = –isπ erf c(ζ ) + π i, ()

where

erf c(ζ ) =
√
π

∫ ∞

ζ

e–ϑ
dϑ .

Thereby substituting equation () into equation () reveals that

I(X, Y , t) =
cÃ

π

[
π – π erf(sζ )

]
. ()

Hence, the total diffracted field of a Gaussian pulse by an absorbing half-plane satisfying
Myers’ impedance condition is given by

φ(x, y, t) = –
√

πc

πC
√

(t + MR′ cos�′
C ) – (R′)

C

+
cÃ

π

[
π – π erf(sζ )

]
. ()

6 Discussion
We have calculated the total diffracted field of the transient nature in terms of equation
(), where the first term represents the field at the observation point coming directly
from the Gaussian line source, and the second term contains the effects of Gaussian pulse
through the term erf(sζ ). It is noted that the effect of modified absorbent half-plane is
represented through the term

[B{( + M) – M cos� + M cos �
(–M) } –  sin �

 sin �


L+(K cos�)L–(–K cos�)(cos� + cos�)
√

RR

]
.

An important feature of the presented analysis is that the diffracted field contains the
term of order M, which gives the diffracted field in an improved form when com-
pared with the diffracted field obtained by Rawlins [] that retained the terms of or-
der M. This is because of the consideration of Ingard’s boundary conditions in the form
[ ∂
∂y ∓ βM ∂

∂x ± ikβ]ψ(x, ±,ω) = , whereas Myers’ impedance boundary conditions are

of the form [ ∂
∂y ∓βM ∂

∂x ± ikβ ∓ iβM

k
∂

∂x ]ψ(x, ±,ω) = . Explicitly, the term iβM

k
∂

∂x con-
tains the effects of the Mach number parameter up to order M, which is known as the
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correction/perturbation term in the literature. With this we conclude that the diffracted
field obtained herein contains higher-order accuracy of the Mach number as compared
with the results of Rawlins []. Also, it is observed that the diffracted field starts reaching
the point (x, y) after the time lapse t′ > 

C (R + R) where t′ = t + MR′ cos�′
C , and the strength

of the field decays as √
RR

. Moreover, it is observed that results for the rigid barrier can
be obtained while taking the parameter β = , whereas the results for still air case can be
obtained by neglecting the Mach number M (M = ).
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