He et al. Boundary Value Problems (2016) 2016:101

DOI 10.1186/513661-016-0610-y

® Boundary Value Problems

a SpringerOpen Journal

RESEARCH Open Access

CrossMark

Local existence and blow-up criterion of
the ideal density-dependent flows

Fangyi He', Jishan Fan? and Yong Zhou**"

“Correspondence:
yzhou@sufe.edu.cn

3School of Mathematics, Shanghai
University of Finance and
Economics, Shanghai, 200433,

PR. China

“Department of Mathematics, King
Abdulaziz University, Jeddah, 21589,
Saudi Arabia

Full list of author information is
available at the end of the article

@ Springer

Abstract

In this paper, we consider two ideal density-dependent flows in a bounded domain,
the Euler and magnetohydrodynamics equations. We prove the local existence and a
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1 Introduction
First, we consider the following 3D density-dependent Euler system:

ogp+u-Vp=0, (1.1)
pou+ pu-Viu+ Ve =0, (1.2)
diva =0, (1.3)
u-n=0 ona x (0,00), (1.4)
(o, w)(-,0) = (po, o) in Q2 C R, (L5)

Here 2 is a bounded domain with smooth boundary 9Q € C*, n is the outward unit
normal to d€2; the unknowns are the fluid velocity field u = u(x, ), the pressure & = 7 (x, £),
and the density p = p(«, £).

Beirdo da Veiga and Valli [1, 2] and Valli and Zajaczkowski [3] proved the unique solv-
ability, local in time, in some supercritical Sobolev spaces and Holder spaces in bounded
domains. It is worth pointing out that in 1995 Berselli [4] discussed the standard ideal flow.

When € := R3, Danchin [5] and Danchin and Fanelli [6] (see also [7, 8]) proved the
unique solvability, local in time, in some critical Besov spaces.

The first aim of this paper is to prove the local existence and a blow-up criterion of
problem (1.1)-(1.5) in the L? frame work. We will prove the following:

Theorem 1.1 Let 0 < infpy < sup py < 00, po, 0y € W (2) with integer s > 3, s> 1+ 5’—7,
and?2 <p < 0o, and divug = 0 and ug -n = 0 on 9Q2. Then there exists a positive time T* > 0
such that problem (1.1)-(1.5) has a unique solution (p,u) satisfying

0<infpy < p <suppg <00, p,uel>(0,TW*). (1.6)
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Furthermore, if u satisfies
Vu e L*(0, T;L%) 1.7)
with 0 < T < 00, then the solution (p,u, ) can be extended beyond T > 0.
Remark 1.1 When 1 < p < 2, we can prove a similar result.

We also consider the following ideal density-dependent MHD system:

op+u-Vp=0, (1.8)
1

pdu+ p(u- Vu+ V(n + 5|b|2> =(b- V)b, (1.9)

b+ (u-V)b=(b-V)u, (1.10)

divu=divb =0, (1.11)

u-n=b-n=0 onadQ x (0,00), (1.12)

(p,u,b)(-,0) = (po, ug,by) in Q@ CR>. (1.13)

Here Q2 is a bounded domain with smooth boundary 92 € C*, n is the outward unit
normal to 9€2, and the unknowns are the plasma velocity u = u(x, ), the magnetic field b =
b(x,t), the pressure = 7 (x, t), and the density p = p(x,t). When b = 0, system (1.8)-(1.13)
reduces to the density-dependent Euler equations (1.1)-(1.5). When  := R3, Zhou and
Fan [9] proved the local well-posedness of problem (1.8)-(1.13). For other related works,
we refer to [10—14] and references therein.

In 1993, Secchi [15] was the first one to consider problem (1.8)-(1.13) and proved the
local unique solvability with the main condition that

IV pollgs-1 is small enough with integer s > 3. (1.14)

The second aim of this paper is to prove the local well-posedness of problem (1.8)-(1.13)
without any smallness condition; furthermore, we will also prove a regularity criterion.
We will prove the following:

Theorem 1.2 Let 0 < infpy < sup pg < 00, po,Wg, by € H® with integer s > 3, divugy =
divby =0in Q,anduy-n=bg-n=0 on 2.
Then there exists a positive time T* > 0 such that problem (1.8)-(1.13) has a unique solu-
tion (p,u,b) satisfying
0 <infpy < p <suppg<oco, p,u,bel>(0,TH"). (1.15)
Furthermore, if u and b satisfy

Vu, Vb € L%(0, T; L) (1.16)

with 0 < T < 00, then the solution (p,u,b, ) can be extended beyond T > 0.
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Remark 1.2 We are unable to prove Theorem 1.1 for the ideal density-dependent MHD

system.
We will use the following well-known Osgood lemma in [16].

Lemma 1.3 (Osgood lemma) Let y be a measurable positive function, f a positive, locally
integrable function, and g a continuous increasing function. Assume that, for a positive real
number a, the function y satisfies

yt)<a+ / F(9)g(y(s)) ds

If a is different from zero, then we have

—G(y(t)) +Gla) < /tf(s) ds, where G(s) := /1 %

If a is zero and g(s) satisfies fol % = +00, then the function y is identically zero.

We will also use the following bilinear commutator and the product estimate:
i) Iff € Ws(Q) N CY(R) and g € W*17(Q) N C(R), then, for |a| <s,

D (f2) _fDag”Lp < C(Iflhwsn @ ligln @) + 1V Iz @ gl w12 () (1.17)
(ii) Iff,g e W*P(Q2) N C(2), then, for |a| <s,
||Da(fg)||Lp < C(If llwser @ lIglzar @) + If 172 @) gl wsa @) (1.18)

=Ll 1 andl<p<oo.
e k@

The case with p =2, p1 =q> = p, q1 = p» = 00 has been proved in [17]. Since the proof of

with integer s > 0,
(1.18) is similar to that of (1.17), we will prove (1.17) only in the Appendix.
2 Local existence of the Euler system
This section is devoted to the proof of local existence for the Euler system. We only need

to prove a priori estimates (1.6).
First, by the maximum principle, we have the well-known estimates

0 <infpg < p <sup pg < 0. (2.1)
Testing (1.2) by u and using (1.1), (1.3), and (1.4), we see that
f pluf®dx = / poluo|* dx. (2.2)
Q Q
Applying D* to (1.1), testing by |[Dp|P~2D* p, and using (1.3), (1.4), and (1.17), we derive
/ |D‘p|p dx

—/;Z(Ds(u- Vp)—u-VDSp)‘DSp’p_zDspdx

pdt
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<D Vo)~ u- VDo, | Do},
< C(IVullzellpllwss + 1Vl lullwse) 1ol

P
= Cllullwsellollysps

< Cllullfys, + Cllpltiys,- (2.3)
Using (1.1), we rewrite (1.2) as follows:
1
du+u-Vu+—Va =0. (2.4)
0

Applying D* to (2.4), testing by | D*u|P~2D*u, and using (1.3), (1.4), (1.17), (1.18), and (2.1),
we deduce that

1d ,

S—/ (Ds(u.Vu)—u~VDSu)|Uu|p_2Uudx—/DS<%VJT>|DSu|p_2DSudx
Q Q

< ||U(u -Vu)-u- VDSuHLP ||Dsu||fz;,1 +

1 _
U(—Vﬂ) H [Du;!
o j74
< ClIValiz< ulfysy + CUIVA llwse + 1Vl [0 lwse ) lys,- (2.5)
Testing (2.4) by Vzr and using (1.3), (1.4), (2.1), and (2.2), we infer that
V|2 < Clla- Vall;2 < Cllull2 [ Vu|lgo < Cl[Vul|ge. (2.6)

Taking div to (2.4), we observe that

1
—Am=f:=p ZVuiaiu— ;Vp -Vr. (2.7)

Using (1.1), (1.2), and (1.4), we deduce that

om
8_n=g:=,0u~Vn-u on 9. (2.8)

Using (1.18) and the well-known W*”-estimates of problem (2.7)-(2.8) [18], we have

IVl wsr (o)
<C s-1, +C
< Clf lwsrr(e) ||g||Ws_1l7,p(m)
<CH > vud CHVIV Cllpu-Vn-u]
<Clp u;0;u + —Vr +Cllpu-Vn-u| 1
i o Ws-1p(Q) 14 Ws-1p(Q) w’ p'p(ag)

< CllIpllys1o I Vullfeo + IVl ullwsr ]
+ CLIVRll= IV s + [Vl o lwsr] + Cllow- Vi - ullwspg)

2 2
= Cllpllwse lallyysy + Cllallysy + Clipllwse IV |l ys-1p
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+ Cllow - ullwss + Cllpu? |

< Clpllwselullfysy + Cllulfysy + Cllpllwse [V [[yys-1p, (2.9)

where we used the estimate [18]

1
HV— = Clipllwse.

Y H ws—Lp

By the Gagliardo-Nirenberg inequality

_ 1
IV lys1p < CIUVA NNV yspr 1—a = —5—, (2.10)
S+ 7~ 1—7
it follows from (2.6), (2.9), and (2.10) that
2 2 s+3-5
IV llwse < Cllpllwsellallyysy + Cllallyysy + Cllpllysy © IVallze. (2.11)

Combining (2.3), (2.5), and (2.11) and using Osgood’s lemma (for some T') and the in-
equalities
IV llzee < ClIVT|lwse, [Vallze < Clluflwse,

lplwse < C(Iolle + | Do) )
<C+C|Dp],,

lallwse < C(llull + | Dul )
<C+C|D’

“”LP'

we arrive at
lollzee o, mwse) + 1@l oo, 7wsr) < C. (2.12)
This completes the proof.
3 A blow-up criterion for the Euler system
This section is devoted to the proof of regularity criterion for the Euler system. We only
need to establish a priori estimates.

First, we still have (2.1) and (2.2).
Taking V to (1.1), testing by |V p|?~2V p. and using (1.3) and (1.4), we derive

1d

——/ VPP dx < ||Vu||Loo/ VP dx,

pdt Jq Q
whence

d
VPl = IVull< Vol
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Integrating this inequality and taking the limit as p — +00, we have

IVollerire) < C. (3.1)
It follows from (2.6) that

V7l zooo,ir2) < C. 3.2)

It follows from (2.7), (2.8), (1.7), (3.1), (3.2), and the W?”-estimates of problem (2.7)-(2.8)
that

Va|wr <C +C
IV llyre < Clifllze Ilgllwlf},,p(m)

+Cllpu-Vn-u 1
o [T

< CH Jo Z Vu;0;u

1
+CHV—V7T
0

)2 yig

=C+C|Vr| + Cllpu- Vo - ully,

- .
= C+ VTR IVE G,

< IVl +C
for any 3 < p < 00, and thus
IV || zoo(o, 150000 < C. (3.3)
Similarly to (2.9), we have

IV llwse < Clipllwse + Cllallwse + CI V7 [lys-1p

1
< §||V7T||stp +C + Cllpllwsr + Cllullwse,
and thus
IV |lwsr < C+ Cllpllwsr + Cllallwss. (3.4)

Combining (2.3), (2.5), (3.4), (1.7), (3.3), and (3.1) and using the Gronwall inequality, we
arrive at (2.12).
This completes the proof.

4 Local existence for the MHD system
This section is devoted to the proof of local existence for the MHD system. We only need
to prove a priori estimates (1.15). Before going to detailed estimates, we write the case with
P=2,p1=q>=p, q1 =p> =00 in (1.17) and (1.18) as follows:

(i) Iff,g € H(2) N C(R), then

el < CU s gl + I1f i@ llglmse)- (4.1)
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(ii) Iff € H(RQ) N CYR) and g € H*(R) N C(RQ), then, for |a| <,
1D (f) = D¢ 120y = CIf s llgllzoei@) + I llwroo iy €1 ()- (4.2)
First, by the maximum principle we have the well-known estimates
0 <infpy < p < sup pp < 0. (4.3)

Testing (1.2) by u and using (1.8) and (1.11), we see that
1d lu?d f(b V)b-ud (4.4)
37 p ul“dx = ; udx. .
Testing (1.10) by b and using (1.4), we find that

2dt/ b2 dx = / V)u-bdx. (4.5)

Summing up (4.4) and (4.5) and noting the cancellation of the terms on the right-hand
sides of (4.4) and (4.5), we get

[ (o1 167) = [ (olual + boP?) . (46)
Q Q
Applying D* to (1.8), testing by D*p, and using (1.11) and (4.2), we derive
2dt/’DSp| dx = - f( -Vp)—u-VDSp)DS,odx
< |- Vo) - V0] D'

< C(IVplrelulms + [alwrs Vo) | Dol 2
<Cllpl}s + Cllulls. (4.7)

Applying D* to (1.9), testing by D*u, and using (1.11), we get

:/(Ds(b'Vb)—b-VDsb)Dsudx+/b.VDsb~DSudx
Q Q

- /Q(Ds(patu) - ,oDsatu)Dsudx— /Q(Ds(pu -Vu) - pu - VDSu)DSudx
—/QDSV(N + %bz) Doudx=L+L+1+1+15. (4.8)
Applying D* to (1.10), testing by D*b, and using (1.11), we deduce
2dt/’DSb‘ dx /( u)—b-VDsu)Dsbdx+/b-VDsu~Dsbdx

Q

- / (D°(u-Vb)—u-VD’b)D’bdx =:I + I +I. (4.9)
Q
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Summing up (4.8) and (4.9) and noting that I, + I; = 0, we find that

1d

——/( IDul* + |D°b*)dx =1 + I + Iy + Is + I + I (4.10)
2dt Jg

Using (4.2) and (4.1), we bound 1, I3, Iy, I5, I, and I3 as follows:

L < Clbllyasobllssllullzs < ClIblIFs ull s,
I < C(llpllus 9l + [l pllwioe |9l ) | D
< Cllpllas 19l st 1l s,
L < C(llpullyslIVall + [ oullwice Va1 ) | D*ul)
< C[(Ilpllallzs + lullzes llollms) | Vallzs + ol lallwic | Val g ] | Dal 5

< Cllpllgs a3,
1
DSV(n + §|b|2) ”L2 |D*u] 2,

Is < C(Ibllz | Vullzo + [Bllyioe |Vl s ) [D°b| 1o < ClIbIZs e,

Is <

Is < C(llulls= Vbl e + [[all i VDIt ) [ DB 15 < ClIbII3ge s

Inserting these estimates into (4.10), we have

1d C 2 2
M/Q(p|pu| + |Db) dx

2
= Clibllgs lallzs + Clipllas | 9wl s [[all s

3
+ Clipllas llallzs +

DSV(n + 1|b|2) H |D*ul . (4.11)
2 12
Testing (1.9) by d,u and using (1.11), we find that
[ plowP s < (|6 91bl s + ot Vul,s) ol
Q

whence

I8cull2 < C(IVbllee + |V )
< ClIbllzs + Cllullgs. (4.12)

Applying D*! to (1.9), testing by D*"19,u, and using (1.8), we have
/ ,o|DS’13tu|2 dx = / DY(b - Vb)D* d,udx —/ D Y(pu - Vu) D 19,udx
Q Q Q

—/(Ds_l(,oatu)—ng_latu)Ds_latudx
Q

1
—/ DS_1V<7T + §b2> - D' 9,udx,
Q
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whence
[0 3] 5 < C[D7(b- VB)|, + C[D (ou- Vu)

+ C||DS’1(p8tu) - ,oDHatu“L2 +C D“V(n + %|b|2)

12

=:h+h+h+]
Using (4.1) and (4.2) again, we bound /i, /2, and /5 as follows:

Ji < ClIbllzlbllzs < ClIblIZs,

2 < Clpullzo IVl gt + [l oul gt | Vall < )
< Cllpll s lull s lullzs < Cllpllas lullFs,

Js < C(Ipll 1 I3eullee + |l wroe | Bl gs-2)

< Cllplls (I9:ullzee + ([0l ys-2)

5-5/2 3/2 1 =)
1 1

< Cllplas (13wl 5 N3l + 0l 5t 19wl )

s=1
-1 5572
< elaull s+ Cllplis + lollz"™ ) ol

foranyO<e<1.
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(4.13)

Inserting these estimates into (4.12) and (4.13) and taking € small enough, we have

l0sull g1 < Clbll7s + Cllplles lallzs + Cliblls + Cllulls
=1
+C(lle gz + 105" ) (Iblls + 1wl fs)

1
+ CHDS_IV(T[ + §b2>

R
Using (1.8) and (1.11) and setting 7 := 7 + %b2, we rewrite (1.9) as
oyu+u-Vu+ lVﬁ = lb~Vb.
P o
Testing (4.15) by V7 and using (1.11) and (4.3), we infer that
IV7l2 = Clib- Vb2 + Cllu- Vull 2 < C|[bllps + Cllul|s.
Using (1.8), (1.9), and (1.12), we deduce that
T

—=g:=-b-Vn-b+pu-Vn-u onoQ.
on

Taking div to (4.15), we observe that

1 1
—AF=fi=p ) Vudu- ;(b :V)b-Vp - Vb;db- ;v/) V7.

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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Using (4.1) and the well-known H**!-estimates of problems (4.18) and (4.17) [18], we
have

Vil < o
IVZ s < Clf s + Clgll ey o
< Cllfllgzs-1 + Cllb- V- bl + Cllpou- Vi - ul|s
< Clipllzslullzs + Cllpllas IbliZs + Clibllzs + Cllw s

+ ClIbli7s + Cllolus IV |l gs-1, (4.19)
whence

IV lls < Cllplls lullZs + Cllolus bl + Cllbll s

+ Cllullzs + ClIblizs + Cllpll3s 1 VA N2, (4.20)
where we used the Gagliardo-Nirenberg inequality
_ 1 =
IVl g1 < CIVT IV s
and the well-known estimate [18]
()
0
Combining (4.7), (4.11), (4.14), and (4.20) and using the Osgood lemma, we arrive at

(1.15).
This completes the proof.

= Cliplas.
12

5 A blow-up criterion for the MHD system
This section is devoted to the proof of regularity criterion for the MHD system. We only
need to establish a priori estimates.

First, we still have (4.3) and (4.6).

Taking V to (1.8), testing by |V p|P~2V p, and using (1.11) and (1.16), we derive

1d
i Lvorar< il [ oras
pdtJo Q

whence
dIIV Iz < IVl I Vol
- ujjpoe .
dr pPlir = L pPliry

Integrating this inequality and taking the limits as p — +00, we have

IVollzeeo, ;L) < C. (5.1)

It follows from (4.6) and (1.16) that

”u”Loo(O,T;Wl,oo) + ”b”LOO(O,T;WLOC) < C. (52)
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Similarly to (4.16), we find that
Va2 <C. (5.3)

It follows from (4.17), (4.18), (5.1), (5.2), (5.3), and the W?”-estimates of problem (4.17)-
(4.18) that

A4 , <C +C
IV llwirg) < Cllf llze) ||g||W1_1l7,,,(m)

<C+C|b-Vn:b|y +Clpou-Vn-u|y,

<C
for any 3 < p < 00, and thus
172 [l oo o, 75 wri00y < C. (5.4)
It follows from (4.15), (4.3), and (5.4) that
[18sa|| zoo (0, 75200y < C.
Similarly to (4.19), we have
IV llks < Cllullgs + Clibllas + Cllollas + CIVA [l gs1,
whence
IV |lks < Cllullgs + Clibllgs + Cllpllps + C.
We still have (4.13), and similarly to (4.14), we have
I19sull 1 < ClIblls + Cllpllzs + Cllullzs + Cllullgs-2 + C[ DV | 1o,
which gives
0cull st < Clipllas + Cllallgs + Clibllas + C.

Similarly to (4.7), we have

1d

2
33 ||l s = ol + Clui. 55)

We still have (4.10). We bound £, I3, 14, I5, I, and I as follows:

L < Cllulls + Clblls,
2 2 2
I < Clull3s + Cllplizs + Clideul|?,,

< Clipllzs + CllallFs + Clibllzs + C,
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I < Cllplgs + CllullFys,
Is < CllpliFs + CllullZs + Clb|17s + C,
Is < CIIbll%s + Cllull%s,

Is < C|[bl[3s + Cllull}s.

Inserting these estimates into (4.10) and using (5.5) and the Gronwall inequality, we

conclude that

(o, u,b) ”LOO(O:T;HS) =¢

This completes the proof.

Appendix: Proof of (1.17)

We only prove the case || = 5. We have

|7 () /D%, = D Cil| DD e,
i=1

< CIVfllze2 gl ws-ray + Cllf llwser lIgll o

s-1

+2_ GO |

i=2

Ds’igHth,. (A1)

We will use the following two Gagliardo-Nirenberg inequalities:

1D || s < CUVFIS N N s (A2)

| D] 0 < CligllZ gl i, (A.3)

with i — pi =(1-a)1- 1%) + o(s — pil), where d is the dimension number.

i

Inserting (A.2) and (A.3) into (A.1) and using the Young inequality give (1.17).
This completes the proof.
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