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Abstract
This paper aims to solve an inverse heat conduction problem with only boundary
value in a bounded domain, where the boundary data is given for x = 0. The solution
is sought in the interval 0 < x ≤ 1. The problem is seriously ill posed in the Hadamard
sense. Using the Hölder inequality and some inequalities, a conditional stability is
proved for this problem. A modified Tikhonov regularization method is proposed to
recover the stability of the solution. An order optimal error estimate between the
approximate solution and the exact solution is obtained with a suitable choice of
regularization parameter. Numerical results are presented to illustrate the accuracy
and efficiency of the proposed method.
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1 Introduction
In this paper we consider the following inverse heat conduction problem with only bound-
ary value:

ut = uxx,  < x < ,  < t < π ,

u(, t) = f (t),  ≤ t ≤ π , (.)

ux(, t) = g(t),  ≤ t ≤ π ,

where f and g are given. This problem is ill posed []. We want to recover the temperature
distribution u(x, ·) for  < x ≤  from the boundary data f and g .

The inverse heat conduction problem (IHCP) arises from many physical and engineer-
ing disciplines. It is well known that the problem is severely ill posed in the Hadamard
sense that the solution (if it exists) does not depend continuously on the given data, i.e.,
a small measurement error in the given data can cause an enormous error in the solu-
tion [–]. To overcome such difficulties, some regularization techniques are required [].
The IHCP has been considered by many authors using different methods. These methods
include the wavelet and wavelet-Galerkin method [–], the Tikhonov method [], the
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mollification method [–], the fundamental solution method [], the Fourier method
[], and so on.

To the best of the knowledge of the authors, the results available in the literature are
mainly devoted to the IHCP with known initial-boundary value. However, in practical
real-life problems we cannot know the initial condition because the heat process has al-
ready started before we estimate the problem. A few works are developed for the IHCP
without initial value [, ]. Ginsberg [] used a cutoff method for an IHCP with only
boundary value and gave a Hölder type error estimate. Recently, Liu and Wei [] used a
quasi-reversibility regularization method for solving an IHCP without initial data. Yang
and Fu [] applied a simplified Tikhonov regularization method for determining the heat
source. In this paper, we will use a modified Tikhonov regularization method to deal with
the IHCP without initial value (.) and obtain an order optimal error estimate between
the approximate solution and the exact solution.

The paper is organized as follows. In Section , we give the formulation of the solu-
tion for problem (.) and present some preliminary results. In Section , we prove the
conditional stability for the IHCP (.) by using the Hölder inequality. Section  proposes
a modified Tikhonov regularization method. An order optimal error estimate for the ap-
proximate solution is obtained with a suitable choice of regularization parameter. To verify
the efficiency and accuracy of the proposed method for problem (.), we give two numer-
ical examples in Section . A brief conclusion is given in Section .

2 Mathematical formulation and preliminaries
Throughout this paper, we use the following formulation and lemmas. For the IHCP (.),
we want to determine the temperature distribution u(x, ·) for  < x ≤  from the Cauchy
data f and g . Since the Cauchy data f and g are measured, there will be measurement
errors, and we would actually have measured Cauchy data f δ , gδ ∈ L[, π ], for which

∥
∥f – f δ

∥
∥ ≤ δ,

∥
∥g – gδ

∥
∥ ≤ δ, (.)

where the constant δ >  represents a bound on the measurement error, ‖ · ‖ and (·, ·)
denote the norm and inner product on L[, π ], respectively.

In the following, we split the IHCP (.) into two independent IHCPs:

vt = vxx,  < x < ,  < t < π ,

v(, t) = f (t),  ≤ t ≤ π , (.)

vx(, t) = ,  ≤ t ≤ π ,

and

wt = wxx,  < x < ,  < t < π ,

w(, t) = ,  ≤ t ≤ π , (.)

wx(, t) = g(t),  ≤ t ≤ π .

Let v(x, t) and w(x, t) be the solution of problems (.) and (.), respectively. Then u =
v + w is the solution of problem (.). Therefore, we only need solve problems (.) and
(.), respectively.
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By the method of separation of variables, the exact solutions of problems (.) and (.)
are given by

v(x, t) =
+∞
∑

n=–∞

(

f (t), eint)eint cosh(
√

inx) (.)

and

w(x, t) =
+∞
∑

n=–∞

√
in

(

g(t), eint)eint sinh(
√

inx). (.)

Then the exact solution of problem (.) is given by

u(x, t) =
+∞
∑

n=–∞

[
(

f (t), eint)eint cosh(
√

inx) +
(g(t), eint)√

in
eint sinh(

√
inx)

]

. (.)

We assume also that there exists an a priori condition for problem (.):

max
{∥
∥v(, ·)∥∥p,

∥
∥w(, ·)∥∥p

} ≤ E, p ≥ , (.)

where ‖v(, ·)‖p = ‖∑+∞
n=–∞( + n)p/(v(, ·), ein(·))ein(·)‖.

In order to give an error estimate for the regularized solution, we need the following
lemma whose proof is similar to that of Lemma . in [].

Lemma . Let  < x ≤ ,  < α < /e
√. We have the following inequalities:

sup
s≥

exs

 + αes ≤ α–x, (.)

sup
s≥

e(+x)s( + s)– p


 + αes ≤ α–(+x)(– ln(α)
)– p

p+ . (.)

We need also the following results.

Lemma . Let  < x ≤ , then there holds []:

lim
n→o

sinh(
√

inx)√
in

= x,
∣
∣
∣
∣

sinh(
√

inx)√
in

∣
∣
∣
∣
≤ √

xe
√ |n|

 x, n ∈ Z, (.)

∣
∣cosh(

√
inx)

∣
∣ ≤ e

√ |n|
 x,

∣
∣sinh(

√
inx)

∣
∣ ≤ e

√ |n|
 x, n ∈ Z, (.)

∣
∣cosh(

√
in)

∣
∣ ≥ ce

√ |n|
 ,

∣
∣sinh(

√
in)

∣
∣ ≥ ce

√ |n|
 , |n| ∈N

+, (.)

where c = ( – e–
√

)/.

3 Conditional stability
In this section, we will provide the conditional stabilities for problems (.), (.), and (.),
respectively.



Cheng and Ma Boundary Value Problems  (2016) 2016:100 Page 4 of 14

Theorem . Let the a priori bound (.) hold and v(x, t) be the solution of problem (.)
given by (.) with the exact data f (t), then for a fixed x ∈ (, ) the following estimate holds:

∥
∥v(x, ·)∥∥ ≤ c–xEx‖f ‖–x. (.)

Proof By the Hölder inequality and (.), we have

∥
∥v(x, ·)∥∥ =

∥
∥
∥
∥
∥

+∞
∑

n=–∞
cosh(

√
inx)

(

f , ein(·))ein(·)
∥
∥
∥
∥
∥



=
+∞
∑

n=–∞

∣
∣cosh(

√
inx)

∣
∣
|fn|

=
+∞
∑

n=–∞

(∣
∣cosh(

√
inx)

∣
∣
|fn|x)|fn|(–x)

≤
[ +∞

∑

n=–∞

(∣
∣cosh(

√
inx)

∣
∣
|fn|x) 

x

]x[ +∞
∑

n=–∞

(|fn|(–x)) 
–x

]–x

=

[ +∞
∑

n=–∞

∣
∣cosh(

√
inx)

∣
∣


x |fn|

]x[ +∞
∑

n=–∞
|fn|

]–x

=

[ +∞
∑

n=–∞

∣
∣cosh(

√
inx)

∣
∣


x
∣
∣cosh(

√
in)

∣
∣
–∣

∣
(

v(, ·), ein(·))∣∣
]x

‖f ‖(–x)

≤
[ +∞

∑

n=–∞

∣
∣cosh(

√
inx)

∣
∣


x
∣
∣cosh(

√
in)

∣
∣
–( + n)p∣

∣
(

v(, ·), ein(·))∣∣
]x

‖f ‖(–x)

≤ max
n∈Z

[∣
∣cosh(

√
inx)

∣
∣
∣
∣cosh(

√
in)

∣
∣
–x]∥

∥v(, ·)∥∥x
p ‖f ‖(–x).

Using (.) and (.), we have

∣
∣cosh(

√
inx)

∣
∣
∣
∣cosh(

√
in)

∣
∣
–x ≤ (

e
√|n|/x)(ce

√|n|/)–x = c–x, |n| ∈N
+,

then we get

max
n∈Z

[∣
∣cosh(

√
inx)

∣
∣
∣
∣cosh(

√
in)

∣
∣
–x] = max

n∈Z

{

, max
n∈N+

| cosh(
√

inx)|
| cosh(

√
in)|x

}

≤ c–x.

Combining with the a priori bound (.), we obtain

∥
∥v(x, ·)∥∥ ≤ c–xEx‖f ‖(–x).

The proof is completed. �

Remark . If v(x, t) and v(x, t) are the solutions of problem (.) with the exact data
f(t) and f(t), respectively, then for a fixed x ∈ (, ) we have

∥
∥v(x, ·) – v(x, ·)∥∥ ≤ c–xEx∥∥f(·) – f(·)∥∥–x. (.)

Similarly, we have the following results.
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Theorem . Suppose that w(x, t) is the solution of problem (.) given by (.) with the
exact data g(t) and the a priori bound (.) is valid, then for a fixed x ∈ (, ) the following
estimate holds:

∥
∥w(x, ·)∥∥ ≤ c–x(

√
x)–xEx‖g‖–x. (.)

Proof Using the Hölder inequality and (.), we have

∥
∥w(x, ·)∥∥ =

∥
∥
∥
∥
∥

+∞
∑

n=–∞

sinh(
√

inx)√
in

(

g, ein(·))ein(·)
∥
∥
∥
∥
∥



=
+∞
∑

n=–∞

∣
∣
∣
∣

sinh(
√

inx)√
in

∣
∣
∣
∣



|gn|

=
+∞
∑

n=–∞

(∣
∣
(

sinh(
√

inx)
)

/
√

in
∣
∣
|gn|x)|gn|(–x)

≤
[ +∞

∑

n=–∞

(∣
∣
(

sinh(
√

inx)
)

/
√

in
∣
∣
|gn|x) 

x

]x[ +∞
∑

n=–∞
|gn|

]–x

=

[ +∞
∑

n=–∞

∣
∣
∣
∣

sinh(
√

inx)√
in

∣
∣
∣
∣


x
∣
∣
∣
∣

sinh(
√

in)√
in

∣
∣
∣
∣

–
∣
∣
(

w(, ·), ein(·))∣∣
]x

‖g‖(–x)

≤
[ +∞

∑

n=–∞

∣
∣
∣
∣

sinh(
√

inx)√
in

∣
∣
∣
∣


x
∣
∣
∣
∣

sinh(
√

in)√
in

∣
∣
∣
∣

–
(

 + n)p∣
∣
(

w(, ·), ein(·))∣∣
]x

‖g‖(–x)

≤ max
n∈Z

[∣
∣
∣
∣

sinh(
√

inx)√
in

∣
∣
∣
∣

∣
∣
∣
∣

sinh(
√

in)√
in

∣
∣
∣
∣

–x]
∥
∥w(, ·)∥∥x

p ‖g‖(–x).

From (.)-(.), we get
∣
∣
∣
∣

sinh(
√

inx)√
in

∣
∣
∣
∣

∣
∣
∣
∣

sinh(
√

in)√
in

∣
∣
∣
∣

–x

=
∣
∣
∣
∣

sinh(
√

inx)√
in

∣
∣
∣
∣

(–x)∣
∣
∣
∣

sinh(
√

inx)
sinh(

√
in)

∣
∣
∣
∣

x

≤ (√
xe

√|n|/x)(–x)
(

e
√|n|/x

ce
√|n|/

)x

= c–x(
√

x)(–x), |n| ∈N
+,

so

max
n∈Z

[∣
∣
∣
∣

sinh(
√

inx)√
in

∣
∣
∣
∣

∣
∣
∣
∣

sinh(
√

in)√
in

∣
∣
∣
∣

–x]

= max
n∈Z

{

x, max
n∈N+

|(sinh(
√

inx))/
√

in|
|(sinh(

√
in))/

√
in|x

}

≤ c–x(
√

x)(–x).

Combining with (.), we obtain
∥
∥w(x, ·)∥∥ ≤ c–x(

√
x)(–x)Ex‖g‖(–x).

Estimate (.) is proved. �

Remark . If w(x, t) and w(x, t) are the solutions of problem (.) with the exact data
g(t) and g(t), respectively, then for a fixed x ∈ (, ) we have

∥
∥w(x, ·) – w(x, ·)∥∥ ≤ c–x(

√
x)(–x)Ex∥∥g(·) – g(·)∥∥–x. (.)
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From Theorems . and ., we then obtain the following theorem.

Theorem . Let the a priori bound (.) hold and u(x, t) be the solution of problem (.)
given by (.) with the exact data f (t) and g(t), then for a fixed x ∈ (, ) we have the fol-
lowing estimate:

∥
∥u(x, ·)∥∥ ≤ c–xEx‖f ‖–x + c–x(

√
x)–xEx‖g‖–x. (.)

Remark . If u(x, t) and u(x, t) are the solutions of problem (.) with the exact data
pairs [f(t), g(t)] and [f(t), g(t)], respectively, then for a fixed x ∈ (, ) we get

∥
∥u(x, ·) – u(x, ·)∥∥ ≤ c–xEx∥∥f(·) – f(·)∥∥–x + c–x(

√
x)(–x)Ex∥∥g(·) – g(·)∥∥–x. (.)

4 Regularization and error estimates
Since Cauchy problems (.) and (.) are all severely ill posed, we should apply a regular-
ization method to solve them.

4.1 Regularization and error estimate for problem (2.2)
For problem (.), we define an operator K : v(x, ·) → f (·), then problem (.) can be
rewritten as the following operator equation:

Kv(x, t) = f (t),  < x ≤ . (.)

Combining with equation (.), we have

Kv(x, t) =
+∞
∑

n=–∞

(

v(x, t), eint)(cosh(
√

inx)
)–eint . (.)

Consequently, K is an operator with eigenvalues

kn =
(

cosh(
√

inx)
)–. (.)

For disturbed data f δ(t), we use the Tikhonov regularization method, which seeks a func-
tion vδ

α(x, ·) from minimizing quadratic functional

Jα
(

vδ
)

:=
∥
∥Kvδ – f δ

∥
∥

 + α∥∥vδ
∥
∥

. (.)

According to Theorem . of [], this Tikhonov functional Jα has a unique minimum
vδ
α(x, ·) which is the unique solution of the normal equation

K∗Kvδ
α + αvδ

α = K∗f δ , α > , (.)

here K∗ is the adjoint of K . Using the properties of the inner product, we obtain the eigen-
values of operator K∗:

kn =
(

cosh(
√

inx)
)–, (.)
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where the symbol h(·) denotes the complex conjugate of the function h(·). Combining
(.), (.), (.) with (.), we get

+∞
∑

n=–∞

(

knkn + α)(vδ
α(x, t), eint)eint =

+∞
∑

n=–∞
kn

(

f δ(t), eint)eint .

This yields

vδ
α(x, t) =

+∞
∑

n=–∞

(

vδ
α(x, t), eint)eint =

+∞
∑

n=–∞

kn

|kn| + α

(

f δ(t), eint)eint

=
+∞
∑

n=–∞

cosh(
√

inx)
 + α| cosh(

√
inx)|

(

f δ(t), eint)eint . (.)

We call vδ
α(x, t) given by (.) the Tikhonov approximate solution of problem (.). In or-

der to derive the error estimate between the regularized solution and the exact solution,
we replace the original filter 

+α| cosh(
√

inx)| with another filter 
+α| cosh(

√
in)| . Thus, the

modified regularized solution of problem (.) becomes

vδ,∗
α (x, t) :=

+∞
∑

n=–∞

cosh(
√

inx)
 + α| cosh(

√
in)|

(

f δ(t), eint)eint . (.)

We then have an error estimate for the modified Tikhonov approximate solution of prob-
lem (.).

Theorem . Let v(x, t) given by (.) and vδ,∗
α (x, t) given by (.) be the exact solution and

modified Tikhonov regularization solution of problem (.), respectively. Suppose that the
noisy data f δ(t) satisfies (.) and the a priori condition (.) is valid. If  < α < /e

√ and
we select the regularization parameter α as

α = (δ/E)
(

ln(E/δ)
) p

p+ , (.)

then for a fixed x ∈ (, ], we have the following stability estimate:

∥
∥v(x, ·) – vδ,∗

α (x, ·)∥∥ ≤ c–xExδ–x
(

ln
E
δ

) –p
p+ x

[

 + c– + o()
]

, δ →  (.)

Proof By using the triangle inequality, with (.) and (.), we have

∥
∥v(x, ·) – vδ,∗

α (x, ·)∥∥ =

∥
∥
∥
∥
∥

+∞
∑

n=–∞
k–

n

[
(

f , ein(·)) –
(f δ , ein(·))

 + α| cosh(
√

in)|
]

ein(·)
∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

+∞
∑

n=–∞

k–
n α| cosh(

√
in)|

 + α| cosh(
√

in)|
(

f , ein(·))ein(·)
∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

+∞
∑

n=–∞

k–
n

 + α| cosh(
√

in)|
(

f – f δ , ein(·))ein(·)
∥
∥
∥
∥
∥
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≤ α sup
n∈Z

| cosh(
√

inx)cosh(
√

in)|( + n)– p


 + α| cosh(
√

in)|

×
∥
∥
∥
∥
∥

+∞
∑

n=–∞

(

 + |n|)
p

(

v(, ·), ein(·))ein(·)
∥
∥
∥
∥
∥

+ sup
n∈Z

| cosh(
√

inx)|
 + α| cosh(

√
in)|

∥
∥
∥
∥
∥

+∞
∑

n=–∞

(

f – f δ , ein(·))ein(·)
∥
∥
∥
∥
∥

= α sup
n∈Z

A(n)
∥
∥v(, ·)∥∥p + sup

n∈Z
B(n)

∥
∥f – f δ

∥
∥,

where

A(n) =
| cosh(

√
inx)cosh(

√
in)|( + n)– p



 + α| cosh(
√

in)| , B(n) =
| cosh(

√
inx)|

 + α| cosh(
√

in)| .

Let s =
√|n|/. Using the inequalities (.)-(.) and (.), we can get

B(n) =
| cosh(

√
inx)|

 + α| cosh(
√

in)| ≤ e
√|n|/x

 + (cα)e
√

|n| =
exs

 + (cα)es ≤ (cα)–x, |n| ∈N
+.

Thus, we have

sup
n∈Z

B(n) = max

{


 + α , sup
|n|∈N+

| cosh(
√

inx)|
 + α| cosh(

√
in)|

}

= max

{


 + α , (cα)–x
}

= (cα)–x. (.)

Analogously, we can estimate supn∈Z A(n). From the inequalities (.)-(.) and (.), we
get

A(n) =
| cosh(

√
inx)cosh(

√
in)|( + n)– p



 + α| cosh(
√

in)| ≤ e
√|n|/(x+)( + n)– p



 + (cα)e
√

|n|

≤ e(x+)s( + s)– p


 + (cα)es ≤ (cα)–(x+)
(

ln


α

)– p
p+

, |n| ∈N
+.

Then we have

sup
n∈Z

A(n) = max

{


 + α , (cα)–(x+)
(

ln


α

)– p
p+

}

= (cα)–(x+)
(

ln


α

)– p
p+

. (.)

Combining with (.)-(.), conditions (.), (.) and the choice of α given by (.), we
obtain

∥
∥v(x, ·) – vδ,∗

α (x, ·)∥∥ ≤ c–(x+)α–x
(

ln


α

)– p
p+

E + (cα)–xδ

≤ c–(x+)E
(

δ

E

(

ln
E
δ

) p
p+

)–x(

ln

(
E
δ

(

ln
E
δ

)– p
p+

))– p
p+
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+
(

cδ
E

(

ln
E
δ

) p
p+

)–x

δ

= c–xExδ–x
(

ln
E
δ

) –p
p+ x[

c–
(

ln E
δ

ln E
δ

– p
p+ ln(ln E

δ
)

) p
p+

+ 
]

.

Note that ln(E/δ)
ln E

δ
– p

p+ ln(ln E
δ

)
→  for δ → . The proof is completed. �

4.2 Regularization and error estimate for problem (2.3)
For problem (.), the Tikhonov method involves minimizing the quadratic functional:

∥
∥Twδ – gδ

∥
∥

 + α∥∥wδ
∥
∥

, (.)

where T : w(x, ·) → g(·) is a forward operator. We know that the above Tikhonov functional
has a unique minimum wδ

α(x, ·) which is the unique solution of the normal equation

T∗Twδ
α + αwδ

α = T∗gδ , α > . (.)

We can obtain the Tikhonov regularized solution of problem (.):

wδ
α(x, t) =

+∞
∑

n=–∞

t–
n

 + α| sinh(
√

inx)√
in |

(

gδ(t), eint)eint , (.)

where tn =
√

in
sinh(

√
inx) is the eigenvalues of operator T . Similarly, we use the filter


+α| sinh(

√
in)| to replace the original filter 

+α| sinh(
√

inx)√
in

|
. Therefore, we get the modified

regularized solution of problem (.):

wδ,∗
α (x, t) =

+∞
∑

n=–∞

t–
n

 + α| sinh(
√

in)|
(

gδ(t), eint)eint . (.)

Theorem . Suppose that w(x, t) is the exact solution given by (.), and wδ,∗
α (x, t) given

by (.) is the modified Tikhonov regularization solution of problem (.). Let the noisy
data gδ(t) satisfy (.) and the a priori condition (.) be valid. If  < α < /e

√ and the
regularization parameter is given by (.). Then for a fixed x ∈ (, ], we have

∥
∥w(x, ·) – wδ,∗

α (x, ·)∥∥ ≤ c–xExδ–x
(

ln
E
δ

) –p
p+ x

[√
x + c– + o()

]

, δ → . (.)

Proof By using the triangle inequality, with (.) and (.), we have

∥
∥w(x, ·) – wδ,∗

α (x, ·)∥∥ =

∥
∥
∥
∥
∥

+∞
∑

n=–∞
t–
n

[
(

g, ein(·)) –
(gδ , ein(·))

 + α| sinh(
√

in)|
]

ein(·)
∥
∥
∥
∥
∥

≤ α sup
n∈Z

| sinh(
√

inx)sinh(
√

in)|( + n)– p


 + α| sinh(
√

in)|

×
∥
∥
∥
∥
∥

+∞
∑

n=–∞

(

 + |n|)
p

(

w(, ·), ein(·))ein(·)
∥
∥
∥
∥
∥
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+ sup
n∈Z

|(sinh(
√

inx))/
√

in|
 + α| sinh(

√
in)|

∥
∥
∥
∥
∥

+∞
∑

n=–∞

(

g – gδ , ein(·))ein(·)
∥
∥
∥
∥
∥

=: α sup
n∈Z

C(n)
∥
∥w(, ·)∥∥p + sup

n∈Z
D(n)

∥
∥f – f δ

∥
∥.

Using the methods dealing with supn∈Z A(n) and supn∈Z B(n), with (.)-(.), (.), and
(.), we obtain

sup
n∈Z

C(n) ≤ (cα)–(x+)
(

ln


α

)– p
p+

, sup
n∈Z

D(n) ≤ √
x(cα)–x. (.)

Combining with (.), conditions (.), (.), and the choice of α given by (.), we get

∥
∥w(x, ·) – wδ,∗

α (x, ·)∥∥ ≤ c–(x+)α–x
(

ln


α

)– p
p+

E +
√

x(cα)–xδ

≤ c–xExδ–x
(

ln
E
δ

) –p
p+ x[

c–
(

ln E
δ

ln E
δ

– p
p+ ln(ln E

δ
)

) p
p+

+
√

x
]

.

Note that ln(E/δ)
ln E

δ
– p

p+ ln(ln E
δ

)
→  for δ → . The theorem is proved. �

We give the regularized solution for problem (.):

uδ
α(x, t) =

+∞
∑

n=–∞

[
(cosh(

√
inx))(f δ(t), eint)

 + α| cosh(
√

inx)| +
sinh(

√
inx)√

in (gδ(t), eint)

 + α| sinh(
√

inx)√
in |

]

eint . (.)

Similarly, the modified Tikhonov regularized solution is

uδ,∗
α (x, t) =

+∞
∑

n=–∞

[
(cosh(

√
inx))(f δ(t), eint)

 + α| cosh(
√

in)| +
sinh(

√
inx)√

in (gδ(t), eint)

 + α| sinh(
√

in)|
]

eint . (.)

Analogously, we have the error estimate for problem (.).

Theorem . Let u(x, t) be the exact solution given by (.), and uδ,∗
α (x, t) given by (.)

be the modified Tikhonov regularization solution of problem (.). Suppose that the noisy
data f δ(t) and gδ(t) satisfy (.) and the a priori condition (.) is valid. If  < α < /e

√

and the regularization parameter is chosen as (.), then for fixed x ∈ (, ], we obtain

∥
∥u(x, ·) – uδ,∗

α (x, ·)∥∥ ≤ c–xExδ–x
(

ln
E
δ

) –p
p+ x

[√
x +  + c– + o()

]

, δ → . (.)

Remark .
(i) If we choose p = , estimate (.) becomes

∥
∥u(x, ·) – uδ,∗

α (x, ·)∥∥ ≤ (

(
√

x + )c–x + c–(x+))Exδ–x, (.)

it is a Hölder type stability estimate.
(ii) If we choose p > , estimate (.) is a logarithmic-Hölder type error estimate,

especially at x = , it is a logarithmic type convergence estimate.
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5 Numerical experiments
In this section, we present two numerical examples to illustrate the effectiveness of the
suggested regularization method. The grid numbers on the space and time intervals are
taken to be M = , J = , refer to []. The noisy Cauchy data are generated by

f δ(tj) = f (tj)
(

 + ε · rand(j)
)

, gδ(tj) = g(tj)
(

 + ε · rand(j)
)

,

where tj is a set of discrete times on interval [, π ], f (tj) and g(tj) are the exact Cauchy
data, rand(tj) is a random number uniformly distributed on [–, ], and the magnitude ε

indicates the relative noise level. In the tests, the noise level δ is computed according to

δ = max
{∥
∥f – f δ

∥
∥,

∥
∥g – gδ

∥
∥
}

.

In order to present the performance of the modified Tikhonov method, we define the rel-
ative root mean square error at fixed x as

e(u) =

√
∑J

j=(u(·, tj) – uδ,∗
α (·, tj))

√
∑J

j= u(·, tj)
. (.)

Example  The exact solution of problem (.) with f (t) =  – cos t and g(t) =  is given by

u(x, t) =  –



(

e
x√
 cos

(
x√


+ t
)

+ e– x√
 cos

(
x√


– t
))

.

As the regularized solution in (.) is an infinite series, we compute it from n = – to
n =  in both examples. If we take p = , the a priori bound can be calculated as E = .
according to (.), and the regularization parameter α = ., . from (.) for
ε = ., ., respectively.

Figure  compares the stability of the regularized solution computed by the classic
Tikhonov method and the modified Tikhonov method at fixed point x = . with ε = ..
The relative root mean square errors for them are e(u) = . and e(u) = ., re-

Figure 1 The Tikhonov regularized solution and the modified Tikhonov regularized solution at fixed
point x = 0.4 with ε = 0.01.
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Figure 2 Comparison of the exact solution with the modified Tikhonov regularized solution.
(a) x = 0.2, (b) x = 0.4, (c) x = 0.9, (d) x = 1.

Table 1 The relative root mean square errors with ε = 0.01 and ε = 0.05 for Example 1

x 0.2 0.4 0.6 0.8 0.9 1

e0.01(u) 0.0051 0.0059 0.0095 0.0198 0.0300 0.0460
e0.05(u) 0.0245 0.0254 0.0299 0.0457 0.0627 0.0899

spectively. For these two methods, there is almost no difference in the numerical results.
However, in theoretical analysis, it is much easier to obtain the explicit error estimate for
the modified Tikhonov method than to do it for the classic Tikhonov method.

Figure  gives the comparison of the exact solution and its approximations with different
noise. Since the exact solution u(x, t) is a periodic function with variable t, the approxi-
mate solution converges to the exact solution everywhere. We see that the approximations
are acceptable for both interior and boundary temperature, and the numerical results are
stable with the increase of noisy levels.

Table  shows the relative root mean square errors for different x with ε = . and
ε = ., respectively. From this table, it is easy to see that the smaller the x the better
the computed approximation. This is consistent with the theoretical result (.).

In the next example, we will show the case in which the exact solution is not given.

Example  The solution itself satisfies the following equations:

ut = uxx,  < x < ,  < t < π ,
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Figure 3 Comparison of the exact solution with the modified Tikhonov regularized solution.
(a) x = 0.2, (b) x = 0.4.

u(, t) = ,  ≤ t ≤ π , (.)

u(, t) = H(t),  ≤ t ≤ π ,

where H(t) is the Heaviside function. We use the method of the fundamental solution []
to solve the forward problem and obtain g(t) = ux(, t). The boundary data g(t) is disturbed
by a random error, and the modified Tikhonov method is used to stabilize this inverse heat
conduction problem.

For this example, we can calculate by Matlab that E = ., and the regularization
parameter α = ., . for ε = ., ., respectively.

In Figure , we see that the regularized solution is drastically oscillatory at t = π , while
the numerical result is acceptable for other points. The reason for this phenomenon is that
the solution u(x, t) is not periodic to variable t, and thus the Fourier series (.) does not
converge at the endpoint.

6 Conclusion
In this paper, the inverse heat conduction problem with only boundary value in a bounded
domain has been investigated. The conditional stability is given. We propose a modified
Tikhonov regularization method for obtaining a regularized solution. Based on an a priori
assumption for the exact solution, the order optimal error estimate is obtained with a
suitable choice of regularization parameter. Numerical examples show that our proposed
method is effective and stable.
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6. Eldén, L, Berntsson, F, Regińska, T: Wavelet and Fourier methods for solving the sideways heat equation. SIAM J. Sci.

Comput. 21(6), 2187-2205 (2000)
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