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1 Introduction
Consider a plane shear flow U = iU(y) within the channel, x ∈ (–∞,∞) and y ∈ [–, ],
a parallel shear flow in the x-direction. The linearized vorticity equation for a two-
dimensional disturbance can be written as the equation (see [] or [])

∂tw + U(y)∂xw – U ′′(y)∂xψ = , (.)

where w = w(x, y, t) is the vorticity perturbation, ψ = ψ(x, y, t) is the associated stream
function, which is related by

w = ∇ψ =
∂

∂x ψ +
∂

∂y ψ

and the boundary condition ψ(x,±, t) =  for any x ∈ (–∞,∞).
By the normal mode method, or seeking the solutions of the form

ψ(x, y, t) = ϕ(y)eiα(x–ct)

with α the wave number (positive real) in the x-direction and c = cr + i ci the complex wave
speed, we obtain the Rayleigh equation

(
U(y) – c

)(
ϕ′′ – αϕ

)
– U ′′(y)ϕ = , ϕ = ϕ(y), y ∈ (–, ), (.)

with the boundary condition

ϕ(–) = , ϕ() = . (.)
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So for shear flows, the instability problem is reduced to study the Rayleigh eigenvalue
problems (.) and (.). This problem has a long history, going back to scientists such as
Rayleigh and Kelvin in the th century (see [–]).

The flow is linearly unstable if some nontrivial solutions to (.) and (.) exist, with the
imaginary part of c satisfying ci := Im c > . A classical result of Rayleigh [] is the necessary
condition for instability that the basic velocity profile should have an inflection point at
some points y = ys, that is, U ′′(ys) = . This condition was later improved by Fjörtoft [].
However, it is far more difficult to obtain effective sufficient conditions for instability.

In , Tollmien [] obtained an unstable solution to (.) by formally perturbing
around a neutral mode (i.e., c is a real number) for symmetric flows. In , Rosen-
bluth and Simon [] gave a necessary and sufficient integral condition for the monotone
flows. Recently, some instability criteria for the special flows U(y) = cos my in [] and
U(y) = sin my in [] have been obtained. These results were much improved and extended
by Lin to more general odd symmetric flows in [] and other classes of shear flows in [].

We call a function U(y) point symmetric with respect to c ∈ R if U(y) + U(–y) ≡ c.
For such U(y) we define

K(y) :=
U ′′(y)
U(y)

, U(y) = U(y) – c. (.)

In the recent paper [], the instability results were extended to the case where K is allowed
to be unbounded, but integrable on [–, ].

Proposition . (cf. Theorem . in []) Suppose that U(y) is point symmetric, U(y) +
U(–y) = c, U ∈ C[–, ], and K ∈ L[–, ]. If –d/dy + K(y) with the boundary condi-
tion (.) has negative eigenvalues

λ < λ < · · · < λN < ,

then there is an unstable mode for every wave number α ∈ ⋃m
k=(αk ,αk–), where m =

[(N + )/], the largest integer less than or equal to (N + )/, αj =
√

–λj for  ≤ j ≤ N , and
αN+ = .

The present paper mainly focuses on the instability of the Rayleigh equation with piece-
wise smooth and point-symmetric velocity profiles U(y), satisfying the requirement that
U ′(y) exists continuously on [–, ] and U ′′(y) exists on [–, ] except for a finite number
of points. More general cases with piecewise smooth velocity profile were studied in [].

Proposition . (cf. Theorem . in []) Suppose that U(y) is point symmetric, U ∈
C[–, ], and there exist N +  points {yj}N

–N in [–, ] such that  = y < y < · · · < yN = ,
y–j = –yj, and U(y) is twice continuously differentiable for y �= yj, –N ≤ j ≤ N . If there exist
constants Cj >  and  ≤ ρj < ,  ≤ j ≤ N , such that

∣
∣U(y)

∣
∣ ≥ Cj|y – yj|ρj for y near yj,

then there exists an αc >  such that the Rayleigh problem of (.) with (.) has at least one
unstable mode for every α ∈ (,αc).
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Set

Lloc
(
[–, ) ∪ (, ]

)
:=

{
f is a measurable function on [–, ) ∪ (, ] :

for any compact subset I ⊂ [–, ) ∪ (, ], f ∈ L(I)
}

.

Clearly, L[–, ] is a proper subset of Lloc([–, ) ∪ (, ]). Then we can give the following
instability criterion, which is the main result of this paper.

Theorem . Let U ∈ C[–, ] be point symmetric with respect to c ∈ R and there exist
N +  points {yj}N

–N in [–, ] such that  = y < y < · · · < yN = , y–j = –yj, and U(y) is
twice continuously differentiable for y �= yj, –N ≤ j ≤ N . Let U and K be defined in (.).
Suppose that U ′

Uk
 is bounded on [–, ] for sufficiently large k and

(i) K ∈ Lloc
(
[–, ) ∪ (, ]

)
, U(±) �= ,

(ii) U(y) ∼ ayρ as y → , / > ρ > /,ρ �= , a �= .
(.)

Let H() be the differential operator in L(, ] associated to

–ϕ′′ + Kϕ = λϕ, lim
y→+

(
ϕ′(y)U(y) – ϕ(y)U ′

(y)
)

= , ϕ() = . (.)

If H() has negative eigenvalues arranged in the order

λ < λ < · · · < λN < ,

then there is an unstable mode of the Rayleigh problem (.) and (.) for every wave number
α ∈ ⋃m

k=(αk ,αk–), where m = [(N + )/], the largest integer less than or equal to (N +
)/, αj =

√
–λj for  ≤ j ≤ N , and αN+ = .

Note that Proposition . studies the case where K ∈ L[–, ] and in Theorem . the
function K is allowed not to be in L[–, ] (K ∈ Lloc([–, ) ∪ (, ])). Besides, Proposi-
tion . only gives the existence of an unstable mode in one interval of wave numbers,
while Theorem . gives the existence of many unstable modes in a number of intervals
of wave number if H() has more than one negative eigenvalue. At the end of the present
paper, we give an illustrative example in which H() ⊕ H() has more than one negative
eigenvalue.

Since U ′′(y) is allowed to be discontinuous at finite points in [–, ], this will result in
different definitions of solutions of the Rayleigh equation and different Sturm-Liouville
problems. For this reason, we will put much of attention on the properties of such solutions
and corresponding eigenvalue problems. See Lemmas ., ., ., and ..

The main tools in the proof of Theorem . are the perturbation theory of operators in
Hilbert spaces and the spectral theory of PT -symmetric differential operators.

Following this section, Section  presents some preliminary knowledge about the prop-
erties of solutions to the Rayleigh equation with piecewise smooth velocity profiles, the
spectral properties of singular Sturm-Liouville problems with one singular end point and
regular Sturm-Liouville problems with PT -symmetric potentials. The proof of the main
result is given in Section  and the illustrative example is also given at the end of that
section.
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2 Preliminary knowledge
In this section, we first introduce properties of solutions of the Rayleigh equation with
piecewise smooth velocity profiles and spectral properties of regular and singular Sturm-
Liouville problems, especially the regular one with PT -symmetric potentials. We note
that the assumptions of all lemmas in Section  and Section  are the same as in Theo-
rem . and so are omitted for the sake of brevity.

2.1 Solutions of the Rayleigh equations
Since U ′′(y) may be discontinuous at some junctions inside the interval, we must redefine
the solution of the governing equation (.) and the eigenfunction to the Rayleigh eigen-
value problem in a weaker sense than the classical one.

For fixed α and c = cr + i ci with ci > , consider the differential equation

–ϕ′′ +
(

U ′′(y)
U(y) – c

+ α
)

ϕ = λϕ, y ∈ (–, ), (.)

involving the spectral parameter λ (cf. []). Set Ij = (yj, yj+), –N ≤ j ≤ N – . A continuous
function ϕ is called a solution of (.) on [–, ] if ϕ satisfies (.) on each Ij and

(
B(c)ϕ

)
(y) := (U – c)ϕ′ – U ′ϕ (.)

can be extended to be absolutely continuous on [–, ] (see []). If, for a λ, ϕ is a nonzero
solution of (.) and satisfies the boundary condition (.), then we call λ an eigenvalue
and ϕ the corresponding eigenfunction to (.) with the boundary (.) and, by convention,
we call c = cr + i ci an eigenvalue and ϕ the corresponding eigenfunction of the Rayleigh
problem (.) with (.).

Lemmas . and . in [] show that such a solution is also uniquely determined by an
initial value condition.

Lemma . (cf. Lemmas . and . in []) For each initial value condition

ϕ(ξ ) = a, (Bϕ)(ξ ) = a, a, a ∈C, ξ ∈ [–, ], (.)

there exists a unique solution ϕ(y, c,λ) of (.) in C[–, ]∪C([–, )∪ (, ]). Furthermore,
ϕ(y, c,λ) is analytic in ci >  and λ.

Note, Lemma . implies that the corresponding eigen-subspace of every eigenvalue of
(.) and (.) has exactly one dimension.

Lemma . Let ϕ, ϕ be two solutions of (.) with Im c �=  and define the Wronskian
W [ϕ,ϕ] of ϕ and ϕ for y �= :

W [ϕ,ϕ](y) = ϕ(y)ϕ′
(y) – ϕ′

(y)ϕ(y).

Then there exists a constant C ∈C such that W [ϕ,ϕ](y) ≡ C for y �= .

Proof Since ϕ, ϕ are classical solutions of (.), W [ϕ,ϕ](y) ≡ C±j on I±j,  ≤ j ≤ N . On
the other hand, Bϕ and Bϕ are both continuous on [–, ] and UW [ϕ,ϕ](y) = ϕBϕ –
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ϕBϕ is continuous by the continuity of ϕk on [–, ], k = , , and hence U(y) – c �= 
implies that W [ϕ,ϕ] is continuous on [–, ]. As a result, C±j ≡ C for  ≤ j ≤ N . This
proves Lemma .. �

By Lemma . we can define the linearly dependent(resp. independent) solutions. Let
ϕ, ϕ be solutions of (.). If W [ϕ,ϕ](y) =  for some y ∈ [–, ], then we say that ϕ,
ϕ are linearly dependent. Otherwise we say they are linearly independent.

Lemma . Set

F(y, t) = t/ρ–
∫ t–/ρ

yt–/ρ

ds
 + sρ

, y ∈ (, ].

If ρ ∈ (, /), then there exists an F ∈ L(, ] such that F(y, t) ≤ F(y) for all t ∈ (, ].

Proof For ρ ∈ (, /), we have, for t ∈ (, ],

F(y, t) ≤ t/ρ–
∫ t–/ρ

yt–/ρ

ds
sρ

=


 – ρ
t/ρ–[(t–/ρ)–ρ –

(
yt–/ρ)–ρ]

≤ 
 – ρ

t/ρ–t–/ρ+ =
t

 – ρ
≤ 

 – ρ
.

For ρ = /, we have, for t ∈ (, ],

F(y, t) = t ln
 + t–

 + yt– = t ln
 + t

y + t ≤ M, y ∈ (, ].

For / < ρ ≤ , we have, for t ∈ (, ],

F(y, t) ≤ t/ρ–
∫ ∞



ds
 + sρ

≤ M.

For / > ρ > , we have, for t ∈ (, ],

F(y, t) = t/ρ–
∫ t–/ρ

yt–/ρ


ρsρ–

dsρ

 + sρ

≤ y–ρ

ρ
t/ρ–(t–/ρ)–ρ

∫ ∞



du
 + u ≤ πy–ρ

ρ
.

Since ρ < /, one sees that y–ρ ∈ L(, ]. This completes the proof. �

2.2 Spectral properties of the corresponding differential operators
Consider the Sturm-Louville eigenvalue problem associated of (.) and (.) for c = c +i ci

with ci >  in L[–, ], i.e.,

–ϕ′′ +
[
K(y, ci) + α]ϕ = λϕ, ϕ(±) = , K(y, ci) =

U ′′(y)
U(y) – i ci

. (.)

Since U ′′ ∈ L[–, ] and |K(y, ci)| ≤ U ′′/|ci|, the problem is regular. Denote by H(ci) the
associated operator. If U(y) is essentially odd, it is easy to see that K(y, ci) = K(–y, ci). This
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ensures that the operator H(ci) is PT -symmetric for every ci ∈ (,∞), that is, H(ci) is
densely defined and

H(ci)PT ⊂PT H(ci)

where P is the parity transformation: ϕ(y) → ϕ(–y) and T is the time reversal transfor-
mation: ϕ(y) → ϕ(y). It is well known that the spectrum of a PT -symmetric operator is
symmetric with respect to the real axis. As a result we have, for ci > ,

λ ∈ σ
(
H(ci)

) �⇒ λ ∈ σ
(
H(ci)

)
, ci ∈ [,∞), (.)

where σ (H(ci)) is the spectrum of H(ci).
Since (.) is regular, the operator H(ci) has only countable discrete eigenvalues. The

properties of eigenvalues were studied in [] and it has been proved that the real parts
of eigenvalues of (.) are bounded from below. The eigenvalues can be arranged in the
dictionary order according to their real parts and imaginable parts. Then we write the
countably many eigenvalues of H(ci) as {λn(ci)}n≥ in such an order and conclude from
Theorem . of [] the following.

Lemma . (cf. Theorem . of []) We have

λn(ci) =
(

nπ



)

+ r(n, ci),
∣∣r(n, ci)

∣∣ ≤ C(ci)n, (.)

where the positive constant C(ci) satisfies

C(ci) ≤ C

∫ 

–

∣
∣K(y, ci)

∣
∣dy, (.)

and the constant C is independent of ci. Moreover, there exists a positive integer N(ci)
depending only on ci such that, for n > N(ci), λn(ci) is algebraically simple.

Let H() be the associated operator to

Ej: –ϕ′′ + K(y)ϕ = λϕ,

lim
y→+

(
ϕ′(y)U(y) – ϕ(y)U ′

(y)
)

= , ϕ() = 
(.)

in L(, ], where K(y) = U ′′(y)/U(y). The operator H() maybe singular with the possible
singular end point y =  since U ′′/U is allowed to be not integrable on (, ]. We prepare
some basic results about the spectrum σ of H().

Lemma . The operator H() is self-adjoint and σ contains only discrete, real and alge-
braically simple eigenvalues.

Proof By the condition (ii) of (.) there exists a δ >  such that U(y) �=  for y ∈ (, δ]. Let
ϕ be the solution of –ϕ′′ + Kϕ =  satisfying

ϕ(δ) = , ϕ′
(δ) =


U(δ)

.
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Since K ∈ L
loc(, ] in (i) of (.), we know that ϕ exists on (, ] and is uniquely deter-

mined by the above initial value condition. Clearly ϕ ∈ L[δ, ]. Since U(y) �=  on (, δ],
the explicit expression of ϕ on (, δ] is given by

ϕ(y) = U(y)
∫ y

δ


U


, y ∈ (, δ]. (.)

Applying U(y) ∼ ayρ as y →  and / < ρ < / in (ii) of (.) we find that

∣
∣ϕ(y)

∣
∣ ≤ Cyρ + Cy–ρ ∈ L[, δ] (.)

with some constants C, C > . Thus ϕ ∈ L[, ]. Clearly, U is the other linearly inde-
pendent solution of –ϕ′′ + Kϕ =  such that U ∈ L[, ], and hence all the solutions of
–ϕ′′ + Kϕ = λϕ belong to L[, ] for λ ∈ C by the variation of constants formula. This
means that the equation in (.) is of limit circle type at y =  by the classification of Weyl;
see []. Therefore, H() with the separated and self-adjoint boundary conditions in (.)
is self-adjoint, and hence all the conclusions of Lemma . are valid by the spectral theory
of symmetric Sturm-Liouville differential operators. This completes the proof. �

Note that U(±) �= . Denote by ϕ+(y), ϕ–(y) the solutions of –ϕ′′ + Kϕ =  on (, ],
[–, ), respectively, satisfying

ϕ±(±) = , ϕ′
±(±) = /U(±). (.)

Since ϕ+() =  and the Wronsikian W [U,ϕ+] of the two linearly independent solutions,
U and ϕ+ satisfy

Bϕ+(y) = W [U,ϕ+](y) = ϕ′
+(y)U(y) – ϕ+(y)U ′

(y) ≡  on (, ]

by Lemma ., one sees that ϕ+ is not an eigenfunction of H(). This means that λ =  is
not an eigenvalue of H(), and hence the resolvent (H() – z)– of H() at z =  exists. By
a computation, the integral expression of H–() is given by

H–()f (y) =
∫ 


G(y, t)f (t) dt, (.)

where G(y, t) is the Green function associated to H() at  given by

G(y, t) = –

{
U(t)ϕ+(y),  > y > t > ,
U(y)ϕ+(t),  < y < t < .

(.)

Equations (.) and (.) will be used in the proof of Lemma ..

2.3 Convergence properties of solutions of (2.4) as ci → 0+
Set

ϕ±(y, ci) =
(
U(y) – i ci

)∫ y

±


(U – i ci) , (.)
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I(δ) = [δ, ] and I(–δ) = [–, –δ] for δ ∈ (, ). Note that ϕ±(y; ci) belong to both L[–, ]
and C[–, ] for ci > . The following result gives the convergence properties for ϕ±(y; ci)
in C-norm and L-norm.

Lemma . Let ϕ±(y; ci) be defined in (.) and ϕ±(y) in (.), then as ci → +,

ϕ+(·; ci) → ϕ+ in C
(
I(δ)

)
, ϕ–(·; ci) → ϕ– in C

(
I(–δ)

)
(.)

for every δ ∈ (, ) and

ϕ+(·; ci) → ϕ+ in L(, ], ϕ–(·; ci) → ϕ– in L[–, ). (.)

Proof Since K ∈ L(I(±δ)) by the assumptions in Theorem ., one can verify that
K(·, ci) → K(·) in L(I(±δ)) as ci → + for δ ∈ (, ) by Lebesgue dominated convergence
theorem. Note that

ϕ±(±, ci) = , ϕ′
±(±, ci) =


U(±) – i ci

→ 
U(±)

= ϕ′
±(±),

as ci → . Then (.) is true by the theory of ordinary differential equations.
Let δ >  be sufficiently small such that |U(y)| ≥ |a|yρ/ for  < y ≤ δ by (ii) of (.). For

y ∈ [δ, ], we see from (.), for  < ci ≤ , that there exists M(δ) > , independent of ci,
such that

∣∣ϕ+(y; ci)
∣∣ ≤ M(δ), y ∈ [δ, ]. (.)

For y ∈ (, δ), we write ϕ+(y, ci) into

ϕ+(y; ci) =
(
U(y) – i ci

)(∫ δ


+

∫ y

δ

)


(U – i ci)

=
U(y) – i ci

U(δ) – i ci
ϕ+(δ; ci) +

(
U(y) – i ci

)∫ y

δ


(U – i ci) . (.)

The second term of the last expression in (.) is dominated by

∣∣
∣∣U(y)

∫ y

δ


(U – i ci)

∣∣
∣∣ + ci

∣∣
∣∣

∫ y

δ


(U – i ci)

∣∣
∣∣ ≤ ϕ(y) + ci

∫ δ

y


U

 + c
i

,

where ϕ(y) is defined in (.). Since |U(y)| ≥ |a|yρ/ for  < y ≤ δ,

ci

∫ δ

y


U

 + c
i

=
ĉ
|a|

∫ δ

y

dt
tρ + ĉ ≤ ci

|a|
∫ |a|δ/

y

dt
t + c

i

=
ĉ/ρ–

|a|
∫ δc–/ρ

yĉ–/ρ

ds
sρ + 

,

where ĉ = ci/|a|. Then by Lemma . there exists an F ∈ L(, ] such that

ci

∫ δ

y


U

 + c
i

≤ F(y), y ∈ (, ]
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for all ci ∈ [–|a|/, |a|/]. Therefore,

∣
∣∣
∣
(
U(y) – i ci

)∫ y

δ


(U – i ci)

∣
∣∣
∣ ≤ ∣∣ϕ(y)

∣∣ + F(y) (.)

for y ∈ (, δ] and all sufficiently small ci > .
Since U(δ) �= , the first term of the last expression in (.) is clearly dominated by

C|U(y)| + C for ci ≤  by (.). Therefore we conclude from (.), (.), and (.)
that, for y ∈ (, ],

∣∣ϕ+(y; ci)
∣∣ ≤ C

∣∣U(y)
∣∣ +

∣∣ϕ(y)
∣∣ + F(y) + C ∈ L(, ] (.)

for all sufficiently small ci >  by (.), where the constants C and C are indepen-
dent of ci. This together with (.) yields that ϕ+(·; ci) → ϕ+(·) in L(, ] as ci → + by
Lebesgue dominated convergence theorem. Similarly, one can prove that ϕ–(·; ci) → ϕ–(·)
in L[–, ) as ci → +. The proof of Lemma . is finished. �

Lemma . Let ϕ(y;λ, ci) be the solution of (.) such that ϕ(;λ, ci) =  and ϕ′(;λ, ci) =
/U() for ci ≥ . Then ϕ(·;λ, ci) → ϕ(·;λ, ) as ci → + in L[, ].

Proof Let ϕ+(y; ci) be defined as in (.). Set

R(y, t, ci) =
(
U(y) + i ci

)
ϕ+(t; ci) –

(
U(t) + i ci

)
ϕ+(y; ci)

and R(y, t) = R(y, t, ). By the variation of constants formula, the solution ϕ(y;λ, ci) can be
expressed as

ϕ(y,λ, ci) = ϕ+(y; ci) + λ

∫ y


R(y, t, ci)ϕ(t,λ, ci) dt, y ∈ [, ]. (.)

Since ϕ+(·; ci) → ϕ+ in L[, ] as ci → + by Lemma ., we see that R(·; ci) → R in
L([, ] × [, ]) as ci → . Therefore, by a standard method we can prove the validity
of the conclusion of Lemma .. �

In the sequel we will use the quantity W (ci) defined by

W (ci) =
∫ 



dy
(U(y) – ici) . (.)

Lemma . Under the assumptions in Theorem ., |W (ci)| → ∞ as ci → +.

Proof Let ϕ±(y; ci) be defined in (.) and ϕ±(y) be defined in (.). Take δ >  sufficiently
small such that U(±δ) �= . Since ϕ±(y; ci) → ϕ±(y) as ci → + for all y >  by (.), we
get

∫ ±δ




(U – ici) =

ϕ±(±δ; ci)
(U(±δ) – ici)

→ ϕ±(±δ)
U(±δ)

�= ∞ (.)
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as ci → +. It remains to prove that as ci → +,

W (ci, δ) :=
∫

|y|≤δ


(U – ici) → ∞. (.)

To this end we set

F(ci) : =
∫ δ



U
 – c

i
(U

 + ci) =
∫ δ




U

 + c
i

– c
i

∫ δ




(U

 + ci)

=: F(ci) – ciF(ci). (.)

Clearly W (ci, δ) = F(ci) by the odd symmetry of U. Since U(y) ∼ ayρ as y → , we can
choose δ >  sufficiently small such that |Ay|ρ ≤ |U(y)| ≤ |By|ρ for |y| ≤ δ with  < A < B.

If / < ρ < , then choose B – A sufficiently small such that

/B – ( – /ρ)/A > . (.)

Then we have

F(ci) ≥
∫ δ



dy
(By)ρ + c

i
, ciF(ci) ≤ c

i

∫ δ



dy
((Ay)ρ + c

i ) . (.)

For the sake of simplicity, we take δ =  and t = c/ρ
i in the following estimation:

F(ci) =
t–ρ

B

∫ B/t



ds
sρ + 

:=
t–ρ

B
I(B, t) := G(B, t),

ciF(ci) = –ci
∂

∂ci

(∫ 



dy
(Ay)ρ + c

i

)
= –ci

∂

∂ci
G(A, ci)

= –tρ ∂

∂t
G(A, t)

∂t
∂ci

= –
t
ρ

∂

∂t
G(A, t)

=
t–ρ

A
( – /ρ)I(A, t) +


ρ

(
Aρ + tρ

)–.

Therefore, I(B, t) > I(A, t), ρ > /, and (.) lead to

W (ci, δ) ≥ t–ρ

(

B

–
( – /ρ)

A

)
I(A, t) –


ρ

(
Aρ + tρ

)– → +∞

as ci → +. For the case  < ρ < /, we choose A, B satisfying

/A – ( – /ρ)/B <  (.)

and use similar inequalities in (.),

F(ci) ≤
∫ δ



dy
(Ay)ρ + c

i
, ciF(ci) ≥ c

i

∫ δ



dy
((By)ρ + c

i ) . (.)

Then a similar argument to the above proves that W (ci) → –∞ as ci → +. This lemma
is completed. �
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Now we can outline the proof of Theorem . given in the next section. Recall the def-
inition of λk(ci), the eigenvalue of (.). Since there exists an unstable mode for a wave
number α if and only if λk(ci) =  for k ≥ , we only need to prove that H(ci) has at least
one zero eigenvalue for some ci >  under the assumptions in Theorem ..

Consider the eigenvalues λ(ci) of H(ci) as functions of the variable ci ∈ [,∞). Applying
the Kato-Rellich theorem (see e.g. [], Theorem XII., p., IV, or [], pp.-) as well
as the resolvent convergence of H(ci) in Lemma ., we prove that λ(ci) is a continuous
function in the sense of (.). The main step is to prove the continuity of λ(ci) at ci = .
If this is done and λk(ci) �=  for all k ≥  and ci > , then we can introduce an auxiliary
function D(ci) defined in (.) and prove that D(ci) is continuous on (,∞], D(ci) > 
for sufficiently large ci > , and D(ci) <  for all sufficiently small ci >  by using several
technical lemmas in Section . Therefore, the desired contradiction would appear.

3 The proof of Theorem 1.3
This section gives the proof of Theorem . through proving several lemmas. Recall that
H(ci) is the associated operator to (.) for ci ∈ (,∞) and the spectrum of H(ci) is dis-
crete. Denote by λ(ci) the eigenvalue of H(ci). The main step in this section is proving
the continuity of λ(ci) in the sense of that, if λ(c

i ) is an eigenvalue of H(c
i ) with algebraic

multiplicity m and

O
(
λ
(
c

i
)
, r

)
=

{
λ :

∣
∣λ – λ

(
c

i
)∣∣ ≤ r

} ∩ σ
(
H

(
c

i
))

=
{
λ
(
c

i
)}

, (.)

then there exists δ >  such that, for |ci – c
i | < δ, O(λ(ci), r) contains eigenvalues of H(ci)

with total algebraic multiplicity exactly m. We remark that the above property is called
‘stableness of eigenvalue’ λ(c

i ) for the case m =  in [], p..
The first lemma gives the continuity of λ(ci) on (,∞).

Lemma . λ(ci) is continuous on (,∞).

Proof Let ϕ(y, ci,λ) be the solution of

–ϕ′′ +
[
K(y, ci) + α]ϕ = λϕ, K(y, ci) =

U ′′(y)
U(y) – i ci

,

such that ϕ(–, ci,λ) = , ϕ′(–, ci,λ) = . Since ϕ(, ci,λ) is analytic in (ci,λ) for ci >  by
Lemma ., and λ is an eigenvalue of (.) for a fixed ci >  if and only if λ is a zero of
ϕ(, ci,λ), it follows from the continuity of the zeros of an analytic function ([], p.)
that λn(ci) is continuous in the above sense. This lemma is completed. �

With a similar argument to the above one can prove the following.

Lemma . λ(ci) is continuous at ci = ∞, where H(∞) is the differential operator associ-
ated to

–ϕ′′ + αϕ = λϕ in L(–, ), ϕ(–) = ϕ() = .
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Proof Set η = /ci for ci > . Clearly, the eigenvalue problem (.) is equivalent to the eigen-
value problem

–ϕ′′ +
(

ηU ′′(y)
ηU(y) – i

+ α
)

ϕ = λϕ, ϕ(±) = , (.)

in L[–, ]. Let ϕ(y,η,λ) be the solution of (.) which satisfies ϕ(–,η,λ) = , ϕ′(–,η,
λ) = . Note that

∣
∣∣
∣

ηU ′′(y)
ηU(y) – i

∣
∣∣
∣ ≤ η

∣∣U ′′∣∣ ∈ L[–, ].

Then ϕ(,η,λ) is analytic in (η,λ) for η ≥ , and hence a similar argument to the above
proves the continuity of eigenvalues at η = , i.e., the continuity of λ(ci) at ci = ∞. �

The method in the proof of Lemmas . and . cannot be applied straightforwardly
to the case c

i =  since K(y, ) = K(y) is not integrable in L[–, ]. Then we first present
necessary notations before proving the continuity of λ(ci) at ci = . Let H() be defined as
in (.) with spectrum σ. Denote by λ() the eigenvalue of H(). Then we can prove the
following.

Lemma . λ(ci) is continuous at ci = .

Proof For ci > , it is easy to see from (.) that  is an eigenvalue of H(ci) if and only if

W (ci) :=
∫ 

–


(U – i ci) = .

Since |W (ci)| → ∞ as ci → + by Lemma ., one sees that  is not an eigenvalue of H(ci)
for all sufficiently small ci > , or the resolvent of H(ci) at , say G(ci), exists. Let G(y, t; ci)
be the associated Green function. A calculation shows that

G(y, t; ci) = –W –(ci)

{
ϕ–(y; ci)ϕ+(t; ci), – ≤ y ≤ t ≤ ,
ϕ–(t; ci)ϕ+(y; ci), – ≤ t ≤ y ≤ .

(.)

Then H(ci)ϕ = λϕ is equivalent to

ϕ = λG(ci)ϕ =: λ
∫ 

–
G(y, t; ci)ϕ(t) dt. (.)

Now we consider the limit of G(y, t, ci) in L([–, ] × [–, ]) as ci → +.
For y > , we have from (.) that

W –(ci)ϕ–(y; ci, ) = W –(ci)
(
U(y) – ici

)
(

W (ci) +
∫ y




(U – ici)

)

=
(
U(y) – ici

)
+ W –(ci)ϕ+(y, ci, ) → U(y),

since W (ci) → ∞ as ci → +. Furthermore,

∣∣W –(ci)ϕ–(y; ci, )
∣∣ ≤ 

(∣∣U(y)
∣∣ + 

) ∈ L[–, ]
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for all sufficient small ci, we know from the Lebesgue dominated convergence theo-
rem that W –(ci)ϕ–(y; ci, ) → U(y) in L[, ] as ci → +. Similarly, one can prove that
W –(ci)ϕ+(y; ci, ) → U(y) in L[–, ) as ci → +.

Therefore, we conclude from (.) and (.) that

G(y, t; ci, ) → G+(y, t) = –

{
U(t)ϕ+(y; , ),  > y > t > ,
U(y)ϕ+(t; , ),  < y < t < ,

(.)

in L([, ] × [, ]) and

G(y, t; ci, ) → G–(y, t) = –

{
U(y)ϕ–(t; , ),  > y > t > –,
U(t)ϕ–(y; , ), – < y < t < ,

(.)

in L([–, ] × [–, ]).
For the case yt < , we have

G(y, t; ci) = –W –(ci)

{
ϕ+(y; ci)ϕ–(t; ci), y > , t < ,
ϕ+(t; ci)ϕ–(y; ci), y < , t > .

(.)

Since ϕ+(y; ci) and ϕ–(y; ci) converge to ϕ+(y) in L[, ] and ϕ–(y) in L[–, ] by (.), re-
spectively, as ci → +, we find that G(y, t; ci, ) →  in L-norm as ci → + by Lemma ..

Summing up the above discussion, we get, as ci → +,

G(y, t; ci) → G(y, t) :=

⎧
⎪⎨

⎪⎩

, yt < ,
G+(y, t), y > , t > ,
G–(y, t), y < , t < ,

(.)

in L([–, ] × [–, ]). Applying the odd symmetry of U(y) in [–, ] and the definitions
of ϕ±(y), one can verify that ϕ+(y) = ϕ–(–y) for y �= . Therefore,

G(–y, –t) = G(y, t), yt > , y, t ∈ [–, ], (.)

by the definitions of G+, G– in (.), (.), respectively. As a result, the limitation eigenvalue
problem of the operators G(ci) as ci → + can be expressed as

ϕ = λGϕ in L[–, ], (Gϕ)(y) :=
∫ 

–
G(y, t)ϕ(t) dt, y ∈ [–, ]. (.)

Since G(·, ·) ∈ L([–, ] × [–, ]), this means that G is a Hilbert-Smith operator, and hence
every nonzero spectral point is an isolated eigenvalue.

Now consider the eigenvalue problem H()ϕ = λϕ, or

ϕ(y) = λ

∫ 


G+(y, t)ϕ(t) dt = λ

∫ 


G(y, t, )ϕ(t) dt (.)

for y >  by (.) and (.). By (.), one can verify that ϕ(y) solves (.) if and only if
ϕ(–y) solves

ϕ(–y) = λ

∫ 

–
G–(y, t)ϕ(–t) dt = λ

∫ 

–
G(y, t, )ϕ(–t) dt (.)
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for y < . This clearly shows that ϕ(y) solves (.) if and only if (y) satisfies

(y) = λ

∫ 

–
G(y, t, )(t) dt, (y) =

{
ϕ(y), y > ,
ϕ(–y), y < ,

(.)

which means that λ is an eigenvalue of (.) if and only if λ is an eigenvalue of (.). Since
every eigenvalue of H() is isolated and algebraically simple, it follows from [], Lemma ,
p., that λ(ci) is continuous at ci = . The proof is finished. �

For the convenience of applications of Lemmas .-. in the proof of Theorem ., we
give a detailed description of the continuity of λ(ci) by summing up the conclusions in
Lemmas .-..

Lemma . The eigenvalue λ(ci) of H(ci) is continuous on [,∞] in the sense that, for a
fixed eigenvalue λ(c

i ) of H(c
i ) with the algebraically multiplicity m and a neighborhood

O(λ(c
i )) of λ(c

i ) such that O(λ(c
i )) ∩ σ (H(c

i )) = {λ(c
i )}, there exists a neighborhood O(c

i )
of c

i such that, for ci ∈ O(c
i ), O(λ(c

i )) contains m eigenvalues λ(ci) of H(ci).

In fact, Lemma . gives the resolvent convergence of H(ci) as ci → +. Using this fact
we can prove the following.

Lemma . If cn
i →  and the limit λ̂ of λ(cn

i ) is finite as n → ∞, then λ̂ is an eigenvalue
of H().

Proof Choose z /∈ σ (H()). By Lemma . z /∈ σ (H(cn
i )) for n sufficiently large. Set

Gn =
(
H

(
cn

i
)

– z
)–, G =

(
H() – z

)–, λn = λ
(
cn

i
)

– z, λ = λ̂ – z.

Let ϕn ∈ L(–, ) be the corresponding normalized eigenvector corresponding to the
eigenvalue λn of H(cn

i ) – z, or ϕn = λnGnϕn.
Since G is compact and ‖ϕn‖ = , there exists a convergent subsequence of {Gϕn}, say

{Gϕn}. Then we have

‖ϕn – ϕm‖ = ‖λnGnϕn – λmGmϕm‖
≤ |λn|

∥
∥(Gn – Gm)ϕn

∥
∥ + |λn – λm|‖Gmϕn‖ + |λm|∥∥Gm(ϕn – ϕm)

∥
∥. (.)

However,

∥∥Gm(ϕn – ϕm)
∥∥ ≤ ∥∥(Gm – G)ϕn

∥∥ +
∥∥(G – Gm)ϕm

∥∥ +
∥∥G(ϕn – ϕm)

∥∥. (.)

Since ‖Gn – G‖ → , λn – λm → , G(ϕn – ϕm) →  as n → ∞, we conclude from (.)
and (.) that {ϕn} is a Cauchy sequence. Set ϕn → ϕ as n → ∞. Then ϕ �=  since
‖ϕn‖ = . Clearly

‖ϕ – λGϕ‖ ≤ ‖ϕ – ϕn‖ + |λn|
∥
∥(Gn – G)ϕn

∥
∥

+ |λn – λ|‖Gϕn‖ + |λ|
∥∥G(ϕn – ϕ)

∥∥ → 
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as n → ∞ gives ϕ = λGϕ. This together with ϕ �=  implies that λ̂ is an eigenvalue of
H(c

i ). The proof is completed. �

The following result gives a lower bound of the real eigenvalues of H(ci).

Lemma . There exists M >  such that for any real eigenvalue λ(ci) of H(ci) for ci >  we
have λ(ci) ≥ –M.

Proof Let ϕ(y, ci) be the eigenfunction corresponding to λ(ci) such that ϕ(, ci) = ,
ϕ′(, ci) = . Choose m sufficiently large such that U ′

Um–
 is bounded in [, ], i.e., there

exists M >  such that

∣∣U ′
Um–

 (y)
∣∣ ≤ M.

Since λ(ci) is real, multiplying both sides of (.) by Um
 ϕ and integrating by parts on [, ]

we find that the real part is given by

m
∫ 


Um–

 U ′
 Re

(
ϕ′ϕ

)
+

∫ 



(
Um


∣
∣ϕ′∣∣ +

U ′′Um+


U
 + c

i
|ϕ|

)

= λ(ci)
∫ 


Um

 |ϕ|. (.)

Here U() =  is used. By Lemma . ϕ(y, ci) → g(y) in L(, ] as ci → , where g(y) is
the solution of

–φ′′ +
(

U ′′

U
+ α

)
φ = λφ

such that g() = , g ′() = .
Set

C =
∫ 



∣
∣g(y)

∣
∣ dy, C =

∫ 


Um

 (y)
∣
∣g(y)

∣
∣ dy. (.)

Then there exists δ >  such that, for ci < δ,

∫ 



∣∣ϕ(·, ci)
∣∣ ≤ C,

∫ 


Um


∣∣ϕ(·, ci)

∣∣ > C/. (.)

Since U() =  and ϕ(, ci) = , integration by parts shows that

∫ 



U ′′Um+


U
 + c

i
|ϕ| =

U ′Um+


U
 + c

i
|ϕ|

∣
∣∣
∣




–

∫ 


U ′

(
Um+


U

 + c
i
|ϕ|

)′

= –
∫ 



U ′Um+


U
 + c

i
Re

(
ϕ′ϕ

)
–

∫ 


U ′

(
Um+


U

 + c
i

)′
|ϕ|.

A calculation shows that (by the continuity of U)

∣
∣∣∣U

′
(

Um+


U
 + c

i

)′∣∣∣∣ ≤ Cm
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and hence

∫ 



U ′′Um+


U
 + c

i
|ϕ| ≥ –

∫ 



∣
∣Um–

 U ′
ϕ

′ϕ
∣
∣ – Cm

∫ 


|ϕ|. (.)

For the first term in the above inequality we have

∫ 



∣
∣Um–

 U ′
ϕ

′ϕ
∣
∣ ≤

(∫ 



(
U ′Um–


)|ϕ|

)/(∫ 


Um


∣
∣ϕ′∣∣

)/

≤ 
m + 

∫ 


Um


∣∣ϕ′∣∣ + (m + )

∫ 



(
U ′Um–


)|ϕ|. (.)

Inserting the inequalities (.)-(.) into (.) we have λ(ci) ≥ –(m + )CCm/C. The
proof of Lemma . is finished. �

Proof of Theorem . Let λn(ci) be defined as above with the multiplicity nk(ci). Recall that
H() has N negative eigenvalues λ < λ < · · · < λN < , and m = [(N + )/], αj =

√
–λj,

 ≤ j ≤ N , αN+ = . We proceed to show that, for every α ∈ ⋃m
k=(αk ,αk–), there exist

ci >  and k ≥  such that λk(ci) = . Assume to the contrary that, for an α ∈ (αj,αj–) with
 ≤ j ≤ m, λk(ci) �=  for all ci ∈ (,∞), and k ≥ . Then, by Lemma ., we can define

D(ci) =
∞∏

k=

(
 – e–λk (ci)

)nk (ci), ci ∈ (,∞), (.)

to be a function because the infinite product converges to a finite nonzero number for
every ci >  and ci = ∞. Fixing c with c

i > , for all ci ∈ (c,∞), since the remainder in
(.) satisfies |r(n, ci)| ≤ C(ci)n and C(ci) is dominant by C

∫ 
– |K(y, ci)|dy and |K(y, ci)| ≤

|K(y, c
i )|, the infinite product in (.) converges uniformly on (c

i ,∞). Moreover, since
λk(ci) appears in complex conjugate pairs, D(ci) is real-valued.

Note that  – e–λk (∞) >  for k ≥  since λk(∞) = ( kπ
 ) + α >  by the definition of H(∞)

in Lemma .. Then D(∞) > . If D(ci) <  for some ci >  and D(ci) is continuous on
(,∞), then we will have the desired contradiction.

First of all we prove that D(ci) <  for some ci > . Precisely, we will prove that there
exists δ >  such that

D(ci) < , ci ∈ (, δ).

Since for ci = , λk() = λk + α and nk(ci) =  for all k. Then for α ∈ (αj,αj–), it is easy
to see that the first j –  eigenvalues λ(), . . . ,λj–() are negative and the rest are all
positive. Choose ε >  small enough such that

Ok =
{
λ ∈C :

∣
∣λ – λk()

∣
∣ < ε

}
,  ≤ k ≤ j – , Ok ∩ Om = ∅, k �= m.

Then by Lemma ., there exists δ >  such that Ok contains exactly one simple eigenvalue
of H(ci) for all ci < δ, say λ(ci), . . . ,λj–(ci). Since λk(ci) is also an eigenvalue of H(ci), then
by the simpleness λ(ci), . . . ,λj–(ci) are all real.
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If λ(ci), . . . ,λj–(ci) are all the negative eigenvalues of H(ci), then we must have D(ci) <
 since the number is odd and non-real eigenvalues appear in complex conjugate pairs.
Suppose that for any integer N >  there exists a cN

i such that

cN
i < /N , λ

(
cN

i
)

< , λ
(
cN

i
) �= λk

(
cN

i
)

for  ≤ k ≤ j – . This also means that

λ
(
cN

i
)

/∈ Ok ,  ≤ k ≤ j – ,

by the definition of λk(cN
i ). By Lemma ., λ(cN

i ) is bounded for all N ≥ . Then there exists
a convergent subsequence, say {λ(cN

i )}. Let λ be the limit of {λ(cN
i )} as N → ∞, then

Lemma . implies that λ is an eigenvalue of H(). Since λ(cN
i ) <  and λ(cN

i ) /∈ Ok , we
see that λ ≤  and λ �= λk() for  ≤ k ≤ j – . But H() has no other negative eigenvalue
except for λ(ci), . . . ,λj–(ci), we must have λ = . This is also a contradiction since H()
has no zero eigenvalue.

Now we prove the continuity of D(ci) on (,∞) provided that D(ci) �= . Let c
i ∈ (,∞)

and ε >  be given. Suppose that μ, . . . ,μm are the first m distinct eigenvalues of H(c
i ) and

that each μj has a multiplicity nj and n + · · · + nm = Mm. Then {Mm} is increasing and the
continuity of D(ci) is equivalent to the continuity of the partial product Dm(ci) :=

∏Mm
k= ( –

e–λk (ci))nk (ci) for every m because of the uniform convergence of the infinite product.
Choose an η >  so small that, for  ≤ j ≤ m, μj is the only eigenvalue of H(c

i ) in the disc
Oj = {λ : |λ – μj| < η} and ∂Oj ∩ σ (H(c

i )) = ∅. Furthermore, η can be chosen sufficiently
small such that, for λ ∈ Oj,  ≤ j ≤ m,

∣∣ln
∣∣ – e–λ

∣∣ – ln
∣∣ – e–μj

∣∣∣∣ < ε/Mm. (.)

Then by Lemma ., there exists δ >  such that Oj contains exactly nj eigenvalues of H(ci)
for ci: |ci – c

i | < δ. Therefore, we have from (.), for |ci – c
i | < δ,

∣∣ln
∣∣Dm(ci)

∣∣ – ln
∣∣Dm

(
c

i
)∣∣∣∣ < ε.

This gives the continuity of Dm(ci) and completes the proof of Theorem .. �

Example . Take U(y) = yρ( – yn) with ρ = / and n an even number. Then H() is
given by

–ϕ′′ –
(

n(n + ρ – )
 – yn yn– + ρ( – ρ)y–

)
ϕ = λϕ, y ∈ (, ],

[
yρϕ′(y) – ρyρ–ϕ(y)

]∣∣
y= = , ϕ() = .

(.)

Since H() has at least m negative eigenvalues for n > (m + )π, we know from Theo-
rem . that the Rayleigh problem has at least k unstable modes if α <

√|λk|,  ≤ k ≤ m.
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