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Abstract
We consider the existence of at least two or three distinct weak solutions for the
nonlinear elliptic equations

{
–div(ϕ(x,∇u)) + |u|p–2u = λf (x,u) in �,

ϕ(x,∇u) ∂u
∂n = λg(x,u) on ∂�.

Here the function ϕ(x, v) is of type |v|p–2v and the functions f , g satisfy a Carathéodory
condition. To do this, we give some critical point theorems for continuously
differentiable functions with the Cerami condition which are extensions of the recent
results in Bonanno (Adv. Nonlinear Anal. 1:205-220, 2012) and Bonanno and Marano
(Appl. Anal. 89:1-10, 2010) by applying Zhong’s Ekeland variational principle.

MSC: 35B38; 35D30; 35J20; 35J60; 35J66

Keywords: p-Laplace type operator; weak solutions; Cerami condition; multiple
critical points

1 Introduction
In the present paper, we are concerned with multiple solutions for the nonlinear Neumann
boundary value problem associated with p-Laplacian type,

⎧⎨
⎩– div(ϕ(x,∇u)) + |u|p–u = λf (x, u) in �,

ϕ(x,∇u) ∂u
∂n = λg(x, u) on ∂�,

(P)

where the function ϕ(x, v) is of type |v|p–v with a real constant p > , � is a bounded
domain in R

N with Lipschitz boundary ∂�, ∂u
∂n denotes the outer normal derivative of u

with respect to ∂�, and the functions f , g satisfy a Carathéodory condition. Concerning
elliptic equations with nonlinear boundary conditions, we refer to [–].

Ricceri’s three-critical-points theorems which are important to obtain the existence of
at least three weak solutions for nonlinear elliptic equations have been extensively studied
by various researchers; see [–]. It is well known that Ricceri’s theorems in [, ] gave

© 2016 Lee and Kim. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13661-016-0603-x
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-016-0603-x&domain=pdf
mailto:kyh1213@smu.ac.kr


Lee and Kim Boundary Value Problems  (2016) 2016:95 Page 2 of 25

no further information on the size and location of an interval of values λ in R for the
existence of at least three critical points.

Based on [, ], Bonanno and Chinnì [] obtained the existence of at least two or three
distinct weak solutions for nonlinear elliptic equations with the variable exponents when-
ever the parameter λ belongs to a precise positive interval. To obtain the existence of two
distinct weak solutions for this problem, they assumed that the nonlinear term f satisfies
the Ambrosetti and Rabinowitz condition (the (AR) condition, for short) in []:

(AR) There exist positive constants M and θ such that θ > p and

 < θF(x, t) ≤ f (x, t)t, for x ∈ � and |t| ≥ M,

where F(x, t) =
∫ t

 f (x, s) ds and � is a bounded domain in R
N .

Moreover, in order to determine the precise positive interval of the parameter for the ex-
istence of multiple solutions of the nonlinear elliptic equations, they observed an embed-
ding constant of the variable exponent Sobolev spaces into the variable exponent Lebesgue
spaces by using Talenti’s inequality (see []).

The goal of the present paper is to establish the existence of at least two or three weak
solutions for the problem (P) whenever the parameter λ belongs to a precise positive in-
terval. To do this, we give a theorem which is an extension of the recent critical point
theorem in [] by considering Zhong’s Ekeland variational principle. Roughly speaking,
we give this result under the Cerami condition which is another compactness condition
of the Palais-Smale type introduced by Cerami []. First we show the existence of at least
two weak solutions for (P) without assuming that f satisfies the (AR) condition. In re-
cent years, some authors in [–] have tried to drop the (AR) condition that is crucial
to guarantee the boundedness of the Palais-Smale sequence of the Euler-Lagrange func-
tional which plays a decisive role in applying the critical point theory. In this respect, we
observe that the energy functional associated with (P) satisfies the Cerami condition when
the nonlinear term f does not satisfies (AR) condition. This together with the best Sobolev
trace constant given in [] yields the existence of at least two weak solutions for (P). Finally,
as an application of the recent three-critical-points theorem introduced by [], we show
that the problem (P) has at least three weak solutions provided that λ is suitable.

This paper is organized as follows. In Section , by using Zhong’s Ekeland variational
principle, we state some critical point theorems for continuously differentiable functions
with the Cerami condition. In Section , we state some basic results for the integral op-
erators corresponding to the problem (P) under certain conditions on ϕ, f , and g . In Sec-
tions  and , we establish the existence of at least two or three distinct weak solutions for
the problem (P) using some properties in Sections  and .

2 Abstract critical point theorem
Let (X,‖ ·‖) be a real Banach space. We denote the dual space of X by X∗, while 〈·, ·〉 stands
for the duality pairing between X∗ and X. A function I : X → R is called locally Lipschitz
when, with every u ∈ X, there corresponds a neighborhood U of u and a constant L ≥ 
such that

∣∣I(v) – I(w)
∣∣ ≤ L‖v – w‖X for all v, w ∈ U .
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If u, v ∈ X, the symbol 〈J ′(u), v〉 indicates the generalized directional derivative of I at point
u along direction v, namely

〈
J ′(u), v

〉
:= lim sup

w→u,t→+

I(w + tv) – I(w)
t

.

The generalized gradient of the function I at u, denoted by ∂I(u), is the set

∂I(u) :=
{

u∗ ∈ X∗ :
〈
u∗, v

〉 ≤ 〈
J ′(u), v

〉
for all v ∈ X

}
.

A function I : X → R is called Gâteaux differentiable at u ∈ X if there is ϕ ∈ X∗(denoted
by I ′(u)) such that

lim
t→+

I(u + tv) – I(u)
t

= I ′(u)(v)

for any v ∈ X. It is called continuously Gâteaux differentiable if it is Gâteaux differentiable
for any u ∈ X and the function u → I ′(u) is a continuous map from X to its dual X∗. We
recall that if I is continuously Gâteaux differentiable then it is locally Lipschitz and one
has 〈J ′(u), v〉 = I ′(u)(v) for all u, v ∈ X.

Definition . Let X be a real Banach space and let I : X→R be a Gâteaux differentiable
function.

(i) I satisfies the Palais-Smale condition ((PS)-condition for short), if any sequence
{un} ⊂ X such that {I(un)} is bounded and ‖I ′(un)‖X∗ →  as n → ∞ has a
convergent subsequence.

(ii) I satisfies the Cerami condition (the (C)-condition for short), if any sequence
{un} ⊂ X such that {I(un)} is bounded and ‖I ′(un)‖X∗ ( + ‖un‖X) →  as n → ∞ has
a convergent subsequence.

Now, let �,� : X →R be two continuously Gâteaux differentiable functions; put

I = � – �

and fix μ ∈ [–∞, +∞], we say that the function I verifies the Cerami condition cut off
upper at μ (in short, the (C)[μ]-condition) if any sequence {un} such that I satisfies the
Cerami condition and �(un) < μ, for any n ∈N, has a convergent subsequence.

As a key tool, recall the following lemma, which is a generalization of Ekeland’s varia-
tional principle [] due to Zhong in [], Theorem ..

Lemma . [] Let h : [,∞) → [,∞) be a continuous nondecreasing function such that∫ ∞
 /( + h(r)) dr = +∞. Let M be a complete metric space and x be a fixed point of M.

Suppose that f : M → R ∪ {+∞} is a lower semicontinuous function, not identically +∞,
bounded from below. Then, for every ε >  and y ∈M such that

f (y) < inf
M

f + ε,
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and every λ > , there exists some point z ∈M such that

f (z) ≤ f (y), d(z, x) ≤ r̄ + r,

and

f (x) ≥ f (z) –
ε

λ( + h(d(x, z)))
d(x, z) for all x ∈M,

where d(x, y) is the distance of two points x, y ∈M, r = d(x, y), and r̄ is such that

∫ r+r̄

r


 + h(r)

dr ≥ λ.

Remark . [] To employ Lemma ., we give a specific function h. If we define the
function h by h(r) := r + d(x, ), then it is continuous and nondecreasing. Setting x := y
and d(y, z) := ‖y–z‖X . Then we see that h(d(y, z)) = d(y, z)+d(y, ) = ‖y–z‖X +‖y‖X ≥ ‖z‖X

and hence

–
ε

λ( + h(d(y, z)))
≥ –

ε

λ( + ‖z‖X)
.

Since r =  and

λ ≤
∫ r̄




 + h(r)

dr =
∫ r̄




 + r + ‖y‖X

dr =
[
ln

∣∣ + r + ‖y‖X
∣∣]r̄

 = ln

∣∣∣∣ + r̄ + ‖y‖X

 + ‖y‖X

∣∣∣∣,
if we take, for each n ∈N,

λn := ln

(
 +


n( + ‖y‖X)

)
> ,

then we can get r̄n = /n. Also,

εn

λn
→ as n→∞,

where εn := λ
n > .

We point out the following consequence of Zhong’s Ekeland variational principle in
Lemma ..

Lemma . Let X be a real Banach space and let I : X →R be a locally Lipschitz function
bounded from below. Then, for all minimizing sequences of I , {un}n∈N ⊆ X, there exists a
minimizing sequence of I , {vn}n∈N ⊆ X, such that for any n ∈N

I(vn) ≤ I(un) and
〈
I ′(vn), h

〉 ≥ –εn‖h‖X

 + ‖vn‖X

for all h ∈ X, and n ∈N, where εn→+.
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Using Lemma ., we obtain the following result; see [] for the case of (PS)-condition
cut off upper at μ. The proof of this theorem proceeds in the analogous way to that of
Theorem . in [].

Theorem . Let X be a real Banach space and let �,� : X → R be two continuously
Gâteaux differentiable functions with � bounded from below. Put

I = � – �

and assume that there are x ∈ X and r ∈R, with μ > �(x), such that

sup
u∈�–((–∞,μ))

�(u) ≤ μ – �(x) + �(x). (.)

Moreover, assume that I satisfies (C)[μ]-condition. Then there is a u ∈ �–((–∞,μ)) such
that I(u) ≤ I(u) for all u ∈ �–((–∞,μ)) and I ′(u) = .

Proof Put

M = μ – �(x) + �(x), (.)

�M(u) =

⎧⎨
⎩�(u) if �(u) < M,

M if �(u) ≥ M,

IM = � – �M.

Then it is obvious that IM is locally Lipschitz and bounded from below. Now, given a se-
quence {un}n∈N in X satisfying limn→∞ IM(un) = infX IM , according to Lemma . there is
a sequence {vn}n∈N in X such that

lim
n→∞ IM(vn) = inf

X
IM and

〈
I ′

M(vn), h
〉 ≥ –

εn‖h‖X

 + ‖vn‖X

for all h ∈ X and for all n ∈ N, where εn → +. If IM(x) = infX IM then x verifies the
consequence. Indeed, if u ∈ �–((–∞,μ)), the inequality (.) implies that �(u) ≤ M
and IM(u) = I(u) for all u ∈ �–((–∞,μ)), and hence I(x) = IM(x) ≤ IM(u) = I(u) for
all u ∈ �–((–∞,μ)). So, we assume infX IM < IM(x). Therefore, there is an N ∈ N such
that IM(vn) < IM(x) for all n > N . Now, we claim that �(vn) < μ for all n > N . Since
�(vn) – �M(vn) < �(x) – �M(x), we assert that

�(vn) < �M(vn) + �(x) – �(x) ≤ M + �(x) – �(x) = μ,

as claimed.
Hence, one has IM(vn) = I(vn) and 〈I ′

M(vn), h〉 = I ′(vn)(h) for all n > N . Therefore it follows
from Lemma . that

lim
n→∞ I(vn) = lim

n→∞ IM(vn) = inf
X

IM and I ′(vn)(h) ≥ –
εn‖h‖X

 + ‖vn‖X
,
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that is, limn→∞( + ‖vn‖X)‖I ′(vn)‖X∗ = . Since I satisfies (C)[μ]-condition, {vn} admits a
subsequence strongly converging to v∗ in X as n → ∞. So, I(v∗) = infX IM ≤ IM(u) = I(u)
for all u ∈ �–((–∞,μ)), that is,

I
(
v∗) ≤ I(u) (.)

for all u ∈ �–((–∞,μ)). Since �(vn) < μ for all n > N , the continuity of � implies that
v∗ ∈ �–((–∞,μ]).

If v∗ ∈ �–((–∞,μ)), by the inequality (.) the conclusion holds. If �(v∗) = μ, first we
observe that �(v∗) ≤ M. In fact, taking into account that I(v∗) = IM(v∗), we have μ–�(v∗) =
μ – �M(v∗) and �(v∗) = �M(v∗) ≤ M. Next, we prove that I(v∗) = I(x). Indeed, suppose
that I(v∗) < I(x); from (.) we have

I
(
v∗) = μ – �

(
v∗) ≥ μ – M = �(x) – �(x) = I(x),

that is, I(v∗) ≥ I(x) and this contradicts with the assumption. Hence, from the inequality
(.) we have I(x) ≤ I(u) for all u ∈ �–((–∞,μ)) and also in this case the conclusion is
achieved. �

The next result is an immediate consequence of Theorem .. This is crucial to get the
existence of at least two distinct weak solutions for the problem (P) in the next section.

Theorem . Let X be a real Banach space, �,� : X → R be two continuously Gâteaux
differentiable functionals such that � is bounded from below and �() = �() = . Fix
μ >  and assume that, for each

λ ∈
(

,
μ

supu∈�–((–∞,μ)) �(u)

)
,

the functional Iλ := � – λ� satisfies (C)-condition for all λ >  and it is unbounded from
below. Then, for each

λ ∈
(

,
μ

supu∈�–((–∞,μ)) �(u)

)
,

the functional Iλ admits two distinct critical points.

Proof Fix λ as in the conclusion. One has
supu∈�–((–∞,μ)) �(u)

μ
< 

λ
, so there is an element x

in �–((–∞,μ)) such that

supu∈�–((–∞,μ)) �(u) – �(x)
μ – �(x)

<
supu∈�–((–∞,μ)) �(u)

μ
<


λ

.

This implies

sup
u∈�–((–∞,μ))

λ�(u) < μ – �(x) + λ�(x).
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Hence, it follows from Theorem . that Iλ admits a local minimum. Since Iλ is unbounded
from below, it is not strictly global and the mountain pass theorem ensures the conclu-
sion. �

Combining [], Remark ., with [], Theorem ., we get the following assertion.

Theorem . Let X be a reflexive real Banach space, � : X → R be a coercive, contin-
uously Gâteaux differentiable and sequentially weakly lower semicontinuous functional,
� : X →R be a continuously Gâteaux differentiable functional whose Gâteaux derivative
is compact such that

inf
u∈X

�(u) = �() = �() = .

Assume that the functional Iλ satisfies (C)-condition for all λ >  and that there exist a
positive constant μ and an element ũ ∈ X, with μ < �(ũ), such that

(A) sup�(u)≤μ �(u)
μ

< �(ũ)
�(ũ) ;

(A) for each λ ∈ 
μ := ( �(ũ)
�(ũ) , μ

sup�(u)≤μ �(u) ), the functional Iλ is coercive.
Then, for each λ ∈ 
μ, the functional Iλ has at least three distinct critical points in X.

Proof The proof is essentially the same as in that of []. �

This is an immediate result of Theorem .. This plays an important role in obtaining
the fact that the problem (P) admits at least three distinct weak solutions.

Corollary . Let X be a reflexive real Banach space, � : X → R be a coercive, contin-
uously Gâteaux differentiable and sequentially weakly lower semicontinuous functional
whose Gâteaux derivative admits a continuous inverse on X∗, � : X → R be a continu-
ously Gâteaux differentiable functional whose Gâteaux derivative is compact such that

inf
u∈X

�(u) = �() = �() = .

Assume that there exist a positive constant μ and an element ũ ∈ X, with μ < �(ũ), such
that

(A) sup�(u)≤μ �(u)
μ

< �(ũ)
�(ũ) ;

(A) for each λ ∈ 
μ, the functional Iλ is coercive.
Then, for each λ ∈ 
μ, the functional Iλ has at least three distinct critical points in X.

Proof Since Gâteaux derivative of � admits a continuous inverse and Iλ is coercive, Iλ sat-
isfies (C)-condition. Hence, applying Theorem . to the function Iλ the conclusion is
obtained. �

Corollary . Let X be a reflexive real Banach space, � : X → R be a coercive, contin-
uously Gâteaux differentiable and sequentially weakly lower semicontinuous functional,
� : X →R be a continuously Gâteaux differentiable functional whose Gâteaux derivative
is compact such that

inf
u∈X

�(u) = �() = �() = .
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If Iλ is bounded from below and satisfies (C)-condition for any λ > , and there exist μ > 
and ũ ∈ X, with μ < �(ũ), such that

sup�(u)≤μ �(u)
μ

<
�(ũ)
�(ũ)

then, for each λ ∈ 
μ, the functional Iλ has at least three distinct critical points in X.

Proof Since Iλ is bounded from below and satisfies (C)-condition, Iλ is coercive; see [].
Hence, by Corollary . the conclusion is obtained. �

3 Basic concepts and preliminary results
In this section, we first collect some preliminary properties that will be used later.
Throughout this paper, consider the Sobolev space X := W ,p(�) with the usual norm

‖u‖X =
(∫

�

|∇u|p + |u|p dx
) 

p
.

Lemma . [, ] Let � ⊂ R
N be an open bounded domain with Lipschitz boundary.

Let p ∈ [, N) be a constant. Then there is a continuously embedding X ↪→ Lp∗ (�) where
p∗ = Np

N–p . Moreover, for every q ∈ [, p∗) the embedding X ↪→ Lq(�) is compact.

Lemma . [] Let � ⊂R
N be an open bounded domain with Lipschitz boundary. Let p ∈

[, N) be a constant. Then there is a continuous boundary trace embedding X ↪→ Lp∂ (∂�)
where p∂ = (N–)p

N–p . Moreover, for every r ∈ [, p∂ ) the trace embedding X ↪→ Lr(∂�) is com-
pact.

Definition . We say that u ∈ X is a weak solution of the problem (P) if

∫
�

ϕ(x,∇u) · ∇v dx +
∫

�

|u|p–uv dx = λ

∫
�

f (x, u)v dx + λ

∫
∂�

g(x, u)v dS

for all v ∈ X, where dS is the measure on the boundary.

We assume that ϕ : � ×R
N → R

N is the continuous derivative with respect to v of the
mapping � : � ×R

N → R, � = �(x, v), that is, ϕ(x, v) = d
dv�(x, v). Suppose that ϕ and

� satisfy the following assumptions:
(J) The equality

�(x, ) = 

holds for almost all x ∈ �.
(J) There is a function a ∈ Lp′ (�) and a nonnegative constant b such that

∣∣ϕ(x, v)
∣∣ ≤ a(x) + b|v|p–

for almost all x ∈ � and for all v ∈R
N where /p + /p′ = .

(J) �(x, ·) is strictly convex in R
N for all x ∈ �.
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(J) The relations

d|v|p ≤ ϕ(x, v) · v and d|v|p ≤ p�(x, v)

hold for all x ∈ � and v ∈R
N , where d is a positive constant.

(J) There exists a constant μ ≥  such that

H(x, sv) ≤H(x, v) + μ

for v ∈R
N and s ∈ [, ], where H(x, v) = p�(x, v) – ϕ(x, v) · v for almost all x ∈ �.

Let us define the functional � : X →R by

�(u) =
∫

�

�(x,∇u) dx +
∫

�


p
|u|p dx.

Under assumptions (J)-(J) and (J), it follows from [] that the functional � is well
defined on X, � ∈ C(X,R), and its Fréchet derivative is given by

〈
�′(u), v

〉
=

∫
�

ϕ(x,∇u) · ∇v dx +
∫

�

|u|p–uv dx,

for any ϕ ∈ X.

Example . Let us consider

ϕ(x, v) =
(

 +
|v|p√

 + |v|p

)
|v|p–v

and

�(x, v) =

p
(|v|p +

√
 + |v|p – 

)

for all v ∈R
N . Then the direct calculation shows that H(x, sv) ≤H(x, v) +  for all s ∈ [, ],

and so the assumption (J) holds for μ ≥ .

The following assertion can be found in []; see also [].

Lemma . [] Assume that (J)-(J) hold. Then the functional � : X →R is convex and
weakly lower semicontinuous on X . Moreover, the operator �′ is a mapping of type (S+),
i.e., if un ⇀ u in X as n → ∞ and lim supn→∞〈�′(un) – �′(u), un – u〉 ≤ , then un → u in
X as n → ∞.

Corollary . Assume that (J)-(J) hold. Then the operator �′ : X → X∗ is strictly mono-
tone, coercive and hemicontinuous on X. Furthermore, the operator �′ is a homeomor-
phism onto X∗.

Proof It is obvious that the operator �′ is strictly monotone, coercive, and hemicontin-
uous on X. By the Browder-Minty theorem, the inverse operator (�′)– exists; see Theo-
rem .A in []. Since �′ is a mapping of type (S+), by Lemma ., the proof of continuity
of the inverse operator (�′)– is obvious. �
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Next we need the following assumptions for f and g . Denoting F(x, t) =
∫ t

 f (x, s) ds and
G(x, t) =

∫ t
 g(x, s) ds, then we assume that:

(F) f : � ×R →R satisfies the Carathéodory condition in the sense that f (·, t) is
measurable for all t ∈R and f (x, ·) is continuous for almost all x ∈ �.

(F) f : � ×R →R is a continuous function and there exist two constants d ≥  and
d >  such that

∣∣f (x, t)
∣∣ ≤ d + d|t|α–,

for all x ∈ � and for all t ∈R, where p < α < p∗.
(G) g : ∂� ×R→ R satisfies the Carathéodory condition and there exist two constants

d ≥  and d >  such that

∣∣g(x, t)
∣∣ ≤ d + d|t|β–,

for all x ∈ ∂� and for all t ∈R, where p < β < p∂ .
Under assumptions (F), (F), and (G), we define the functionals �,� : X →R by

�(u) =
∫

�

F(x, u) dx, �(u) =
∫

∂�

G(x, u) dS and �(u) = �(u) + �(u).

Then it is easy to check that �,� ∈ C(X,R) and these Fréchet derivatives are

〈
� ′

(u), v
〉
=

∫
�

f (x, u)v dx and
〈
� ′

(u), v
〉

=
∫

∂�

g(x, u)v dS

for any u, v ∈ X. Next we define the functional Iλ : X →R by

Iλ(u) = �(u) – λ�(u).

Then it follows that the functional Iλ ∈ C(X,R) and its Fréchet derivative is

〈
I ′
λ(u), v

〉
=

∫
�

ϕ(x,∇u) · ∇v dx +
∫

�

|u|p–uv dx – λ

∫
�

f (x, u)v dx – λ

∫
∂�

g(x, u)v dS

for any u, v ∈ X.

Lemma . Assume that (F)-(F) and (G) hold. Then � and � ′ are weakly-strongly
continuous on X.

Proof Proceeding like the analogous argument in [], it follows that functionals � and
� ′ are weakly-strongly continuous on X. �

To localize precisely the intervals of λ for which the problem (P) has at least two or three
distinct weak solutions, we consider the following eigenvalue problem:

⎧⎨
⎩– div(|∇u|p–∇u) + |u|p–u = λm(x)|u|q–u in �,

∂u
∂n =  on ∂�.

(E)
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Definition . We say that λ ∈R is an eigenvalue of the eigenvalue problem (E) if

∫
�

|∇u|p–∇u · ∇v dx +
∫

�

|u|p–uv dx = λ

∫
�

m(x)|u|q–uv dx

holds for any v ∈ X and p < q < p∗. Then u is called an eigenfunction associated with the
eigenvalue λ.

Now we obtain the positivity of the infimum of all eigenvalues for the problem (E). Al-
though the idea of the proof is completely the same as in that of Lemma . in [], for the
sake of convenience, we give the proof of the following proposition.

Proposition . Assume that
(H) m(x) >  for all x ∈ � and m ∈ L

γ
γ –q (�) with some γ satisfying q < γ < p∗.

Then the eigenvalue problem (E) has a pair (λ, u) of a principal eigenvalue λ and an
eigenfunction u with λ >  and  < u ∈ X.

Proof Set

λ = inf

{∫
�

|∇v|p + |v|p dx
}

the infimum being taken over all v such that
∫
�

m(x)|v|q dx = . We shall prove that λ is
the least eigenvalue of (E). The expression for λ presented above will be referred to as
its variational characterization. Obviously λ ≥ . Let {vn}∞n= be the minimizing sequence
for λ, i.e.,

∫
�

m(x)|vn|q dx =  and
∫

�

|∇vn|p + |vn|p dx = λ + δn (.)

with δn → + for n → ∞. It follows from (.) that ‖vn‖X ≤ c for some constant c > .
The reflexivity of X yields the weak convergence vn ⇀ u in X for some u (at least for
some subsequence of {vn}). The compact embedding X ↪→ Lγ (�) implies the strong con-
vergence vn → u in Lγ (�). It follows from (H), (.), and the Minkowski and Hölder
inequalities that

 = lim
n→∞

(∫
�

m(x)|vn|q dx
) 

q

≤ lim
n→∞

(∫
�

m(x)|vn – u|q dx
) 

q
+

(∫
�

m(x)|u|q dx
) 

q

≤ lim
n→∞

(∫
�

(
m(x)

) γ
γ –q dx

) γ –q
qγ

(∫
�

|vn – u|γ dx
) 

γ

+
(∫

�

m(x)|u|q dx
) 

q

=
(∫

�

m(x)|u|q dx
) 

q
,
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and analogously

(∫
�

m(x)|u|q dx
) 

q
≤ lim

n→∞

(∫
�

(
m(x)

) γ
γ –q dx

) γ –q
qγ

(∫
�

|u – vn|γ dx
) 

γ

+ lim
n→∞

(∫
�

m(x)|vn|q dx
) 

q
= .

Hence
∫

�

m(x)|u|q dx = .

In particular, u �≡ . The weak lower semicontinuity of the norm in X yields

λ ≤
∫

�

|∇u|p + |u|p dx = ‖u‖p
X ≤ lim inf

n→∞ ‖vn‖p
X

= lim inf
n→∞

{∫
�

|∇vn|p + |vn|p dx
}

= lim inf
n→∞ (λ + δn) = λ,

i.e.,

λ =
∫

�

|∇u|p + |u|p dx. (.)

It follows from (.) that λ >  and it is easy to see that λ is the least eigenvalue of (E)
with the corresponding eigenfunction u.

Moreover, if u is an eigenfunction corresponding to λ then |u| is also an eigenfunction
corresponding to λ. Hence we can suppose that u >  a.e. in �. �

4 Existence of two weak solutions
In this section, we present the existence of at least two distinct weak solutions for the
problem (P). To do this, we assume that

(F) lim|t|→∞ F(x,t)
|t|p = ∞ uniformly for almost all x ∈ �.

(F) There is a constant μ >  such that

F (x, t) ≤F (x, s) + μ

for any x ∈ �,  < t < s or s < t < , where F (x, t) = tf (x, t) – pF(x, t).
(F) lim sups→

|f (x,s)|
m(x)|s|ξ– < ∞ uniformly for almost all x ∈ �, where ξ ∈R with

q < ξ < p∗.
(F) lim sup|s|→∞

(
ess supx∈�

|f (x,s)|
|s|q–

)
< ∞, where q ∈ R satisfies p < q < p∗.

(G) lim|t|→∞ G(x,t)
|t|p = ∞ uniformly for almost all x ∈ ∂�.

(G) There is a constant μ >  such that

G(x, t) ≤ G(x, s) + μ,

for any x ∈ ∂�,  < t < s or s < t < , where G(x, t) = tg(x, t) – pG(x, t).
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(G) lim sups→
|g(x,s)|
|s|ξ– < ∞ uniformly for almost all x ∈ ∂�, where ξ ∈R with

q < ξ < p∂ .
(G) lim sup|s|→∞

(
ess supx∈∂�

|g(x,s)|
|s|r–

)
< ∞, where r ∈R satisfies p < r < p∂ .

With the help of Lemmas . and ., we prove that the energy functional Iλ satisfies
the (C)-condition for any λ > . This plays an important role in obtaining our first main
result.

Lemma . Assume that (J)-(J), (F)-(F), and (G)-(G) hold. Then the functional Iλ
satisfies the (C)-condition for any λ > .

Proof Note that � ′
 and � ′

 are the mapping of type (S+) by Lemma .. Let {un} be a
(C)-sequence in X, i.e., {Iλ(un)} is bounded and ‖I ′

λ(un)‖X∗ ( + ‖u‖X) →  as n → ∞, so
that sup |Iλ(un)| ≤ M for some M >  and 〈I ′

λ(un), un〉 = o(). Since X is reflexive and I ′
λ is

the mapping of type (S+), it suffices to verify that {un} is bounded in X. Indeed, if {un} is
unbounded in X, we may assume that ‖un‖X >  and ‖un‖X → ∞ as n → ∞. We define a
sequence {wn} by wn = un/‖un‖X , n = , , . . . . It is clear that {wn} ⊂ X and ‖wn‖X =  for
any n. Therefore, up to a subsequence, still denoted by {wn}, we see that {wn} converges
weakly to w ∈ X and, by Lemmas . and ., we have

wn(x) → w(x) a.e. in � and ∂�,

wn → w in Lα(�) and Lβ (∂�) as n → ∞.
(.)

Let � = {x ∈ � : w(x) �= }. If x ∈ � ∩ �, then it follows from (.) that |un(x)| =
|wn(x)|‖un‖X → ∞ as n → ∞. Similarly we know by (.) that |un(x)| → ∞ as n → ∞
for x ∈ � ∩ ∂�. According to (F) and (G), we have

lim
n→∞

F(x, un(x))
‖un‖p

X
= lim

n→∞
F(x, un(x))
|un(x)|p

∣∣wn(x)
∣∣p = ∞, x ∈ � ∩ �, (.)

and

lim
n→∞

G(x, un(x))
‖un‖p

X
= lim

n→∞
G(x, un(x))
|un(x)|p

∣∣wn(x)
∣∣p = ∞, x ∈ ∂� ∩ �. (.)

In addition, the condition (F) implies that there exists t >  such that F(x, t) > |t|p for all
x ∈ � and |t| > t. Since F(x, t) is continuous on �× [–t, t] by (F), there exists a positive
constant C such that |F(x, t)| ≤ C for all (x, t) ∈ � × [–t, t]. Therefore we can choose a
real number C such that F(x, t) ≥ C for all (x, t) ∈ � ×R, and thus

F(x, un(x)) – C

‖un‖p
X

≥ ,

for all x ∈ � and for all n ∈N. Similarly, using the assumption (G), we see that there exists
a constant C ∈R such that

G(x, un(x)) – C

‖un‖p
X

≥ ,



Lee and Kim Boundary Value Problems  (2016) 2016:95 Page 14 of 25

for all x ∈ ∂� and for all n ∈N. Also, using the assumption (J), we get

Iλ(un) =
∫

�

�(x,∇un) dx +
∫

�


p
|un|p dx – λ

∫
�

F(x, un) dx – λ

∫
∂�

G(x, un) dS

≤
∫

�

a(x)|∇un|dx +
b
p

∫
�

|∇un|p dx +

p

∫
�

|un|p dx – λ

∫
�

F(x, un) dx

– λ

∫
∂�

G(x, un) dS

≤ (
‖a‖Lp′ (�) + b + 

)‖un‖p
X – λ

∫
�

F(x, un) dx – λ

∫
∂�

G(x, un) dS.

It follows that

‖a‖Lp′ (�) + b +  ≥ 
‖un‖p

X

(
Iλ(un) + λ

∫
�

F(x, un) dx + λ

∫
∂�

G(x, un) dS
)

(.)

for n large enough. We claim that |�| = . In fact, if |�| �= , then by (.), (.), (.),
and the Fatou lemma, we have

‖a‖Lp′ (�) + b + 

≥ lim inf
n→∞


‖un‖p

X

(
Iλ(un) + λ

∫
�

F(x, un) dx + λ

∫
∂�

G(x, un) dS
)

= lim inf
n→∞

∫
�

F(x, un(x)) – C

‖un‖p
X

dx + lim inf
n→∞

∫
∂�

G(x, un(x)) – C

‖un‖p
X

dS

≥
∫

�∩�

lim inf
n→∞

F(x, un(x)) – C

‖un‖p
X

dx +
∫

∂�∩�

lim inf
n→∞

G(x, un(x)) – C

‖un‖p
X

dS

=
∫

�∩�

lim inf
n→∞

F(x, un(x))
|un(x)|p

∣∣wn(x)
∣∣p dx –

∫
�∩�

lim sup
n→∞

C

‖un‖p
X

dx

+
∫

∂�∩�

lim inf
n→∞

G(x, un(x))
|un(x)|p

∣∣wn(x)
∣∣p dS –

∫
∂�∩�

lim sup
n→∞

C

‖un‖p
X

dS

= ∞,

which is a contradiction. This shows that |�| =  and thus w(x) =  almost everywhere
in �.

Since Iλ(tun) is continuous in t ∈ [, ], for each n ∈ N there exists tn in [,] such that

Iλ(tnun) := max
t∈[,]

Iλ(tun).

Let {Rk} be a positive sequence of real numbers such that limk→∞ Rk = ∞ and Rk >  for
any k. Then ‖Rkwn‖X = Rk >  for any k and n. For fixed k, we derive from the continuity
of the Nemytskii operator that F(x, Rkwn) →  in L(�) and G(x, Rkwn) →  in L(∂�) as
n → ∞, respectively. Hence we assert that

lim
n→∞

∫
�

F(x, Rkwn) dx =  and lim
n→∞

∫
∂�

G(x, Rkwn) dS = . (.)
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Since ‖un‖X → ∞ as n → ∞, we also have ‖un‖X > Rk or  < Rk
‖un‖X

<  for n large enough.
Hence, using the assumption (J) and (.) it follows that

Iλ(tnun) ≥ Iλ
(

Rk

‖un‖X
un

)
= Iλ(Rkwn)

=
∫

�

�
(
x, |∇Rkwn|

)
dx +

∫
�


p
|Rkwn|p dx – λ

∫
�

F(x, Rkwn) dx

– λ

∫
∂�

G(x, Rkwn) dS

≥ d
p

∫
�

|∇Rkwn|p dx +

p

∫
�

|Rkwn|p dx – λ

∫
�

F(x, Rkwn) dx

– λ

∫
∂�

G(x, Rkwn) dS

≥ C‖Rkwn‖p
X – λ

∫
�

F(x, Rkwn) dx – λ

∫
∂�

G(x, Rkwn) dS

≥ C


Rp

k

for some positive constant C and for any n large enough. Then letting n and k tend to
infinity, it follows that

lim
n→∞ Iλ(tnun) = ∞. (.)

Since Iλ() =  and |Iλ(un)| ≤ M, it is obvious that tn ∈ (, ) and also 〈I ′
λ(tnun), tnun〉 = o().

Therefore, due to the assumptions (J), (F) and (G), for n large enough, we deduce that

Iλ(tnun) = Iλ(tnun) –

p
〈
I ′
λ(tnun), tnun

〉
+ o()

=
∫

�

�(x, tn∇un) dx +
∫

�


p
|tnun|p dx

– λ

∫
�

F(x, tnun) dx – λ

∫
∂�

G(x, tnun) dS –

p

∫
�

ϕ(x, tn∇un) · (tn∇un) dx

–

p

∫
�

|tnun|p dx +
λ

p

∫
�

f (x, tnun)tnun dx +
λ

p

∫
∂�

g(x, tnun)tnun dS + o()

≤ 
p

∫
�

H(x, tn∇un) dx +
∫

�


p
|tnun|p dx

–

p

∫
�

|tnun|p dx +
λ

p

∫
�

F (x, tnun) dx +
λ

p

∫
∂�

G(x, tnun) dS + o()

≤ 
p

∫
�

(
H(x,∇un) + μ

)
dx +

∫
�


p
|un|p dx

–

p

∫
�

|un|p dx +
λ

p

∫
�

(
F (x, un) + μ

)
dx +

λ

p

∫
∂�

(
G(x, un) + μ

)
dS + o()

≤
∫

�

�(x,∇un) dx +
∫

�


p
|un|p dx – λ

∫
�

F(x, un) dx – λ

∫
∂�

G(x, un) dS

–

p

(∫
�

ϕ(x,∇un) · ∇un dx –
∫

�

|un|p dx – λ

∫
�

f (x, un)un dx
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– λ

∫
∂�

g(x, un)un dS
)

+
λ

p
(μ + μ)|�| +

λ

p
μ|∂�| + o()

= Iλ(un) –

p
〈
I ′
λ(un), un

〉
+

λ

p
(μ + μ)|�| +

λ

p
μ|∂�| + o()

≤ M +
λ

p
(μ + μ)|�| +

λ

p
μ|∂�| as n → ∞,

which contradicts with (.). This completes the proof. �

Remark . It is easily to confirm that the conditions (F) and (F) imply that f (x, ) = 
for almost all x ∈ �. Otherwise there exists A ⊂ �, |A| >  such that |f (x, )| >  for all
x ∈ A. Hence lims→

|f (x,s)|
m(x)|s|ξ– = ∞ for all x ∈ A, contradicting (F). In addition, we get

lim sups→
|F(x,s)|

m(x)|s|ξ < ∞ uniformly almost everywhere in �, by the L’Hôpital rule. Define
the crucial value

Cf = ess sup
s �=,x∈�

|f (x, s)|
m(x)|s|q– . (.)

Then it follows from the analogous arguments in [] that Cf is a positive constant. How-
ever, since the conditions of f are slightly different from those of [], we discuss this fact.
Indeed, Cf >  having f �≡  and Cf < ∞, since first, by (F)

lim
s→

|f (x, s)|
m(x)|s|q– = lim

s→

( |f (x, s)|
m(x)|s|ξ–

)
|s|ξ–q = 

uniformly almost everywhere in �, having q < ξ. This, together with the assumption (F)
yields Cf < ∞. Similarly, we assert that g(x, ) =  for almost all x ∈ � and the crucial value

Cg = ess sup
s �=,x∈∂�

|g(x, s)|
|s|p– (.)

is a positive constant. Furthermore, the following relations hold:

ess sup
s �=,x∈�

|F(x, s)|
m(x)|s|q =

Cf

q

and

ess sup
s �=,x∈∂�

|G(x, s)|
|s|p =

Cg

p
.

Remark . [, , ] From the embeddings in Lemmas . and ., for any u ∈ X, the
following inequalities hold:

s‖u‖Lq(�) ≤ ‖u‖X and s̃‖u‖Lr (∂�) ≤ ‖u‖X
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for every q ∈ [, p∗) and r ∈ [, p∂ ). The best constants for these embeddings are the largest
constants s and s̃ such that the above inequalities hold, that is,

sq = inf
u∈X\{}

‖u‖X

‖u‖Lq(�)

and

s̃r = inf
u∈X\{}

‖u‖X

‖u‖Lr (∂�)
.

Moreover, since these embeddings are compact by Lemmas . and ., we have the exis-
tence of extremals, namely, functions where the infimum is attained.

Theorem . Assume (H), (J)-(J), (F)-(F) and (G)-(G) hold. Then
(i) there exists a positive constant �∗ = min{d, }λ/(Cf + λCg s̃–

p ) such that the problem
(P) has only the trivial solution for all λ ∈ [,�∗);

(ii) there exists a positive constant λ̃ such that the problem (P) admits at least two
distinct weak solutions in X for each λ ∈ (�∗, λ̃).

Proof We prove the assertion (i). Let u ∈ X be a nontrivial weak solution of the prob-
lem (P). Then it is clear that

∫
�

ϕ(x,∇u) · ∇v dx +
∫

�

|u|p–uv dx = λ

∫
�

f (x, u)v dx + λ

∫
∂�

g(x, u)v dS

for any v ∈ X. If we put v = u, then it follows from (J) and the definitions of Cf and Cg that

min{d, }λ

(∫
�

|∇u|p dx +
∫

�

|u|p dx
)

≤ λ

(∫
�

ϕ(x,∇u) · ∇u dx +
∫

�

|u|p dx
)

= λλ

(∫
�

f (x, u)u dx +
∫

∂�

g(x, u)u dS
)

≤ λλ

(∫
�

f (x, u)
m(x)|u|q– m(x)|u|q dx +

∫
∂�

g(x, u)
|u|p– |u|p dS

)

≤ λλ

(
Cf

∫
�

m(x)|u|q dx + Cg

∫
∂�

|u|p dS
)

≤ λCf

(∫
�

|∇u|p dx +
∫

�

|u|p dx
)

+ λλCg

∫
∂�

|u|p dS

≤ λ
(
Cf + λCg s̃–

p
)(∫

�

|∇u|p dx +
∫

�

|u|p dx
)

.

Thus if u is a nontrivial weak solution of the problem (P), then necessarily λ ≥ �∗ =
min{d, }λ/(Cf + λCg s̃–

p ), as claimed.
Next we prove the assertion (ii). It is obvious that � is bounded from below and �() =

�() = . By the conditions (F) and (G), for any C(M) > , there exists a constant δ > 
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such that

F(x,η) ≥ C(M)|η|p and G(x,η) ≥ C(M)|η|p (.)

for |η| > δ and for almost all x ∈ �. Take v ∈ X \ {}. Then the relation (.) implies that

Iλ(tv) =
∫

�

�(x, t∇v) dx +
∫

�


p
|tv|p dx – λ

(∫
�

F(x, tv) dx +
∫

∂�

G(x, tv) dS
)

≤
∫

�

d
p

|t∇v|p dx +
∫

�


p
|tv|p dx – λ

(∫
�

F(x, tv) dx +
∫

∂�

G(x, tv) dS
)

≤ tp
(∫

�

d
p

|∇v|p dx +
∫

�


p
|v|p dx – λC(M)

(∫
�

|v|p dx +
∫

∂�

|v|p dS
))

for sufficiently large t > . If C(M) is large enough, then we assert that Iλ(tv) → –∞ as
t → ∞. Hence the functional Iλ is unbounded from below. Proposition . and relations
(.) and (.) imply that

�(u) =
∫

�

F(x, u) dx +
∫

∂�

G(x, u) dS

≤
∫

�

|F(x, u)|
m(x)|u|q m(x)|u|q dx +

∫
∂�

|G(x, u)|
|u|p |u|p dS

≤ Cf

q

∫
�

m(x)|u|q dx +
Cg

p

∫
∂�

|u|p dS

≤
( Cf

λq
+

Cg

ps̃p

)(∫
�

|∇u|p dx +
∫

�

|u|p dx
)

≤ 
min{d, }

(Cf p
λq

+
Cg

s̃p

)(∫
�

�(x,∇u) dx +
∫

�


p
|u|p dx

)
.

For each u ∈ �–((–∞,μ)), it follows that

�(u) =
∫

�

�(x,∇u) dx +
∫

�


p
|u|p dx < μ.

Denote

λ̃ = min{d, }
(Cf p

λq
+
Cg

s̃p

)–

.

Hence we assert that


μ

sup
u∈�–((–∞,μ))

�(u) <


min{d, }
(Cf p

λq
+
Cg

s̃p

)
=


λ̃

<

λ

.

According to Lemma ., we see that the functional Iλ satisfies (C)-condition for each
λ ∈ (�∗, λ̃). Therefore, all assumptions of Theorem . are satisfied, so that, for each λ ∈
(�∗, λ̃), the problem (P) admits at least two distinct weak solutions in X. This completes
the proof. �
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5 Existence of three weak solutions
Now, we deal with the existence of at least three weak solutions for the problem (P). We
start from the following conditions:

(F) There exist a real number s and a positive constant r so small that
∫

BN (x,r)
F
(
x, |s|

)
dx > ,

and F(x, t) ≥  for almost all x ∈ BN (x, r) \ BN (x,σ r) with σ ∈ (, ) and for all
 ≤ t ≤ |s|, where BN (x, r) = {x ∈ � : |x – x| ≤ r}.

(F) f satisfies the following growth condition: for all (x, s) ∈ � ×R,

∣∣f (x, s)
∣∣ ≤ a(x) + b(x)|s|γ–,

where a ∈ Lq′ (�) with p < q < p∗, γ < p, b ∈ Lν (�) with ν >  and there exists
t ∈R such that

p ≤ t ≤ p∗ and

ν

+
γ

t
= .

(G) There exists a positive constant d such that

G(x, s) ≥ 

for almost all x ∈ ∂� and for all s ∈ [, d].
(G) g satisfies the Carathéodory condition and the following growth condition holds:

for all (x, s) ∈ ∂� ×R,

∣∣g(x, s)
∣∣ ≤ a(x) + b(x)|s|γ–,

where a ∈ Lq′ (∂�) with p < q < p∂ , γ < p, b ∈ Lν (∂�) with ν > , and there
exists t ∈R such that

p ≤ t ≤ p∂ and

ν

+
γ

t
= .

Lemma . Assume that (J)-(J), (F), (F), (F), (G), and (G) hold. Then

lim
μ→+

sup�(u)≤μ �(u)
μ

= .

Proof By the conditions (F), (F), (G), and (G), there exists a positive constant η ∈ (, ]
such that

F(x, s) < M|s|ξ and G(x, s) < N|s|ξ (.)

for positive constants M, N, for almost all x ∈ � and for all s ∈ [–η,η]. Let us consider
some positive constants M, M, N, and N given by

M = sup
|s|>

C(|s| + |s|γ )
|s|ξ

and M = sup
η<|s|<

C(|s| + |s|γ )
|s|ξ

,
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N = sup
|s|>

C(|s| + |s|γ )
|s|ξ

and N = sup
η<|s|<

C(|s| + |s|γ )
|s|ξ

,

for some positive constants C and C. Then it follows from (.), (F) and (G) that

F(x, s) < M|s|ξ and G(x, s) < N |s|ξ

for almost all x ∈ � and for all s ∈ R, where M = max {M, M, M} and N = max{N,
N, N}.

If μ satisfies (min{d, }/p)‖u‖p
X ≤ μ < , where d is the positive constant from (J), then

by Lemmas . and ., for some positive constants C and C, we have

�(u) =
∫

�

F(x, u) dx +
∫

∂�

G(x, u) dS

< M
∫

�

|u|ξ dx + N
∫

∂�

|u|ξ dS

≤ C‖u‖ξ
X + C‖u‖ξ

X ≤ Cμ
ξ
p + Cμ

ξ
p ,

where ξ > p and ξ > p. It follows that

lim
μ→+

sup min{d,}
p ‖u‖p

X≤μ
�(u)

μ
= .

For any u ∈ �–((–∞,μ]) with μ < min{d, }/p, we know that �(u) ≤ μ and so using the
assumption (J), we get

min{d, }
p

(∫
�

|∇u|p dx +
∫

�

|u|p dx
)

≤
∫

�

�(x,∇u) dx +
∫

�


p
|u|p dx ≤ μ.

Hence we deduce that
∫

�

|∇u|p dx +
∫

�

|u|p dx ≤ p
min{d, }μ < .

This inequality implies that ‖u‖X < . It follows that

min{d, }
p

‖u‖p
X ≤

∫
�

�(x,∇u) dx +
∫

�


p
|u|p dx ≤ μ.

So we can get

�–((–∞,μ]
) ⊂

{
u ∈ X :

min{d, }
p

‖u‖p
X ≤ μ

}
.

Then it follows that

 ≤ lim
μ→+

sup�(u)≤μ �(u)
μ

≤ lim
μ→+

sup min{d,}
p ‖u‖p

X≤μ
�(u)

μ
= 

and therefore the conclusion holds. �
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Theorem . Assume that (J)-(J), (F), (F), (F), and (G)-(G) hold. Then for each
λ ∈ 
μ, the problem (P) has at least three distinct weak solutions in X for each λ ∈ 
μ =(

�(u�)
�(u�) , μ

sup�(u)∈μ �(u)

)
.

Proof All assumptions in Corollary . except the conditions (A) and (A) hold by Corol-
lary . and a similar argument to Lemma .. Note that s �=  be from (F). For � ∈ (, ),
define

u�(x) =

⎧⎪⎪⎨
⎪⎪⎩

 if x ∈ � \ BN (x, r),

|s| if x ∈ BN (x,�r),
|s|

r(–�) (r – |x – x|) if x ∈ BN (x, r) \ BN (x,�r).

(.)

It is clear that  ≤ u�(x) ≤ |s| for all x ∈ �, and so u� ∈ X. Moreover, we have

‖u�‖p
X =

|s|p( – �N )
( – �)p rN–p

 ωN > ,

where ωN is the volume of BN (, ). Also, by using the assumption (F), we get

�(u�) =
∫

BN (x,�r)
F
(
x, |s|

)
dx +

∫
BN (x,r)\BN (x,�r)

F
(

x,
|s|

r( – �)
(
r – |x – x|

))
dx

> .

Let us check the assumption (A) in Corollary .. Fix a real number μ such that

 < μ < μ <

p

min{d, }min
{‖u�‖p

X , 
} ≤ 

p
min{d, },

where u� was defined in (.). By Lemma . and (J), we have

�(u�) =
∫

�

�(x,∇u�) dx +
∫

�


p
|u�|p dx

≥
∫

�

d
p

|∇u�|p dx +
∫

�


p
|u�|p dx

≥ min{d, }
p

‖u�‖p
X ≥ μ > μ.

From Lemma ., we obtain

sup
u∈�–((–∞,μ])

�(u) ≤ μ


�(u�)
�(u�)

< μ
�(u�)
�(u�)

,

that is,

sup
u∈�–((–∞,μ])

�(u) < μ
�(u�)
�(u�)
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and hence the condition (A) of Corollary . is fulfilled. For ‖u‖X large enough and for
all λ ∈R, it follows from the conditions (J), (F), and (G) that

Iλ(u) =
∫

�

�(x,∇u) dx +
∫

�


p
|u|p dx – λ

∫
�

F(x, u) dx – λ

∫
∂�

G(x, u) dS

≥ d
p

∫
�

|∇u|p dx +

p

∫
�

|u|p dx – |λ|
∫

�

∣∣a(x)
∣∣|u|dx – |λ|

∫
�


γ

∣∣b(x)
∣∣|u|γ dx

– |λ|
∫

∂�

∣∣a(x)
∣∣|u|dS – |λ|

∫
∂�


γ

∣∣b(x)
∣∣|u|γ dS

≥ d
p

∫
�

|∇u|p dx +

p

∫
�

|u|p dx – |λ|‖a‖Lq′ (�)‖u‖Lq(�)

–
|λ|
γ

‖b‖Lν (�)
∥∥|u|γ

∥∥
L

t
γ (�)

– |λ|‖a‖Lq′ (∂�)‖u‖Lq(∂�) –
|λ|
γ

‖b‖Lν (∂�)
∥∥|u|γ

∥∥
L

t
γ (∂�)

≥ min{d, }
p

(∫
�

|∇u|p dx +
∫

�

|u|p dx
)

– |λ|C‖u‖X –
|λ|C

γ
‖u‖γ

Lt (�)

– |λ|C‖u‖X –
|λ|C

γ
‖u‖γ

Lt (∂�)

=
min{d, }

p
‖u‖p

X – |λ|C‖u‖X –
|λ|C

γ
‖u‖γ

Lt (�)

– |λ|C‖u‖X –
|λ|C

γ
‖u‖γ

Lt (∂�)

≥ min{d, }
p

‖u‖p
X – |λ|C‖u‖X –

|λ|C

γ
‖u‖γ

X

– |λ|C‖u‖X –
|λ|C

γ
‖u‖γ

X

for some constants C, C, C, C, C, and C. Since p > γ and p > γ, we deduce that

lim‖u‖X→∞ Iλ(u) = ∞

for all λ ∈ R. Hence the functional Iλ is coercive for all λ ∈ 
μ. Consequently, Corol-
lary . implies that the problem (P) has at least three distinct weak solutions in X for
each λ ∈ 
μ. �

Theorem . Assume that (J)-(J), (F), (F), (F), (G), and (G) hold. If furthermore f
satisfies the following assumption:

(F) There exist μ >  and s ∈R with μ < (min{d, }/p)|s|p( – –N )rN–p
 ωN such that

(F) holds and


(

p
min{d, }

) 
p
M

(
μ


p – +μ

γ
p – +μ

γ
p –) <

pr
N– N–p

p
 ess infBN (x, r

 ) F(x, |s|)
N |s|(p‖a‖Lp′(�) + b|s|p– + )

,
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where M = max{s–
q ‖a‖Lq′(�), s–

t ‖b‖Lν (�), s̃–
q ‖a‖Lq′(∂�), s̃–

t ‖b‖Lν (∂�)}, then the problem
(P) has at least distinct three solutions for every

λ ∈ 
̃ :=
(

N |s|(p‖a‖Lp′(�) + b|s|p– + )

pr
N– N–p

p
 ess infBN (x, r

 ) F(x, |s|)
,




(
min{d, }

p

) 
p
M–(μ


p – + μ

γ
p – + μ

γ
p –)–

)

⊂
(

�(ũ)
�(ũ)

,
μ

sup�(u)≤μ �(u)

)
.

Proof By Corollary . and a similar argument to Lemma ., all assumptions in Corol-
lary . except the conditions (A) and (A) are fulfilled.

Define

ũ(x) =

⎧⎪⎪⎨
⎪⎪⎩

 if x ∈ � \ BN (x, r),

|s| if x ∈ BN (x, r
 ),

|s|
r

(r – |x – x|) if x ∈ BN (x, r) \ BN (x, r
 ).

Then it is clear that  ≤ ũ(x) ≤ |s| for all x ∈ �, and so ũ ∈ X. Moreover, it follows
from (J) that

�(ũ) ≥ min{d, }
p

|s|p
(

 –


N

)
rN–p

 ωN > 

and

�(ũ) =
∫

�

�(x,∇ũ) dx +
∫

�


p
|ũ|p dx

≤
∫

�

a(x)|∇ũ| +
b
p
|∇ũ|p dx +

∫
�


p
|ũ|p dx

≤ ‖a‖Lp′ (�)|s|ωN r
N
p –

 +
b|s|p

p
ωN

(
 –


N

)
rN–p

 +
|s|
N p

ωN rN


≤ 
p
|s|ωN r

N–p
p


(
p‖a‖Lp′(�) + b|s|p– + 

)
.

Owing to the assumption (F), we deduce that

�(ũ) ≥
∫

BN (x, r
 )

F(x, ũ) dx

≥ ess inf
BN (x, r

 )
F
(
x, |s|

)(ωN rN


N

)
,

and thus

�(ũ)
�(ũ)

≥
pr

N– N–p
p

 ess infBN (x, r
 ) F(x, |s|)

N |s|(p‖a‖Lp′(�) + b|s|p– + )
. (.)
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From μ < min{d,}
p |s|p( – 

N )rN–p
 ωN , one has μ < �(ũ). For each u ∈ �–((–∞,μ]), it

follows from (F) and (G) that

�(u) =
∫

�

F(x, u) dx + λ

∫
∂�

G(x, u) dS

≤
∫

�

∣∣a(x)
∣∣|u|dx +

∫
�


γ

∣∣b(x)
∣∣|u|γ dx +

∫
∂�

∣∣a(x)
∣∣|u|dS

+
∫

∂�


γ

∣∣b(x)
∣∣|u|γ dS

≤ ‖a‖Lq′ (�)‖u‖Lq(�) +

γ

‖b‖Lν (�)
∥∥|u|γ

∥∥
L

t
γ (�)

+ ‖a‖Lq′ (∂�)‖u‖Lq(∂�) +

γ

‖b‖Lν (∂�)
∥∥|u|γ

∥∥
L

t
γ (∂�)

≤ s–
q ‖a‖Lq′ (�)‖u‖X +

‖b‖Lν (�)

γ
‖u‖γ

Lt (�)

+ s̃–
q ‖a‖Lq′ (∂�)‖u‖X +

‖b‖Lν (∂�)

γ
‖u‖γ

Lt (∂�)

≤ s–
q ‖a‖Lq′ (�)‖u‖X +

‖b‖Lν (�)

γst
‖u‖γ

X

+ s̃–
q ‖a‖Lq′ (∂�)‖u‖X +

‖b‖Lν (∂�)

γs̃t
‖u‖γ

X

≤ 
(

p
min{d, }

) 
p
(

s–
q ‖a‖Lq′(�)μ


p +

‖b‖Lν (�)

γst
μ

γ
p

+ s̃–
q ‖a‖Lq′(∂�)μ


p +

‖b‖Lν (∂�)

γs̃t
μ

γ
p

)

≤ 
(

p
min{d, }

) 
p
M

(
μ


p + μ

γ
p + μ

γ
p
)
,

and so

sup
u∈�–((–∞,μ])

�(u) ≤ 
(

p
min{d, }

) 
p
M

(
μ


p + μ

γ
p + μ

γ
p
)
.

From (.) and the assumption (F), we infer 
μ

sup�(u) < �(ũ)
�(ũ) . As seen before, the func-

tional Iλ is coercive for each λ > . Taking into account that 
̃ ⊂ ( �(ũ)
�(ũ) , μ

sup�(u)≤μ �(u) ),
Corollary . ensures that the problem (P) has at least distinct three solutions for each
λ ∈ 
̃. �
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