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Abstract

Cloud computing is relevant for the applications transported as services over the
hardware and for the Internet and systems software in the datacenters that deliver
those services. The major problem for this state is computing the capacity and the
amplitude of the dynamic system of these services. In this effort, we process an
algorithm based on fractional differential stochastic equation (fractional
Fokker-Planck equation (FFPE)) to find the fractional entropy solutions. Our tool is
based on Mellin-Laplace transforms. Also, we suggest a fractional functional entropy
formula by using the Tsallis entropy. Approximate outcomes are illustrated and
discussed. The convergence of the method is investigated.

Keywords: fractional calculus; fractional dynamical system; fractional entropy; cloud
computing

1 Introduction

Fractional calculus has many applications, not only in mathematics, but in other sci-
ences, engineering, economics, and social studies. It covenants with differential and in-
tegral operators involving arbitrary powers; real and complex. It is associated with many
well-known names such as Abel, Caputo, Euler, Grunwald, Hadamard, Hardy, Heaviside,
Jumarie, Laplace, Leibniz, Letnikov, Liouville, Riemann, Riesz, and Weyl. The central pur-
pose, or, at least, one of the chief purposes in considering and studying fractional calculus,
is the circumstance that fractional calculus appears to be fairly significant in the investiga-
tion of some problems which arise in fractal space-time physics. We have physical schemes
at three unalike stages of thought: microscopic, megascopic, and macroscopic. The frac-
tional calculus approximates the classical calculus, and it includes non-commutative
derivatives, which appears to be fairly reliable on using non-commutative geometry. This
development leads one to generalize the information theory of fractional order. The books
of Oldham and Spanier [1], Srivastava and Owa [2], Oustaloup [3], Miller and Ross [4],
Samko et al. [5], Kiryakova [6], Mainardi [7], Podlubny [8], Hilfer [9], Zaslavsky [10], Kilbas
etal. [11], Magin [12], Sabatier et al. [13], Hilfer [14], Mainardi [15], Monje et al. [16], Klafter
et al. [17], Tarasov [18], Baleanu et al. [19], Yang [20], Jumarie [21, 22], etc. have enriched
all areas of applied sciences. However, certain mathematical problems remain and baf-
fle us. The complications and most of the recognized key mathematical problems in the
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field have been determined up to a point. There were practically no applied formulations
of requirements in different areas. The developments in these areas continue [1-22]. The
central substantial advantage of fabricating a procedure of fractional differential equations
(ordinary and partial) in scientific modeling is their nonlocal property. It is recognized that
the normal derivative is a local, linear operator, while the fractional derivative is nonlocal
and non-linear. As a result the subsequent formulation of a system is predisposed by not
only its current formal feature, but consistently by all of its preceding ones.

The theory of entropy was introduced in the area of thermodynamics in the 19th cen-
tury and was utilized by Shannon to improve the information theory. Entropy is a conven-
tional statistic computing concept, showing uniformity and complexity, which achieves
promising applications to a widespread variety of reasonable and noisy time series data.
The development was motivated by data length restraints that are commonly challenging.
Investigators stressed its employment and amplification, and its utility to differentiate as-
sociated stochastic processes and models. They deliberated its impact and are stimulated
to apply it in a statistically usable manner, such as marginal probability distributions and
other methods. The major outcome is that the density of information so convoluted is
formulated by the derivative of the function or its fractional derivative, depending upon
whether it is differentiable or not. As regards information theory, one may compare the
perspectives between the probability density and the derivative of a function. Fractional
entropy appeared due to Tsallis (1988) (see [23]). Many investigators published different
studies to improve this concept (see [24—32]).

Recently, cloud computing (CC) has developed as one of the newest and most general
network computing models in various areas, such as academic circles, governments, in-
formation industry, etc. It is now essential for the new compeers information technology
modification, and it expresses the progress of great scales, increasing focus on the rel-
evance in IT studies. In an environment of CC, data is stockpiled on the cloud and ma-
nipulators can attain the influential computing capability from the cloud, devoid of getting
those costly substructures. A manipulator would purchase the service of CC and attain de-
mand as extended as suggested to the cloud service supplier and paying the lowest price.
The experimental results show that the entropy is the best method to select the service
of CC (see [32, 33]). This study leads to the probability capacity and the amplitude of the
dynamic system of these services.

In this work, we develop an algorithm based on the fractional differential stochastic
equation (FFPE) to find the fractional entropy solutions. These solutions are employed
to compute the capacity and the amplitude of fractional dynamic systems. Our tool is
based on the Mellin-Laplace transforms. Moreover, we propose the fractional functional
entropy formulated by the Tsallis concept of entropy. Numerical results are presented for
illustration. The convergence of the method is investigated.

2 Processing
Our approach deals with the following concepts.

2.1 The fractional Fokker-Planck equation (FFPE)
In this effort, we consider the following fractional differential equation with diffusion co-
efficients:

Dip(8,0) =~ (M)A, 0] + 5 [0 (Mp(A, ], )
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subject to the initial condition

©(A,0):=p(A)
and the boundary condition of (A, t) is finite as A — 0,

a0(0,7) + £20(0,) = 0
(€1+62 £0,0<t<te]= [O,T],T<oo,g<oo)

and

(A, 1)
_

A,t)— 0,
P(A, 1) — A

0, A— o0

where p(A) is a function of the amplitude response A, (A, ) is the density function of
A with respect time ¢ € J, D} is referred to the Riemann-Liouville calculus introduced by
the formula

N .
Dip - % [ s e,

which coincides with the fractional integral operator

N _ -1
1 (s) = / %@(g) dg,

such that v € (0,1). Moreover, A is the capacity of the outcome of the system, g is the
probability density with respect to the capacity of the system, and the diffusion coefficients
are polynomials in A such that

n(A) =Y oAk, (2)
k=1
o(A) = Bo+ ) BrAk, (3)
k=1

where oy and By are polynomial coefficients. Our aim is to solve equation (1), by using the

fractional entropy (of Tsallis type) subject to boundary and initial conditions.

2.2 The fractional entropy
The Tsallis fractional entropy [23] is formulated by

A dA -1
Ty PO AAL

or in discrete form

Tilp) = ﬁ (1 - Zpﬁ), AL
k=1
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On this level, we require a computation of an applicable aggregate of the information cre-
ated by noticing the entrance of an occurrence having probability ¢ € [0,1]. In this dis-

cussion, we suggest the functional entropy formula

A D dA -1
Tx(zso)(A,t)=fA[5o(lt_)]A , AFL

Fractional entropy introduces in a natural way supplementary information as regards the
implication of individual processes and to regulator modification. If A has a large positive
rate this measure is additional slight to records that arise often; nevertheless for large neg-
ative X it is slighter to the processes which arise seldom. Obviously dimension methods are
attractive considering a construction in the entropy calculations. The hypothetical work
was surpassing to successfully differentiate dynamical systems expecting finite, noisy data,
or to confirm a deterministic background. Accordingly, in these approaches and actions,
the collection of data, which is naturally significant to appreciate convergence, is impos-
sibly large. By employing the fractional entropy on g(A, £), we have the fractional entropy
system

2
DITL ()M 0) =~ (AT ()M, 0] + T s [ (A Ti()(A, 0] @

2.3 The fractional transform
In this effort, we shall utilize the Mellin transform. This transform has a big capability in
many areas such as digital data structures, probabilistic algorithms, asymptotic estima-
tion of integral forms, asymptotic analysis of algorithms and communication theory. By
applying the concept of the Mellin transform of the probability density with respect to the

capacity, we have
o0
Et,pp-10)= / T.(@) (A, DA’ T dA, p=a+1beC, A e[0,00),
0

where a <1 is the real part of p, while b € R is the imaginary part and : is the imaginary
value, +/-1. Obviously, the fraction transform is performed by the moment of the frac-
tional complex power. In a discrete form, the converse reads as follows:

n n )

~ 1 Eé/_,(pj—l,t) 1 Ep(p]—
(S ey Ve ) D U

)

j==n

where y := w/Ab, Ab is the discretization level on the imaginary axis and p; := a + 1j(n /y).

For A € [e77, €], a calculation yields

2y = Y ujl€ 7 =711 - p)Eylpy— 1.8
[evro+y —evro=v]/(1 = po) ’

Ep(po—1,t) = (5)

In view of equation (5), a comparison of two moments shows different powers with differ-
ent real parts 4; and a4, such that Aa = a; — a1, and we have the following relation:

n

1
2, (o - 1,6) = o Z Ep (0 - 1,£)K (L), (6)

j=-n
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where

pj(K) =a, +1j(mly), k=12

and

y [eAay+zj7r _ e—Aay—l/'ﬂ]

Ki(&a) = Aay +yjm

Now, we multiply equation (1) by A”7!, and integrating the outcome with respect to A in
the interval [0, 00), we obtain the fractional system

D}Ey(p-1,8) = ~[u(M)p(A,0)][5 + (0 -1) /0 A u(A)p(A, ) dA

¢ 5[ (M O]A [~ (o - DA [0 (W (A, D)
+3-000-2) [ A [ A)p(a,0]dA, )
0

By employing the assumptions of the system and utilizing (2) and (3), equation (7) can be
considered as follows:

nj

D/Ey(p-10)=(p-1) ) oEplp-2+k1)
k=1

+

N =

(p—l)(0—2)|:,305@(,0—3:t)+Z,3k35<>(,0—3+k»t)j|- 8)

k=1

Since g (A, £) is finite when A — 0, equation (8) is obtained for some a, where a is the real
part of p. Corresponding to equation (8), we have the following system:

ny

1
DyET, (0 =18 = (p=1) Y JexBr,)(p =2+ kD) + Z(p=1)(p ~2)

k=1
ny
x [ﬁosn(p)(p—s,tnZﬂksn(p)(p—mk,t)}. 9)
k=1

2.4 The entropy system

The cloud computing entropy system can be constructed as a multi-agent system. There-
fore, it must deal with the world’s natural affinity to ailment. Various applications involve
a set of agents that are independently autonomous. In this case, each agent concludes its
activities established by its own formula, capacity, and the environment. Typically, agents
deliberately openly recognize one another additionally, aim approximately at this sensi-
tivity, and then perform a sensible action. In the FFPE model assessment, coordination
as an organism is referred to by the environment; agents undergo modification by the ca-
pacity of the system. Procedures in the environment produce assemblies that the agents
recognize, thus authorizing ordered performance at the agent level. Naturally, these pro-
cedures increase ailment and chaos at the agent level, so that the system converts to be-
ing less ordered over time. Entropy introduces a good concept describing such a system.
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The minimization method for circumventing discreteness agents has the consequence of
choosing at each time step the capacity that best centers on the agents. Thus, the state
of the asymptotic system completely depends on the entropy solution of the FFPE model.
We aim to study and determine the global behavior (self-organization) of the systems by
using the capacity.

For this purpose, we assume that s is the agent and that the request is x5, s =1,...,N
(the dimension of the cloud system). By using the disposition formal relation (see [34]),

equation (9) can be rewritten as follows:

- - (os—1) &
FET ) (s = L) X B o) (05 - 1, t){ ; > Dokl -k)
k=1

2
+ W [ﬂoK/(Z) + Y B2 - k)} } (10)
k=1

Note that equation (8) may have a divergent solution, but in virtue of the fractional en-
tropy, all the entropy solutions of equation (10) are convergent and hence the probability
of the capacity of the system can be computed. Equation (10) can be solved numerically,
by applying any method or by employing fractional complex transforms as suggested in
[35, 36].

2.5 Approximate solutions
In matrix form, equation (10) can be written as follows:

D'x(t)="x(t), Y#O, (11)
subject to the initial condition

x(0) =1,
where x := (x1,..., xn)7, T depends on A and p and

x(8) = E1, (0 -1L12)

and

Y =

(’02;1) Z oK1 - k) + W |::30K/(2) + Z k(2 ~ k):|'
— k=1

The solution of (11) can be formulated by utilizing the Mittag-Leftler function
x(t) = TE,(Tt"), (12)

where

[e¢]

i
Ev(t) = Z m.

j=0
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It is well known that E, shows the following asymptotic behavior (see [37]; Theorem 1):

tl/v

1
E,(t)~=¢", v#0. (13)
v
Hence we have the result
T v
X6y~ —e™". (14)
v

3 Results and discussion

The consequences of the adopted method to evaluate the probability of the capacity
through the entropy solution is characterized by the discrete symbols. The system con-
verges to the diffusion of the origin. The probability of the capacity of the integer system

of (14), for a fixed time, can be computed by the formal expression

0 2(A)
ﬂmmgﬂw“>

where 0 is the normalized constant,

[ 2r(A)
and T_/cﬂ(A) dA

p(A) =

o?(A)

The initial condition adopted above indicates the stationary states at the initial time. The
justification of the suggested technique to evaluate the cost response of a system is demon-

strated. Moreover, for £ = ¢, the boundary condition implies that

Q
£(0) = , e+ F0.
€1 + €

Therefore, the initial cost of the cloud system is evaluated by the above equation, which
is basically determined by the boundary condition of the system (1). Numerous classes of
fractional boundary problems are suggested in [38—40].

Compared with this formal approach, the suggested technique has the benefit that it
does not depend on an assortment of series or the fundamental form of the probabil-
ity density; meanwhile it is constructed based on the moments of the complex fractional
power. However, the system measured in the current document is a non-linear system
with polynomial damping coefficients and excitation capacity, and the current technique
can be employed in problems with non-linear rigidity by presenting a Taylor series ex-
pansion of fractional order. Furthermore, the technique of joining the stochastic function,
entropy, and Mellin transforms can be straightforwardly prolonged to calculate the pass-
ing reaction probability density of the fractional non-linear system by assuming the frac-
tional stochastic formal system. Figure 1 shows the convergence of the entropy solution
with respect to time and the entropy fractional order. Moreover, it shows that increasing
time and the fractional order A caused the information as regards the system to increase.
This leads to an increase of the capacity. Another advantage of the proposed method is
that by the utility of the fractional entropy we avoid any rigorous constraint, because of
the convergence of the solution not only in a finite interval, but also for a domain.

Page 7 of 12
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Figure 1 Entropy fractional solution. I

4 Application

The job scheduling scheme is interesting and one of the essential research fields in cloud
computing. It plays a similar role itself in cloud computing. The job scheduling system is
accountable to choose the best appropriate resources in a cloud computing users’ jobs,
by compelling various static and dynamic parameter constraints of the cloud into the de-
liberation. In this section, we deal with a model that describes the job scheduling system
based on the queuing property and cost function considering the users, providers, and the
quality of the system (QoS). By utilizing a cloud computing environment, we may assume
it as a very influential server. This server holds the user’s jobs. For each job one may have
a different QoS obligation; typically, the user’s jobs have various agencies to be treated.
Therefore, we can classify the jobs’ urgencies into several classes. Customarily, since the
cloud computes resources, customers continuously deliberate which cloud computing re-
source can encounter their job QoS supplies for computing (such as the paid time of job
ruining, the calculating capacity), and how much the cost is that they must feed for the
cloud computing resources.

We assume that the cloud computing system has a dynamic according to equation (4).
Moreover, we consider the user’s jobs in the similar group with urgency to acquiesce to
the cloud agreeing to the outcome y;(¢), given in (14) for the user i = 1,...,n. Each group
is evaluated by the capacity A (for example, if the service has five different jobs, then the
capacity obeys A =1,...,5). Suppose that the total requested groups, the service rate, and

intensity of the cloud computing environment are

xXO=Y_xe),  fO=)_fitx),  ¢B)=) ¢:t,x), teJ=[0,1],
i=1 i=1

i=1

respectively. Then the total cost function of the cloud service is formulated by
D(t, x (6).£(£), (1)) = w1 (£) + of (1) + w3 (¢)

=Y o), (15)
i=1

where «;, i =1,...,n, are the connection constants in the cloud. The problem for the cloud
computing service benefactor is how to utilize a job scheduling system to allocate the
appropriate cloud to get the minimum cost value. The minimization of the cost appears
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Table 1 The cost functionwitht=1,A=2,p=2

Capacity (A) Time x;j(14) Cost:(v=1) v=075 v=05 v=0.25

1 0.1 30 7037 57444 39.712 19412
2 0.25 60 191.25 156.122 107.928 52.758
3 0.55 90 203.78 166.351 115 56.215
4 0.75 120 420.16 342.687 237.11 1159

5 1 150 550.89 449.7 310.88 151.969

by using the fractional calculus (see Table 1); here, for user i, we select ¢; € (0,1] for all
i=1,...,nand

- I)ZakK(l g e [ﬂoKi(znZﬂkm—k)},

k=1
corresponding to the solution x; such that

y[eAayHin _ e—Aay—liﬂ]

Ki(aa) = Aay + i

The QoS vector of the unique service i is defined as
Q@) = (&1(@1x1)s -+ »En(@nxn))s

where §; is the value of QoS parameter i for a unique service.
Table 1 shows the initial service rate and expectant service rate for each group in the
queue with changed significance. Fractional calculus is utilized to minimize the cost. The

decreasing of the fractional value v € (0,1] implies the minimization of the cost function.

4.1 Discrete cloud system
We consider the discrete cloud system of equation (4), by utilizing the formula

M
DT (@) AN, 8) = Z (L A) To(9)(AkA, B), (16)
k=1

where AA is the difference operator that the capacity changes in the cloud system and
T,.(¢) is the fractional Tsallis entropy of order A # 1. Our aim is to find the entropy solution
of the system (16). Our tool is based on the concepts of the Laplace and Mellin transforms.
Since T, (g) is the entropy of the distribution function g, we may assume that

To(@)AA, 1) :=f()F(AA).

Thus the system (16) becomes
M
Dif()0(AAN) =Y (DA (O(AA). (17)
k=1

Since the fractional derivative is due to the time part, equation (17) can be read as the
evolution of a fractional Brownian motion,

DIf(t) = —ef(t), &0, (18)
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where ¢ depends on the value of the capacity A. A computation implies that the Laplace

and Mellin transforms of (17) formally are

1
T1-p)

Er(p—1,1) E ¢wuwd—p, ), (19)

where Z(f(t), u) is the Laplace transform of the function f(¢) given by

Z(f(0),u) = / e “f(t) dt.
0
Therefore, we have the following solution, in view of the Laplace transform:

Jo

)
&+ u

Su) = (20)

where fj is a constant. Employing (19) in (20) and inverting the result to the time domain,

we obtain
70= (2o e

where F} 1 is the well-known Fox function. In the sequel, we suppose that the value of

(21)

(0,1/v) )
0,1/v)(1-v,1) )’

w=¢=(AA)?

behaves as a diffusion constant. Hence by utilizing the series expansion of the Fox function

(see [41]), the entropy solution of equation (16) can be described as follows:

(-1

_ 2,72vn _
Tk(p)(AA,t)—(l/v);ir oD [(AanX )™, f=1, (22)

which is a monotonic decreasing function showing the asymptotic behavior (see [37])
Ti(@NAN D) ~EY, t— oo

5 Conclusion

We introduced a technique based on a class of fractional differential stochastic equations
(fractional Fokker-Planck equations) to discuss the fractional entropy solutions of frac-
tional dynamical systems. We showed that the concept of the transforms (see [42-49]) is
very useful to complete our investigation. We applied the relation between Mellin and
Laplace transforms. The approximate result is utilized to perform in a cloud comput-
ing environment system. We imposed straightforwardly a differential service adapted job
scheduling system in the cloud computing setting. Examination and outcomes demon-
strated that our method for the job scheduling system cannot only ensure the QoS sup-
plies of the cloud computing service jobs, but it also can create the maximum profits for

the system, with minimizing the cost.
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